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Abstract

The current deep learning works on metaphor detection have
only considered this task independently, ignoring the useful
knowledge from the related tasks and knowledge resources.
In this work, we introduce two novel mechanisms to improve
the performance of the deep learning models for metaphor
detection. The first mechanism employs graph convolutional
neural networks (GCN) with dependency parse trees to di-
rectly connect the words of interest with their important con-
text words for metaphor detection. The GCN networks in this
work also present a novel control mechanism to filter the
learned representation vectors to retain the most important in-
formation for metaphor detection. The second mechanism, on
the other hand, features a multi-task learning framework that
exploits the similarity between word sense disambiguation
and metaphor detection to transfer the knowledge between
the two tasks. The extensive experiments demonstrate the ef-
fectiveness of the proposed techniques, yielding the state-of-
the-art performance over several datasets.

Introduction
We study the problem of metaphor detection (MD) that
aims to identify the metaphorical expressions/words in text.
Metaphor is persuasive in daily communication, providing
the vividness and clarity for our thoughts and information
exchange. In the cognitive level, metaphor helps to concep-
tualize our concrete experience in the real world and transfer
such knowledge across different domains (Shutova, Kiela,
and Maillard 2016). More specifically, in an early and influ-
ential work, (Lakoff and Johnson 1980) describes metaphor
as a phenomenon in which a systematic metaphorical associ-
ation between two distinct concepts/domains is established
in our cognition and presented in the language. For exam-
ple, the words “curing” and “transmitting” in the phrases
“curing juvenile delinquency” and “corruption transmitting
through the government ranks” (respectively) are metaphor-
ical as they are supposed to originate from the concept of
disease (i.e., the source concept), but applied to the concept
of crime (i.e., the target concept) (Rei et al. 2017).
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The ubiquity of metaphor has made it an important prob-
lem in natural language processing (NLP) and recogniz-
ing metaphor correctly is crucial for the text understand-
ing capacity of NLP systems for various purposes (e.g.,
Information Extraction, Opinion Mining, Machine Trans-
lation) (Shutova, Teufel, and Korhonen 2013). However,
metaphor detection is a challenging problem, partly due
to the fact that the systems need to understand the lit-
eral senses of the expressions and distinguish such senses
from the non-literal meanings based on the analogical com-
parison in the specific context of the expressions. In or-
der to capture the context for metaphor detection, the early
work has adopted rule-based and machine learning systems
(Mason 2004; Turney et al. 2011; Tsvetkov et al. 2014;
Hovy et al. 2013) where extensive feature engineering and
system development are required. Recently, deep learning
and word representations have been applied to metaphor
detection to minimize the feature engineering effort, of-
fering the systems with the current state-of-the-art perfor-
mance for this task (Gao et al. 2018; Wu et al. 2018;
Mao, Lin, and Guerin 2019). In this work, we introduce two
novel techniques for metaphor detection with deep learning
that, to the best of our knowledge, have not been investi-
gated in the previous work, i.e., graph convolutional neu-
ral networks (GCN) with dependency trees and multi-task
learning with word sense disambiguation (WSD).

The first intuition for the proposed model is that given a
word of interest in a sentence, some context words are more
important than the others with respect to their contribution
to the determination about metaphor for the given word, and
effective modeling of such important words is critical for
the metaphor detection systems. For instance, in the example
sentence in Figure 1, the word “house” is crucial to correctly
predict “lay” as a metaphorical word (i.e., “lay” is usually
used for live animals instead of static objects like houses).
The other words (e.g., “seemed”, “float”, and “mist”), on the
other hand, are not necessary and might even introduce noise
into the representations learned by the deep learning mod-
els to determine the literal or metaphorical sense for “lay”
in this case. In order to properly capture the important con-
text words, in this work, we propose to rely on the depen-
dency trees of the sentences to guide the computation of the



The house that at first seemed to float on a raft of golden mist now lay in a wilderness
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Figure 1: The dependency parse tree for an example sentence. The word “lay” is metaphorical in this case.

graph convolutional neural networks for metaphor detection.
Our hypothesis is that the head-modifier connections be-
tween words in the dependency trees would help to directly
link the important context words to the words of interest for
metaphor detection. For instance, in the example sentence of
Figure 1, the relevant context word “house” is syntactically
next to the word of interest “lay” via the nsubj relation. In
the graph convolutional neural network (Kipf and Welling
2016) performed over such dependency structure, the rep-
resentation vector for a word at one step will be computed
based on the representation vectors of the syntactic neigh-
boring words in the previous step. Consequently, the repre-
sentation vectors for the words in GCNs will mainly involve
the information from the important/relevant context words
in the sentences for metaphor detection, filtering the irrele-
vant words and potentially improving the performance for
the models. Finally, as we often classify a single word or ex-
pression in the sentences for metaphor detection at a time,
we propose a novel control technique to customize the GCN
representation vectors so only the information relevant to the
words of interest would be retained and propagated over the
next computation step. Specifically, control vectors will be
generated from the representation vectors of the word of in-
terest that are then employed as the filters for the GCN vec-
tors to perform metaphor prediction.

Second, for the multi-task learning with WSD, the main
intuition is that WSD is highly related to the task of
metaphor detection and we can transfer the knowledge from
the reasoning process for WSD to improve the performance
of metaphor detection. In particular, the goal of WSD is to
identify the correct sense/meaning of a word/expression in
its context among the possible senses that the word can have
in general (e.g., the senses in WordNet). At the modeling
level, both WSD and metaphor detection need to perform
a classification problem for a word/expression based on its
context in the sentence. At the semantic level, it has been
shown in the previous studies that many metaphorical senses
of the words are recorded in the sense inventory of WordNet
(i.e., Section §3.4 (Shutova, Teufel, and Korhonen 2013)).
For instance, the sense with the id “drown%2:35:00::” of
“drown” (i.e., cover completely or make imperceptible) in
the phrase “drowned in work” is metaphorical, in contrast
to the literal sense of id “drown%2:30:00::” (i.e., die from
being submerged in water) for “drown” in “drowned in wa-
ter”. Consequently, if a deep learning system is capable of
learning effective representations to differentiate the senses
of the words in the context, its induced representations might
also be helpful for metaphor detection due to the close relat-

edness in semantic modeling for context. In order to em-
ploy such similarity between WSD and metaphor detection,
in this work, we propose a novel multi-task learning frame-
work that matches the representations induced for WSD and
metaphor prediction to facilitate the knowledge transfer be-
tween the two tasks. Our framework explicitly handles the
practical issue where the datasets are only annotated for a
single task (i.e., either WSD or metaphor detection) by train-
ing two networks for the two tasks and encouraging the rep-
resentations of the two networks to be similar if they are
presented with the same sentences/contexts. Based on our
literature survey, this is the first work on multi-task learning
for metaphor detection with deep learning.

We extensively evaluate the proposed model over sev-
eral benchmark datasets. The experimental results clearly
demonstrate the effectiveness of the model and present the
state-of-the-art performance for the such datasets.

Related Work
There have been several theories about metaphor in the
past, including the Contextual Metaphor Theory (Lakoff and
Johnson 1980) and the Selection Preference Violation (SPV)
(Wilks 1978). In order to annotate metaphorical words in
corpus, the popular principle is the metaphor identification
procedure (MIP) that defines metaphor as the contrast be-
tween the literal meaning of a word and its meaning in
the context (Group 2007). MIP is used to annotate sev-
eral widely used datasets for metaphor detection, i.e., VUA
(Gerard Steen and Pasma 2010) and MOH-X (Mohammad,
Shutova, and Turney 2016).

In the early work for metaphor detection, various fea-
tures and resources have been exploited to develop rule-
based and machine learning systems, including semantic
roles, domain types, word abstractness/concreteness, im-
ageability, WordNet supersenses (Mason 2004; Turney et
al. 2011; Strzalkowski et al. 2013; Tsvetkov et al. 2014;
Klebanov et al. 2016)). The other words have also con-
sidered clustering and unsupervised learning techniques for
metaphor detection (Shutova, Teufel, and Korhonen 2013;
Shutova E. and Narayanan 2017; Mao, Lin, and Guerin
2018). Recently, many studies have applied deep learning to
solve metaphor prediction (Rei et al. 2017; Wu et al. 2018;
Mao, Lin, and Guerin 2019), resulting in the state-of-the-art
performance on several benchmark datasets. We also pro-
pose a deep learning model in this work; however, we in-
troduce GCNs and the multi-task learning framework with
WSD that have never been explored before.

Finally, the previous works have applied multi-task learn-
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Figure 2: Model Overview.

ing to address various problems in NLP, including structured
prediction tasks (Duong et al. 2015; Collobert et al. 2011;
Guo et al. 2016) and sequence-to-sequence tasks (Dong et
al. 2015). Our work is different from such prior works as
we simultaneously model WSD and metaphor detection with
deep learning for the first time.

Model
We cast metaphor detection as a binary classification prob-
lem where given a word and the sentence containing this
word, we need to predict whether this word is metaphorical
or not (Gao et al. 2018; Mao, Lin, and Guerin 2019). We
call the word of interest for metaphor detection as the tar-
get word and the words in the sentence would constitute the
context for the target word in our prediction task.

Formally, let w = w1, w2, . . . , wn be a sentence of length
n in which wa (1 ≤ a ≤ n) is the target word for metaphor
prediction (wi is the i-th token in the sentence ∀1 ≤ i ≤ n).
The multi-task model for metaphor detection in this work
consists of four modules: (i) the encoding module, (ii) the
graph convolution module, (iii) the control module, and (iv)
the multi-task learning module. Figure 2 shows an overview
of the proposed model.

The Encoding Module
The first step in the proposed model is to transform the
words in the sentencew into real-valued vectors for the deep
learning architectures. In order to ensure a fair comparison
with the previous works on metaphor detection (Gao et al.
2018; Mao, Lin, and Guerin 2019), in this work, we convert
each word wi ∈ w into a vector xi using the concatenation
of the following three vectors:
• The uncontextualized pre-trained word embedding of

wi from Glove (Pennington, Socher, and Manning 2014).
We obtain this vector by looking up the embedding table
provided by Glove.
• The contextualized word embeddings of wi from ELMo

(Peters et al. 2018). In particular, we run the pre-trained
ELMo model over the input sentence, resulting in three se-
quences of hidden vectors for the words in this sentence
(each sequence corresponds to a layer in the ELMo archi-
tecture). Afterward, we take the weighted sum of the hidden

vectors at the position i in each sequence to produce an accu-
mulated representation vector for wi. The weights for each
sequence and the scalar parameter in ELMo are learned dur-
ing our training process of the whole model.
• The index embedding: In order to specify that wa is the

word of interest for metaphor prediction, we assign a binary
indicator bi so bi = 1 if i = a and 0 otherwise. We then
map such binary indicators into real-valued vectors using an
index embedding table that is initialized randomly and fixed
during training.

This word-to-vector conversion process transformsw into
a sequence of real-valued vectors x = x1, x2, . . . , xn. Al-
though the ELMo component already helps to encapsulate
the contextual information over the whole sentence w into
each vector xi (due to its employment of the bidirectional
long-short term memory (LSTM) networks (Hochreiter and
Schmidhuber 1997)), the Glove and index components in xi
are still independent from each other and not yet well in-
tegrated with the ELMo component to form fully contextu-
alized and rich representation vectors for the words in the
input sentence. In order to better combine the three vector
components in the vectors xi, we perform a bidirectional
LSTM network (BiLSTM) (Gao et al. 2018) over the vector
sequence x1, x2, . . . , xn, generating the hidden vector se-
quence h = h1, h2, . . . , hn as the output (i.e., the BiLSTM
representation vectors). Due to the recurrent and bidirec-
tional nature of BiLSTM, each vector hi encodes the contex-
tual information over the whole sentence x, smoothly wrap-
ping the different components of xi into a single contextual-
ized representation space.

The Graph Convolution Module
Given the hidden vectors from BiLSTM h = h1, h2, . . . , hn,
it is possible to directly aggregate such vectors to compute
an overall representation vector for metaphor prediction as
in (Gao et al. 2018). However, as we presented in the intro-
duction, it is important for the metaphor detection models
to recognize the relevant context words for the target word
and explicitly model them to achieve good performance. As
such important word modeling is not explicitly designed in
the current bidirectional LSTM network, we further feed the
hidden vectors hi from this network into a graph convolu-
tional neural network (Kipf and Welling 2016) that struc-
tures its computation over the dependency tree of the input
sentence w.

The operation of GCNs requires an adjacency matrixA to
encode the connections of the words in the dependency tree
for x. In order to prepare the adjacency matrix in this work,
besides the original directed connections in the dependency
tree, we also add the reverse edges and the self loops into the
tree. Such additional edges enable the governor word of wi
in the dependency tree (if any) and the word wi itself to con-
tribute to the computation of the GCN representation vector
for wi via the convolution operation. This helps to enrich
the GCN representation vectors with syntactically important
context for better metaphor prediction performance (Nguyen
and Grishman 2018a).

Let H0 = [h1, h2, . . . , hn] be the matrix whose rows
are the hidden vectors h1, h2, . . . , hn from the bidirectional



LSTM network in the encoding module. The GCN module
involves several layers of convolution; each layer takes as
input the matrix Hi(i ≥ 0) from the previous layer i and
computes the matrix Hi+1 for the current layer based on
(the bias is ignored for simplicity): Hi+1 = g(AHiW

g
i ).

Here, W g
i is the weight matrix for the i-th layer and g is a

non-linear function. We optimize the number of layers for
the GCN module based on the validation datasets in this
work. For convenience, we call the row vectors of the ma-
trix in the final convolution layer of the GCN module as
hg = hg1, h

g
2, . . . , h

g
n (i.e., the GCN representation vectors).

The Control Module
In order to perform metaphor prediction for wa, the deep
learning models need to define a method to compute an
overall representation vector V , serving as the features for
the prediction task. One way to generate such overall rep-
resentation vector in our model is to directly aggregate the
GCN representation vectors hg1, h

g
2, . . . , h

g
n in the previous

module via the popular techniques such as the pooling (e.g.,
max, average) and attention mechanisms (Gao et al. 2018).
A drawback of this approach is that it assumes the same
level of importance for all the dimensions in the represen-
tation vectors hg1, h

g
2, . . . , h

g
n. This is undesirable as the di-

mensions of the representation vectors are not constrained
at all so far and some dimensions might have more impacts
than the other dimensions for metaphor prediction. In addi-
tion, as the BiLSTM and GCN representation vectors have
been abstracted away from the original word vectors xi via
the hidden layers (i.e., BiLSTM and GCN), the information
about the position of the target word (i.e., the index em-
bedding component in xi) might have been blurred, caus-
ing the confusion of the representation vectors about the tar-
get word for metaphor prediction. In this work, we address
these two problems by devising a novel control technique
to regulate the GCN representation vectors to be more spe-
cific and aware of the target word wa. Such regulation will
be done at the dimension level (i.e., feature-wise) so the di-
mensions can be quantified appropriately according to their
importance for the metaphor detection problem.

Our general strategy for representation vector regulation
is to first compute the control vectors based on the represen-
tation vector of the target word wa (e.g., ha) and then apply
such control vectors as the feature-wise filters for the other
BiLSTM and GCN representation vectors. In particular, for
the BiLSTM representation vectors h = h1, h2, . . . , hn, we
first obtain the control vector ch via: ch = Relu(Whha).

This control vector then helps to filter the irrelevant infor-
mation (with respect to the target word wa) from the BiL-
STM representation vectors hi via the element-wise multi-
plication �: ĥi = ch � hi ∀1 ≤ i ≤ n.

where ĥi is the filtered BiLSTM vector and the element-
wise multiplication manifests our mechanism to achieve the
feature-wise/dimension-level manipulation of the represen-
tation vectors in this work. For the GCN representation
vectors, besides the BiLSTM representation vector ha of
wa, the GCN control vector cg is also conditioned on the
weighted sum of the vectors in h. This helps to inform the

control vector cg about the information already presented
in the BiLSTM representation vectors h so when cg is ap-
plied to the GCN vectors hg , the important information in
the BiLSTM vectors can be still preserved. For the weighted
sum of the vectors in h, the filtered vectors ĥi are employed
to obtain the weights for the vectors in h to ensure that such
weights are also customized for the target word wa:

αi =
exp(Wαĥi)∑n
j=1 exp(Wαĥj)

m =

n∑
i=1

αihi, cg = Relu(Wg[ha,m])

(1)

In the next step, the control vector cg is also applied to the
GCN representation vectors hgi using the element-wise mul-
tiplication operation, producing ĥgi as the filtered GCN rep-
resentation vectors: ĥgi = cg � hgi .

Finally, in order to aggregate the filtered GCN vectors ĥgi
to form the overall representation vector V for metaphor de-
tection, we use the following concatenation vector:

V = [ĥga,max(ĥg1, ĥ
g
2, . . . , ĥ

g
n)] (2)

In this formula, ĥga captures the context information for the
target word wa while max(ĥg1, ĥ

g
2, . . . , ĥ

g
n) leverages the

most important context information from the other words to
enrich the representation V . For prediction, the overall vec-
tor V would be used as the input for a feed-forward neural
network, followed by a softmax layer in the end to compute
the probability distribution over two choices (i.e., metaphor-
ical or not). The loss function to train the models in this work
is the negative log-likelihood over the training datasets.

The Multi-task Learning Module
The goal of the multi-task learning module in this section
is to transfer the knowledge from the datasets for word
sense disambiguation to improve the performance for our
metaphor prediction task as motivated in the introduction.
In the multi-task learning setting for NLP, multiple differ-
ent, but related tasks are solved simultaneously using their
available training datasets. The common approach with deep
learning for such multi-task learning techniques assumes a
single deep learning model to learn the representation vec-
tors for the text inputs (i.e., the encoder) that would then be
used as the shared features by different classifiers specific to
the tasks of interest (Dong et al. 2015; Duong et al. 2015;
Guo et al. 2016). If the datasets for the related tasks share
the text inputs (e.g., the same sentences are annotated for
different tasks), we can utilize the joint training process that
optimizes the joint loss function of the different tasks (Col-
lobert and Weston 2008). However, if the datasets for the re-
lated tasks involve different input texts (e.g., a sentence for
a dataset for a task only has the label for that corresponding
task), we need to resort to the alternative training procedure
that alternates the training process for the tasks of interest. In
particular, at one iteration, one task would be selected with
some probability and a minibatch of the dataset for that task
would be sampled to compute the loss and update the model



(Guo et al. 2016). Note that the parameters of the encoders
are updated at every iteration as they are shared across the
tasks while only the parameters for the classifier of the cur-
rently selected task are affected at one training iteration. Our
multi-task learning framework for WSD and metaphor de-
tection falls under the later scenario as the available datasets
for these two tasks do not share the input sentences, partly
due to the separation of the evaluation campaign of the tasks.
We thus consider the alternative training paradigm as the
baseline for our multi-task learning framework in this work.

One problem with the baseline approach is that a single
deep learning model is used as the encoder for the multi-
ple related tasks of consideration. For WSD and metaphor
detection, although they have some level of similarity in
terms of the semantic classification for words/expressions in
context, the representation vectors of the encoder for WSD
might need to involve more fine-grained or detailed informa-
tion than those for metaphor detection. This is caused by the
fact that the labels (i.e., the senses) in WSD are in general
more specific and exhaustive than the labels for metaphor
detection. In particular, one word in WSD can have more
than ten senses (e.g., “play”) while a word in metaphor de-
tection can only be assigned to two labels (i.e., metaphorical
or not). On the other hand, some metaphorical senses might
not be present in WordNet (Shutova, Teufel, and Korhonen
2013) for WSD, potentially requiring the representation vec-
tors for metaphor detection to capture some different seman-
tic information from those for WSD. Consequently, if a sin-
gle encoder is used to induce the representation vectors for
WSD and metaphor detection, the encoder might struggle to
decide which semantic information/aspects it should focus
on, leading to the reduced quality of the representations in
the end. In order to overcome this problem, in this work, in-
stead of using a single deep learning encoder, we propose to
introduce two separate encoders to compute the representa-
tion vectors for WSD and metaphor detection. The knowl-
edge is transferred between the two encoders by ensuring
that they use the same network architecture as the one we
propose in this work and that they produce similar repre-
sentation vectors once presented with the same input sen-
tence. The two separate encoder networks allow the flexibil-
ity to learn specific features for the individual tasks while
the transferring knowledge mechanism facilitate the incor-
poration of the knowledge in WSD for metaphor detection.

Formally, letEwsd andEmd be the encoders for the WSD
and metaphor detection tasks, following the network ar-
chitecture we present before. Also, let (wt, pt, yt) be one
example (at one iteration) from a dataset for either WSD
or metaphor detection (i.e., t is the task indicator: t ∈
{wsd,md}) where wt is the input sentence, pt is the posi-
tion for the target word, and yt is the label of wt for the task
t). In order to perform knowledge transferring, we feed the
input text (wt, pt) to both encodersEwsd andEmd, resulting
in two representation vectors V wsd and V md respectively:

V wsd = Ewsd(wt, pt), V md = Emd(wt, pt) (3)

For the task t, the representation vector V t is sent to the
task-specific classifier F t (e.g., a feed-forward neural net-
work followed by a softmax layer) to compute the proba-

bility distribution P t(.|wt, pt) for the possible labels for t.
In the usual single-task training procedure, we would opti-
mize the negative log-likelihood function C(wt, pt, yt) =
− logP t(yt|wt, pt) to search for the parameters for the en-
coder Et and the classifier F t for t. However, in our multi-
task learning framework, we instead minimize the following
loss function to update the parameters for F t and both the
encoders Ewsd and Emd:

C(wt, pt, yt) =

− logP t(yt|wt, pt) + λ‖V wsd − V md‖22
(4)

where λ is a trade-off parameter. The rationale for the sec-
ond term is that as the V wsd and V md are the representation
vectors for the same input sentence wt from the related en-
coders Ewsd and Emd, they should be similar to each other.
This allows the two encoders to communicate to each other
so the knowledge from one task (e.g., WSD) can be back-
propagated to the other task (e.g., metaphor detection) to
improve the quality of the representation vectors. Note that
we also follow the alternative training procedure to train the
multi-task learning framework in this work. This completes
the description of the proposed model for metaphor detec-
tion in the current work.

Experiments
Datasets, Parameters and Resources
In order to be compatible with the previous work (Gao et al.
2018; Mao, Lin, and Guerin 2019), we evaluate the proposed
models using three widely used datasets for metaphor detec-
tion, i.e., VUA (Gerard Steen and Pasma 2010), MOH-X
(Mohammad, Shutova, and Turney 2016) and TroFi (Birke
and Sarkar 2006). VUA represents the largest public eval-
uation dataset for metaphor detection that is used by the
NAACL-2018 Metaphor Shared Task (Leong, Beigman Kle-
banov, and Shutova 2018). The annotation for this dataset
is based on MIP for which every word in the sentences
is labeled for metaphor identification. Following the prior
work (Gao et al. 2018; Mao, Lin, and Guerin 2019), we
also consider two versions of this dataset, i.e., VUA ALL
POS where words of all types (e.g., nouns, verbs, adjec-
tives) are labeled, and VUA VERB that only focuses on
the verbs for metaphor detection. For MOH-X, the sen-
tences are shorter and simpler than those in the other datasets
as they are sampled from WordNet. Only one single verb
is labeled in each sentence in MOH-X. Finally, TroFi in-
volves sentences from the 1987-89 Wall Street Journal Cor-
pus Release 1. Similar to MOH-X, TroFi is also only an-
notated for a single target verb. Following the settings in
the prior work (Gao et al. 2018; Mao, Lin, and Guerin
2019), we perform 10-fold cross validation on MOH-X
and TroFi and split the VUA datasets into training, val-
idation and test sets. We use the same data splits for all
the three datasets as the previous work (Gao et al. 2018;
Mao, Lin, and Guerin 2019) for the fair comparison.

We use the Semcor dataset (Miller et al. 1994) for the
WSD dataset in this work. This dataset includes sentences
whose words have been manually annotated for the WordNet
sense ids. As the number of words in Semcor is much larger



Model VUA All POS VUA VERB MOH-X TroFi
P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

Lexical Baseline - - - - 67.9 40.7 50.9 76.4 39.1 26.7 31.3 43.6 72.4 55.7 62.9 71.4
SimNet - - - - - - - - 73.6 76.1 74.2 74.8 - - - -
CNN+BiLSTM† 60.8 70.0 65.1 - 60.0 76.3 67.2 - - - - - - - - -
RNN CLS - - - - 53.4 65.6 58.9 69.1 75.3 84.3 79.1 78.5 68.7 74.6 72.0 73.7
RNN SEQ ELMo† 71.6 73.6 72.6 93.1 68.2 71.3 69.7 81.4 79.1 73.5 75.6 77.2 70.7 71.6 71.1 74.6
RNN SEQ BERT† 71.5 71.9 71.7 92.9 66.7 71.5 69.0 80.7 75.1 81.8 78.2 78.1 70.3 67.1 68.7 73.4
RNN HG† 71.8 76.3 74.0 93.6 69.3 72.3 70.8 82.1 79.7 79.8 79.8 79.7 67.4 77.8 72.2 74.9
RNN MHCA† 73.0 75.7 74.3 93.8 66.3 75.2 70.5 81.8 77.5 83.1 80.0 79.8 68.6 76.8 72.4 75.2
MUL GCN 74.8 75.5 75.1 93.8 72.5 70.9 71.7 83.2 79.7 80.5 79.6 79.9 73.1 73.6 73.2 76.4

Table 1: The systems’ performance. †indicates the models that apply the sequential labeling setting. P, R, and F1 are calculated
for the metaphorical words while Acc indicate the overall accuracy of the models.

than those in the datasets for metaphor detection, we only
sample a portion of Semcor to train the models in this work.
In particular, we sample so that the numbers of examples in
the WSD and metaphor detection datasets would be similar.
For the metaphor detection datasets that only involve verbs
as the targets (i.e., VUA VERB, MOH-X, TroFi), we also
sample only the verbs in Semcor for WSD accordingly.

Regarding the pre-trained word embeddings, we also use
the 300d Glove vectors (Pennington, Socher, and Manning
2014) and 1024d ELMo vectors (Peters et al. 2018) as in
(Gao et al. 2018; Mao, Lin, and Guerin 2019). The dimen-
sion of the index embeddings is set to 50 as in the classifi-
cation setting in (Gao et al. 2018) for a fair comparison. We
fine-tune the other hyper-parameters of the proposed model
for each dataset that results in the parameter values as fol-
low. The numbers of hidden units for the BiLSTM networks
and the GCN networks are both 200 while the number of the
GCN layers is set to 2. The models are trained with shuf-
fled minibatches of size 32, using the Adam optimizer to up-
date the parameters. The trade-off parameter λ for multi-task
learning in Equation 4 for VUA ALL POS, VUA VERB,
MOH-X and TroFi are all set to 1.

Comparing to the State of the Art
This section compares the proposed model (called
MUL GCN) with the state-of-the-art models in metaphor
detection. In particular, similar to the prior work (Gao et
al. 2018; Mao, Lin, and Guerin 2019), the following base-
line models are selected for comparison: Lexical Baseline:
a simple system based on the metaphorical frequency of
the words (Gao et al. 2018), SimNet: the neural similar-
ity networks using skip-gram word embeddings in (Rei et
al. 2017), CNN+BiLSTM: the ensemble model with Con-
volutional Neural Networks (CNN) and BiLSTM in (Wu et
al. 2018). This is the best model among the participants of
the NAACL-2018 Metaphor Shared Task (i.e., the workshop
on Figurative Language Processing), RNN CLS: the BiL-
STM model with attention in (Gao et al. 2018) for the clas-
sification setting, RNN SEQ ELMo: the BiLSTM model
in (Gao et al. 2018) for the sequential prediction setting,
RNN SEQ BERT: this model (reported in (Mao, Lin, and
Guerin 2019)) is similar to RNN SEQ ELMo except that
the ELMo embeddings are replaced by the BERT embed-
dings (Devlin et al. 2019), RNN HG: the BiLSTM model

based on the MIP principle in (Mao, Lin, and Guerin 2019),
and RNN MHCA: the BiLSTM model with contextual at-
tention and the SPV principle in (Mao, Lin, and Guerin
2019). RNN MHCA is recently proposed and has the best
reported performance for metaphor detection in the litera-
ture1.

Table 1 presents the performance where F1 is the most im-
portant measure for this task (Mao, Lin, and Guerin 2019).
There are two different settings/approaches to do metaphor
detection in the literature, i.e., the sequential labeling set-
ting and the classification setting. In the sequential label-
ing setting, the models are trained to predict a sequence
of binary labels to indicate the metaphoricity of the words
in the sentences (i.e., the models with †in Table 1) while
the classification setting determines the metaphorcity of the
words in the sentences independently as a word classifi-
cation problem (i.e., the way we model metaphor detec-
tion in this work). On the one hand, Table 1 shows that
among the model with the classification setting, the pro-
posed model significantly outperform the previous state-of-
the-art model (i.e., RNN CLS). The performance gap is sig-
nificant and substantial with respect to VUA VERB and
TroFi. On the other hand, comparing the previous sequen-
tial labeling models with the proposed model MUL GCN,
we see that MUL GCN also has significantly better F1
score than the previous models (e.g., the current state-of-
the-art system RNN MHCA) on three over four considered
datasets (p < 0.01). The only exception is on the MOH-
X dataset where MUL GCN achieves comparable perfor-
mance with RNN MHCA. Such evidences clearly help to
demonstrate the advantages of the proposed model over the
ones in the previous work. One interesting point is predicting
the metaphor labels of the context words (as in the sequential
labeling setting) is suggested by the previous work (Gao et
al. 2018; Mao, Lin, and Guerin 2019) as the better way to do
metaphor detection than the classification setting. However,
in this work, we show the contrary that the classification set-
ting can still produce metaphor detection models with the
state-of-the-art performance. We attribute such achievement
to the proposal of multi-task learning, the control mecha-
nism and the GCNs that helps to boost the performance of
the model in this work significantly.

1We do not compare to (Shutova, Kiela, and Maillard 2016) as
their experiment setting is different from the current works.



Model Variations
The main components of the neural network model in this
work include the BiLSTM model in the encoding module,
the GCN module and the control module. This section eval-
uates the effectiveness of such components when they are
removed from the whole model. For the GCN module, we
additionally evaluate the model when the GCN module is
replaced by the popular multihead self-attention layer from
Transformer (Vaswani et al. 2017) to demonstrate the neces-
sity of GCNs in this work. Similar to the prior work (Gao et
al. 2018), we use the VUA VERB dataset for such ablation
studies2. Table shows the performance of the models in the
test datasets of VUA VERB.

Model P R F1 Acc
MUL GCN 72.5 70.9 71.7 83.2
MUL GCN - BiLSTM Layer 65.9 69.3 67.6 80.0
MUL GCN - Control Module 69.0 67.6 68.3 81.2
MUL GCN - GCN Module 74.6 60.9 67.0 82.0
Replace GCN with Self-Attention 72.6 67.4 69.9 82.6

Table 2: Ablation Study. The models’ performance on the
VUA VERB dataset.

As we can see from the table, each component (i.e.,
BiLSTM, Control and GCN) is important for the proposed
model MUL GCN as excluding any of them would hurt
the performance significantly. The replacement of GCN
with self-attention also worsens the model substantially that
helps to further testify to the benefit of GCNs for selecting
the appropriate context words for representation learning in
metaphor detection.

The Necessity of Multi-task Learning
Another important module in this work is the multi-task
learning framework between WSD and metaphor learning.
In order to demonstrate the effectiveness of this module
for metaphor detection, this section evaluates the following
baseline techniques to train the models: (1) Single Network:
only a single network for metaphor detection is trained
(i.e., completely ignoring the network for WSD), (2) Pre-
training: a single network is trained on the WSD dataset
first and then retrained on the metaphor dataset later, and
(3) Alternative: a single model is trained for both WSD and
metaphor detection, following the alternative training proce-
dure (Guo et al. 2016). Table 3 shows the performance of the
methods on the VUA VERB test set.

Method P R F1 Acc
Mul GCN (proposed) 72.5 70.9 71.7 83.2
Single Network 69.7 68.1 68.9 81.5
Pre-training 70.8 68.5 69.6 82.1
Alternative 72.9 65.4 69.0 82.3

Table 3: The multi-task learning performance.

From the table, we can see that the multi-task learning
framework can significantly improve the Single Network

2We use the VUA VERB dataset for these experiments, but
similar trends can be seen for the other datasets.

method with substantially better F1 score. This demonstrates
the benefit of WSD for metaphor detection. It is also evident
that the proposed method Mul GCN significantly outper-
forms the multi-task learning baselines by large margin on
the F1 score (i.e., up to 2.7% improvement over the absolute
F1), thereby corroborating the advantages of the multi-task
learning mechanism in this work for metaphor detection.

Representation Similarity Variations
In order to achieve the similarity of the two vectors V wsd
and V md in the multi-task module (i.e., Equation 4), the
proposed model employs the mean squared error M =
‖V wsd−V md‖22 (called MSE) as the measure of dissimilar-
ity to be minimized via the overall loss function. In practice,
there are several alternative dissimilarity measures M that
can be added into the loss function for this purpose. In this
section, we additionally investigate the following dissimilar-
ity measures M for knowledge transferring in the multi-task
learning module to better understand the effect of such mea-
sure choices for the model in this work:
•Kullback-Leibler divergence (KL): M =

KL(Swsd, Smd) = −
∑
i S

wsd
i log

Swsd
i

Smd
i

where

Swsd = softmax(V wsd) and Smd = softmax(V md).
•Cosine (Cosine): M = 1− cos (V wsd, V md)
•The Margin Loss (Margin): M = 1 − swsd +

smd where swsd = sigmoid(FF (V wsd) and smd =
sigmoid(FF (V md) with FF as a feed-forward function to
transform the vectors V wsd and V md into scalars.

Measure P R F1 Acc
MSE (proposed) 72.5 70.9 71.7 83.2
KL 73.8 66.0 69.7 82.8
Cosine 71.5 65.5 68.4 81.8
Margin 72.6 64.4 68.3 82.0

Table 4: The performance of the dissimilarity measures.

Table 4 reports the performance of such dissimilarity mea-
sures on the VUA VERB test set when they are used in the
proposed model (i.e., replacing the MSE measure). It is clear
from the table that the MSE is significantly better than the
other dissimilarity measures for the model, justifying for our
choice of MSE in this work.

Conclusion
We present a multi-task learning model for metaphor detec-
tion that features graph convolutional neural networks to ap-
propriately capture the important context words, the control
mechanism to emphasize the target words, and the knowl-
edge transferring from word sense disambiguation to im-
prove the performance. We achieve the state-of-the-art per-
formance on several benchmark datasets for metaphor detec-
tion. The experimental results demonstrate the effectiveness
of the components proposed in this work. In the future, we
plan to (1) explore more methods and related tasks to further
improve the multi-task learning for metaphor detection, and
(2) extend the proposed models to other related applications.
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