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ABSTRACT
Fake news and rumors constitute a major problem in social net-
works recently. Due to the fast information propagation in social
networks, it is inefficient to use human labor to detect suspicious
news. Automatic rumor detection is thus necessary to prevent dev-
astating effects of rumors on the individuals and society. Previous
work has shown that in addition to the content of the news/posts
and their contexts (i.e., replies), the relations or connections among
those components are important to boost the rumor detection per-
formance. In order to induce such relations between posts and
contexts, the prior work has mainly relied on the inherent struc-
tures of the social networks (e.g., direct replies), ignoring the po-
tential semantic connections between those objects. In this work,
we demonstrate that such semantic relations are also helpful as
they can reveal the implicit structures to better capture the pat-
terns in the contexts for rumor detection. We propose to employ
the self-attention mechanism in neural text modeling to achieve
the semantic structure induction for this problem. In addition, we
introduce a novel method to preserve the important information
of the main news/posts in the final representations of the entire
threads to further improve the performance for rumor detection.
Our method matches the main post representations and the thread
representations by ensuring that they predict the same latent labels
in a multi-task learning framework. The extensive experiments
demonstrate the effectiveness of the proposed model for rumor de-
tection, yielding the state-of-the-art performance on recent datasets
for this problem.
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1 INTRODUCTION
With the expansion of social networks, the amount of data accessi-
ble to users is ever increasing. Social Networks (e.g., Facebook and
Twitter) make it possible for their users to reach out thousands to
millions of users. New contents are uploaded constantly to social
networks, reflecting a near real-time view about the events in the
real world. However, besides the benefit of effective information
propagation, social networks present a unique challenge to verify
the accuracy of the posts (i.e., fake news and rumors) (dubbed as
rumor detection in this work). This problem has attracted much at-
tention from the society recently due to its devastating implication
on political, social and economical movements. For instance:

• In U.S. 2016 presidential election almost 529 different ru-
mours about candidates were propagated via Facebook and
Twitter which had influence on voters [7].

• A rumour about two explosions in White House in April
2013 in Twitter resulted in social panic and a dramatic drop
in stock market [5].

• Rumors about the lost Malaysian airplane in March 2014 in
Weibo, a Chinese micro blog service, made it difficult for
people to follow the true news and hurt the families of the
passengers [8].

It is thus the utmost interest of the social network platforms
to develop effective strategies to combat against fake news and
rumors. The challenges for this problem come from the fact that
various sources of information might be required to recognize the
misinformation, and extensive analysis and reasoning of such in-
formation sources might be needed to accurately make a decision.
In order to solve this problem, the early effort from some social
network platforms has relied on the reports from their users to iden-
tify the suspicious posts that are then further verified by outside
fact checkers (e.g., Facebook) or automatic systems (e.g., Twitter).
This approach is not very efficient as it involves substantial human
effort and might need much time for the systems to recognize the
fake news before they appear. Such long response time might be
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already sufficient for the fake news to cause serious problems on the
public, calling for more automatic methods for rumor detection to
minimize the necessary human effort and expedite the recognition
time. Automatic rumor detection is being studied actively in the
literature and our work in this paper would contribute to this line
of research by introducing a novel method to better address this
problem.

There are different definitions for fake news and rumors in the
literature. In this work, we will employ the definitions for these
concepts as specified in [2]. In general, we can categorize rumors
in two different categories:

• The rumors that contain true or false information and they
would be indeed proved to be correct or incorrect (respec-
tively) by other authorized sources later (i.e., after the time
they are posted).

• The rumor that cannot be verified as presenting true or false
information by the authorized sources. However, the users
have identified those posts as rumors.

In other words, any piece of information whose veracity status is
questionable by the time of posting would be considered as a rumor
[2]. Based on this definition for rumors, rumor detection is defined
as follows: Given a piece of information from social networks (e.g.,
user posts), we would like to predict if this piece of information is
a rumor or not (i.e., cannot be verified as the true news). Due to the
nature of social networks, the information that we can employ in
the rumor predictions involves the conversations that the piece of
information trigger (e.g., the replies from the users) and the profiles
of the users who participate into such conversations. We consider
the triggered conversations as the contextual information, and call
a post from social networks along with its contextual information
as a thread for convenience.

Different approaches based on feature engineering [3] [22], prop-
agation pattern [6], and neural networks [10] have been proposed
for rumor detection. It has been demonstrated in these works that
besides the content presented in the posts and their corresponding
contexts (e.g., the replies), it is also crucial to model the relations
between those elements to boost the performance for rumor de-
tection [14]. Unfortunately, these prior work have only focused on
the structural relations inherited directly from the social networks
(e.g., the reply relation between the main posts and the replies) and
failed to exploit the implicit relations that can be induced via the
semantics of the posts and the contexts. For instance, the recent
work on rumor detection [14] employs the direct tree structures
between user posts and replies in Twitter to guide the computation
of recursive neural networks to perform prediction.

In this work, we argue that the implicit semantic relations be-
tween user posts and replies are also important for rumor detection
and the models should capture them appropriately to boost the per-
formance. Consequently, we propose a novel model for rumor de-
tection that explicitly learns the semantic similarities between pairs
of the main posts and the contextual replies using the self-attention
mechanism. In the proposed model, such semantic similarities are
used as the weights to compute representation vectors for the main
post and the replies in a thread via the weighted combinations of the
other elements in the same thread. The representation vectors are
eventually aggregated into a final representation vector to represent

the thread and perform the rumor prediction. Finally, as the main
posts in the threads are the most important pieces of information
in the threads for rumor detection, we propose to augment the final
representations of the threads with the representations of the main
posts to avoid the confusion for the proposed model. In particular,
we introduce a novel method to ensure that the information in the
final representations for the threads also involves the main infor-
mation in the representation for the main posts. This is achieved
by enforcing that such thread and main post representations would
predict the same latent labels in a multi-task learning framework
for rumor detection. The extensive experiments demonstrate the
effectiveness of the proposed model and lead the the state-of-the-
art performance for rumor detection on two recent benchmark
datasets. In summary, our contributions in this paper include:

• We introduce a novel method for rumor detection based on
the explicit modeling of semantic relations between the main
posts and the contextual replies in social networks.

• We propose a novel multi-task learning framework to em-
phasize the main posts in the threads for rumor detection.

• We conduct extensive experiments on recent rumor detec-
tion datasets and achieve the state-of-the-art performance
on those datasets.

In the following, we will first present the related work and then
provide a formal definition for the task of rumor detection. After-
ward, we will describe the proposed model and the experiments,
followed by a conclusion in the end of this paper.

2 RELATEDWORK
In general we can categorize the previous work into three categories
[2]:

• Feature engineering approach: In this category, a set of fea-
tures is hand-designed to transform the posts into feature
representations that are then sent to some statistical model to
perform classification. The typical features in this approach
include the textual information, the structural evidences
[3, 22], image/media content [6], and the propagation pat-
terns of the information diffusion in social networks [9]. The
success of this approach depends crucially on the quality
of the hand-designed feature sets that might be suboptimal
once being applied to different social networks and domains.

• Propagation based approach: In this approach, it is assumed
that the propagation pattern of the rumors is different from
those for non-rumor posts and such difference can be ex-
ploited to detect rumors in social networks [12]. However,
One drawback of this approach is that it does not consider
the textual and visual information from the post content.

• Deep learning approach: In contrast to feature engineer-
ing, this approach automatically learns effective features for
the posts from data via deep learning architectures [10, 14].
The features induced by deep learning often capture the
underlying representations of data, thus improving the gen-
eralization performance as well as the adaptability to new
domains/social networks for rumor detection [10]. Our work
in this paper follow this approach to develop a novel deep
learning model for rumor detection.
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The most related work to ours is the deep learning model to
capture contextual information in Twitter for rumor detection in
[14]. In particular, Recursive Neural Networks (RvNN) are used to
compose the tree-like structures of the posts and the corresponding
replies in Twitter based on their tf-idf representations. However,
such prior work only exploits the explicit relations between the
main posts and their replies from the network structures (i.e., the
direct reply relations). Our work in this paper is different from
the prior work as we go beyond the explicit structural relations in
social networks and model the implicit relations among the posts
based on their semantics to perform rumor detection.

In addition to the main task of rumor detection, there are other
approaches that attempt to detect the stance of the replies toward
the main post and then detect the rumor [20, 24]. It has been shown
that for this task the evolution of the people’s stance toward the
main post is very helpful and considering time series is important
for this problem. Motivated by such characteristics, [13] proposes a
multi-task learning framework to simultaneously predict the stance
and classify the main post for rumor detection.

3 PROBLEM DEFINITION
Following the recent work on rumor detection [14], we use Twitter
as the social network in this work. Formally, an input I for rumor
detection consists of the main tweet R0 along with a set of reply
tweets for this main tweet R1,R2, . . . ,RT (where T is the number
of reply tweets): I = (R0,R1,R2, . . . ,RT ). I is called a thread for
convenience. The goal of rumor detection is to predict whether the
input thread represents a rumor or not. In order to perform such
prediction, following [14], we attempt to classify I into one of the
following four labels: 1) Without Rumor, (2) True Rumor, (3) False
Rumor and (4) Unrecognizable. If the main tweet R0 can be proved
to be false, the label for I is “False Rumor” while the label for I is
“True Rumor” if R0 can be shown to be true.

4 MODEL
4.1 Word & Tweet Representation
We consider the input I = (R0,R1,R2, . . . ,RT ) as sequence of tweets
where each tweet, in turn, is a sequence of words. The main tweet
R0 is put at the beginning of the tweet sequence. As the tweets
might involve different numbers of words, we pad the tweets with a
special token to ensure that all the tweets have the sameword length
N (i.e., the maximum word length of the tweets in the dataset).

In order to represent the posts and replies, for the i-th tweet Ri ,
we first convert its wordsWi1,Wi2, ...,WiN (i.e.,Ri =Wi1,Wi2, ...,WiN )
into their pre-trained word embeddings ei1, ei2, ..., eiN respectively.
Afterward, we apply the max-pooling operation over such word
embeddings along each dimension to obtain the representation
vector hi for Ri :

hi = Elementwise_Max(ei1, ei2, ..., eiN ) (1)

This tweet-vector transformation procedure would convert the
the input thread I = (R0,R1,R2, . . . ,RT ) into a sequence of rep-
resentation vectors (h0,h1,h2, . . . ,hT ) (respectively) that are then
fed into the following steps for further computation.

4.2 Contextualizing Tweet Representations
Due to the nature of social networks, the main tweet and the replies
are not independent and the content of the main tweet or replies
has substantial influence on other tweets in the same thread. In
the previous work, it has been shown that capturing such relations
among the main tweets and replies can help to boost the perfor-
mance of rumor detection [14]. However, such previous work has
only considered the explicit relation between the main tweet and
its replies (i.e., the reply trees in Twitter from the network struc-
tures), neglecting the implicit relations among the tweets based on
their semantic similarities. In this work, we propose to exploit such
implicit semantic relations to further improve the performance for
rumor detection.

In order to capture the semantic relations between the tweets,
we learn the pairwise similarities among them based on the self-
attention mechanism. In particular, inspired by the transformer
architecture in [19], we first compute the key and query vectors for
each tweet based on its representation hi :

ki =Wk ∗ hi + bk

qi =Wq ∗ hi + bq
(2)

Given these key and query vectors for the tweets, we obtain
the similarity ai j between the i-th tweet and the j-the tweet in the
input thread I via the dot product:

ai, j = ki · qj/γ (3)
where γ is a normalization factor. Once all the similarities ai j for

all the tweet pairs in a thread have been computed, we exploit these
similarities as the weights to compute more abstract representations
for the tweets based on the weighted sums:

h′i = Σjai, j ∗ hj (4)
In the next step, we obtain the overall representation vector h′

for the input thread I by applying the max-pooling operation one
more time over all the tweet representations h′i :

h′ = Elementwise_Max(h′0,h
′
1,h

′
2, ...,h

′
T ) (5)

Afterward, a 2-layer feed-forward neural network followed by
a softmax layer is employed to produce a probability distribution
P(y |R0,R1,R2, . . . ,RT ;θ ) over the possible labels for rumor pre-
diction for I (θ is the model parameter). Finally, we optimize the
negative log-likelihood function to train the proposed model for
rumor detection:

Llabel = − log P(y ∗ |R0,R1,R2, . . . ,RT ;θ ) (6)
where y∗ is the correct label for I .

4.3 Information Preservation
The current model treats the main tweets as equally important as
the replies. This is undesirable as the main tweets involve the most
important content in the threads over which the model should em-
phasize to produce good performance. Such emphasis can be done
by ensuring that the overall final representations of the threads
also cover the core information represented in the main tweet rep-
resentations (i.e., preserving the information in the main tweets).
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Figure 1: The Proposed Model. Inputs to the model are word embeddings. Green vectors represent replies and red vectors
represent the main tweet. The self-attention component incorporates contextual information into the representation of each
tweet. Max-pooled representations are fed into the rumor and latent label classifiers.

In this work, we propose to achieve this goal by enforcing the same
latent labels induced by the thread representations and the main
tweet representations. In particular, we first transform the thread
representation h′ and the main tweet representation h0 into two
probability distributions over the same number K of possible la-
tent labels P ′(L′ |R0,R1,R2, . . . ,RT ) = F ′(h′) and P0(L|R0) = F (h0)
(respectively) using two different 2-layer feed-forward neural net-
works with softmax layers in the end (i.e., F and F ′ are different
2-layer feed-forward networks). In order to ensure h′ covers the in-
formation inh0, the latent label L′ that P ′(L′ |R0,R1,R2, . . . ,RT ) pre-
dicts should be the same as the latent label L predicted by P0(L|R0).
To this end, we additionally optimize the following negative log-
likelihood function for the latent labels when we train the proposed
model:

L = arдmaxLP0(L|R0) (7)
Linf o = − log P ′(L|R0,R1,R2, . . . ,RT ) (8)

Consequently, the loss function to train the model in this work
is the weighted sum of the rumor label loss and the information
preservation loss:

Loss = LLablel + αLinf o (9)
where α is the hyper-parameter controlling the contribution of

the information preservation loss to the final loss function. Figure
1 shows the main building blocks of the proposed model.

4.4 Baseline Models
The goal of the information preservation component in the pro-
posed model is to emphasize main tweet R0 in the final representa-
tion of the input thread h′. In order to demonstrate the benefits of
the latent label prediction mechanism, we explore two other meth-
ods to achieve this goal, serving as the baselines for the proposed
model.

In the first baseline, we emphasize the main tweet R0 in h′ by
directly imposing that the thread representations h′ and the main
tweet representations h0 are similar. In particular, we first trans-
form h′ and h0 into more abstract representation vectors l ′ and

l (respectively) with the same dimension using different 2-layer
feed-forward networks. We would then enforce that h′ and h0 are
similar by replacing Linf o in the proposed model with the squared
difference loss between l ′ and l :

L1inf o = | |l − l ′ | |2 (10)

where | | · | |2 is the L2 norm of the vector. We denote this model
by Diff in our experiments.

In the second baseline for the information preservation com-
ponent, we observe that the thread representation h′ is computed
based on both the main tweet representation h0 and the reply tweet
representations h1,h2, . . . ,hT . In order to establish a stronger in-
fluence of the main tweet on the thread representation, we can
ensure that the thread representation h′ is more similar to the
main tweet representation h0 than the reply tweet representations
h1,h2, . . . ,hT . In particular, we first aggregate the reply tweet rep-
resentations h1,h2, . . . ,hT into a single vector hr ep to facilitate the
comparison with h′ via the max-pooling operation:

hr ep = Elementwise_Max(h1,h2, . . . ,hT ) (11)
Afterward, we estimate the similarity s0 between the thread

representation h′ and the main tweet representation h0 as well as
the similarity sr ep between the thread representation h′ and the
reply tweet representation hr ep by applying a feed-forward neural
network FF with a single output unit (i.e., for the similarity) on
the concatenation of the representations: s0 = FF (h′,h0), sr ep =
FF (h′,hr ep ). Note that we ensure the similarities s0 and sr ep are
between 0 and 1 by introducing the sigmoid function in the end of
FF . Consequently, we replace the loss function Linf o in Equation 7
of the proposed model with the following margin loss function to
push h′ closer to h0 than hr ep :

L2inf o = 1 − s0 + sr ep (12)
We name this model as Discriminator in the experiments. Note

that all the three variants of the information preservation com-
ponent (i.e., latent label prediction, Diff and Discriminator) aim to
retain more information of the main tweet representation h0 in the
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thread representation h′. However, the label prediction mechanism
approaches this via the implicit constraint of the same predicted
latent label from the representations while Diff targets a more ex-
treme and direct method of similar representations. Discriminator,
on the other hand, considers the information preservation for the
main tweet in the context with the reply tweet representations and
the margin loss function.

As the input for rumor detection is a sequence of tweets, a com-
mon approach in natural language processing is to handle such
sequential data with Recurrent Neural Networks (RNN) (e.g., Long-
short Term Memory Networks - LSTM). Consequently, in addition
to the baseline models for information preservation, we investigate
another baseline model to fine tune the tweet representations based
on LSTM. In particular, for this baseline model, we employ a LSTM
layer over the sequence of tweet representations h0,h1,h2, ...,hT
before the self-attention component. The hidden states of the LSTM
layer ĥ0, ĥ1, ĥ2, ..., ĥT would then replace the tweet representations
h1,h2, ...,hT respectively in the proposed model. This baseline is
called RNN in the experiments.

5 EXPERIMENTS
5.1 Datasets, Resources & Parameters
Following the previous work on rumor detection, we use the Twitter
datasets (described in [13]) for the evaluations in this paper (i.e.,
the Twitter 15 and Twitter 16 datasets). There are 1381 and 1118
main tweets in these datasets respectively for which a main tweet
would correspond to one tree of replies.

Regarding the parameters and resources for the proposed model,
we use the Glove [16] embedding (of size 300) to initialize the word
vectors. 300 hidden units are employed for the key and query vectors
in Equations 2. The feed-forward layer for the rumor classifier has
two layers with 200 hidden units. The feed-forward layer for the
information preservation component, on the other hand, has two
layers with 100 hidden units and employ three latent labels for
prediction. We use the Adagrad optimizer with initial learning rate
of 0.3 with the trade-off parameter of α = 1 for the loss function.
Following the previous work [14], we use the 5-fold cross validation
procedure to tune the parameters and obtain the performance for
the models in this work.

5.2 Comparing to the state-of-the-art
This section compares the proposed model (called Semantic Graph)
with the state-of-the-art model on our datasets. For performance
measure we use the accuracy on all classes and F1 score per class
for each dataset. We compare with two types of models: 1) Fea-
ture based models: These models rely on feature engineering to
extract features for such statistical models as Decision Tree, SVM
and Random Forest [3, 9, 11, 12, 21, 23]. 2) Deep learningmodels:
These models use deep learning models to learn features for rumor
detection (i.e., Recurrent Neural Networks or Recursive Neural Net-
works with GRU-RNN, BU-RvNN and TD-RvNN in [10, 14]). Tables
2 and 3 show the results on Twitter 15 and Twitter 16 respectively.

Table 2: Model Performance on Twitter 15.

Model Accuracy F1 NR F1 FR F1 TR F1 UR
DTR [23] 0.409 0.501 0.311 0.364 0.473
DTC [3] 0.454 0.733 0.355 0.317 0.415
RFC [9] 0.565 0.810 0.422 0.401 0.543
SVM-TS [11] 0.544 0.796 0.472 0.404 0.483
SVM-BOW [14] 0.548 0.564 0.524 0.582 0.512
SVM-HK [21] 0.493 0.650 0.439 0.342 0.336
SVM-TK [12] 0.667 0.619 0.669 0.772 0.645
GRU-RNN [10] 0.641 0.684 0.634 0.688 0.571
BU-RvNN [14] 0.708 0.695 0.728 0.759 0.653
TD-RvNN [14] 0.723 0.682 0.758 0.821 0.654
Semantic Graph 0.770 0.814 0.764 0.775 0.743

Table 3: Model Performance on Twitter 16.

Model Accuracy F1 NR F1 FR F1 TR F1 UR
DTR [23] 0.414 0.394 0.273 0.630 0.344
DTC [3] 0.465 0.643 0.393 0.419 0.403
RFC [9] 0.585 0.752 0.415 0.547 0.563
SVM-TS [11] 0.574 0.755 0.420 0.571 0.526
SVM-BOW [14] 0.585 0.553 0.655 0.582 0.578
SVM-HK [21] 0.511 0.648 0.434 0.473 0.451
SVM-TK [12] 0.662 0.643 0.623 0.783 0.655
GRU-RNN [10] 0.633 0.617 0.715 0.577 0.527
BU-RvNN [14] 0.718 0.723 0.712 0.779 0.659
TD-RvNN [14] 0.737 0.662 0.743 0.835 0.708
Semantic Graph 0.768 0.825 0.751 0.768 0.789

These tables show that deep learning models outperform fea-
ture based models for rumor detection due to the capacity of the
deep learning models to automatically learn effective features from
data. In addition, comparing Semantic Graph and RvNN models
with GRU-RNN, we see that the structural information (e.g., the
reply or semantic relations) helps to improve the performance for
rumor detection. Finally, by incorporating implicit semantic rela-
tions among all the tweets in a thread, Semantic Graph achieves the
state-of-the-art performance on both datasets in terms of accuracy,
and outperforms all the other models in three out of four classes
in terms of F1 Score. This clearly demonstrates the effectiveness of
the proposed method for rumor detection.

5.3 Word Embedding
The input to the proposed model is the embeddings of the words in
the tweets. This section compares the performance of the proposed
model when different word embeddings are employed. In particular,
we investigate two types of word embeddings in this work:

1) Contextualized Embeddings: Contextualized word embed-
dings involve pre-trained models that can compute the embedding
for a word based on its context. The following contextualized word
embeddings are compared in this work:

• ELMo: This is a bidirectional language model with multi-
ple layers of LSTMs [17]. We use the ELMo embeddings of
dimension 1024 in the experiments.



ASONAM ’19, August 27–30, 2019, Vancouver, BC, Canada Amir Veyseh, et al.

Table 1: Heatmap of attention. Numbers in front of each tweet show the index of the tweet in the heatmap. Numbers in
heatmap show the attention weights between the correspnoding tweets indexed at the columns and rows.

False Rumor True Rumor

Main: really? amber alert website goes dark un-
der government shutdown (6)
Reply: How? They only need webmaster to run
it (7)
Reply: barry proves it is not (4)
Reply: What’s up with this. It’s up nicely (13)

Main: lego letter from the 1970s still offers a pow-
erful message to parents 40 years later (6)
Reply: lego lives onmy brother. my daughter and
my grandson all enjoyed it thro the generations
(8)
Reply: forty years later still screams from par-
ents as we step on the bloody stuff (7)
Reply: times may change but the truth of this
lego letter from the 1970s never has in 40 years
via (0)

Unverified Non-Rumor

Main: donald trump: " ... laziness is a trait in
blacks. it really is, i believe that. itâĂŹ s not any-
thing they can control.âĂİ (2)
Reply: that is not from trump. it is found in a
book by a former trump employee, he alleges he
heard trump say that. (0)
Reply: now he is trying to win the african amer-
ican vote and wonders why it is not working. the
gop wed itself to terminal stupidity. (5)
Reply: it is appalling that this nonsensical revi-
sionism is being forcefully persued. (7)

Main: colombian gov. and left-wing farc rebel
movement agree ceasefire to end decades-long
conflict (11)
Reply: hmmm, not exactly as promising as first
reported, but a step in the right direction at least.
(10)
Reply: I really hope that it will last. (9)
Reply: funny how the farc still stealing children
and bombing towns as i write this. (0)

• BERT: This is a bidirectional language model trained with a
transformer [4].We employ the vectors in the last layer of the
BERT model (with dimension 768) for the word embeddings
in the experiments.

• GPT: Similar to BERT, GPT uses a transformer to train a
language model. However, this is an unidirectional model
[18]. In the experiments, we use the last layer of GPT with
dimension of 768 for the word embeddings.

2) Non-Contextualized Embeddings: In contrast to the con-
textualized embeddings, the same embedding vector is produced for
each word in the vocabulary regardless of its context. The following
non-contextualized embeddings are considered in our experiments:

• Word2Vec: This is a word embedding method based the skip
gram model in [15]. The Word2Vec embeddings in our ex-
periments have 300 dimensions.

• fastText: This is a library for efficient text representation
learning. We use the model trained on Wikipedia, UMBC
webbase corpus and statmt.org news dataset [1]. The embed-
ding dimension is 300.
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Table 4: Model Performance on Twitter 15

Model Accuracy F1 NR F1 FR F1 TR F1 UR
Word2Vec 0.635 0.648 0.650 0.663 0.641
fastText 0.628 0.621 0.663 0.645 0.632
ELMO 0.698 0.679 0.695 0.712 0.640
BERT 0.729 0.701 0.720 0.756 0.661
GPT 0.767 0.810 0.765 0.771 0.751
Glove 0.770 0.814 0.764 0.775 0.743

Table 5: Model Performance on Twitter 16

Model Accuracy F1 NR F1 FR F1 TR F1 UR
Word2Vec 0.643 0.630 0.629 0.642 0.663
FastText 0.651 0.639 0.626 0.630 0.671
ELMO 0.711 0.683 0.703 0.699 0.715
BERT 0.742 0.801 0.755 0.779 0.770
GPT 0.761 0.821 0.742 0.768 0.783
Glove 0.768 0.825 0.751 0.768 0.789

Table 4 and 5 show the performance of the proposed model with
different word embeddings on Twitter 15 and Twitter 16 respec-
tively. These tables show that the contextualized word embeddings
in general outperform the non-contextualized word embeddings
for rumor detection. This result is expected since the contextu-
alized word embedding capture the appropriate meanings of the
words based on their context while non-contextualized models use
the same representations for all meanings of the words. However,
among all embedding models, Glove actually achieves the best
performance. Our hypothesis is that the language in our rumor de-
tection datasets is very similar to those in the corpus used to train
Glove (i.e., Wikipedia). This leads to better overlapping between
the vocabularies of our datasets and Glove embeddings to provide
more prior knowledge for the rumor detection models.

5.4 Ablation Study
There are two major components in the proposed model for rumor
detection, i.e., seft-attention (called SA) and information preserva-
tion with latent label prediction (called Prediction). In order to see
the contributions of these components for the proposed model, we
take turns to exclude these components from the models. The first
section in Tables 6 and 7 shows the performance of the proposed
model when the SA and/or Prediction component are removed from
the model on the Twitter 15 and 16 datasets respectively. As we can
see from the tables, when SA is excluded, the model performance
drops dramatically. This shows that contextual information is im-
portant for representing each tweet. In addition, the information
preservation component with latent label prediction is also neces-
sary for the model to achieve the best performance. It suggests that
the multi-task learning setting proposed by this work is effective
to preserve important information during the model computation
for rumor detection.

In order to assess effectiveness of the proposed latent label predic-
tion for preserving information about the main tweet, we conduct
experiments with the Diff and Discriminator baselines. The results

are presented in the second sections of Tables 6 and 7, showing that
the proposed latent label prediction mechanism outperforms the
baselines Diff and Discriminator for information preservation. We
attribute the poorer performance of Diff and Discriminator to the
fact that their constraint mechanisms for the similarity of the main
tweet and the thread representations have an effect to eliminate
the information about the reply tweets on the final thread repre-
sentation. In particular, Diff enforces the main tweet representation
and the thread representation to be similar over all the possible
dimensions, leaving no space for the reply tweet representations
in the thread representation. Discriminator, on the other hand, ex-
plicitly separates the reply tweet representations from the overall
thread representation. The limited reply tweet information in the
thread representation hinders an important source of information
and hurts the performance for rumor detection. The latent label
prediction mechanism avoids this problem as it only imposes the
similarity of the main tweet representation and the thread repre-
sentation over the most important dimensions via the same latent
label, reserving some space for the reply tweet information in the
final thread representation for better performance.

Finally the last rows in Tables 6 and 7 report the performance
of the RNN baseline mentioned in Section IV.D. As we can see in
the tables, although RNN is a common component in many NLP
tasks, it hurts the performance of the proposed model for rumor
detection. This is due to our consideration of the input thread
I = (R0,R1,R2, . . . ,RT ) as a sequence of tweets that do not reflect
its original tree structures in social networks. Better modeling ap-
proach that inherits such tree structures might help to improve
the representation of the tweets and further advance the proposed
model.

Table 6: Ablation study on Twitter 15

Model Accuracy F1 NR F1 FR F1 TR F1 UR
Full Model 0.770 0.814 0.764 0.775 0.743
-SA 0.652 0.643 0.629 0.675 0.660
-Prediction 0.751 0.789 0.756 0.742 0.729
-SA -Prediction 0.601 0.612 0.603 0.663 0.549
Diff 0.755 0.740 0.751 0.772 0.731
Discriminator 0.763 0.791 0.758 0.772 0.740
RNN 0.753 0.746 0.755 0.769 0.740

Table 7: Ablation study on Twitter 16

Model Accuracy F1 NR F1 FR F1 TR F1 UR
Full Model 0.768 0.825 0.751 0.768 0.789
-SA 0.665 0.643 0.651 0.608 0.689
-Prediction 0.749 0.795 0.723 0.741 0.770
-SA -Prediction 0.592 0.604 0.624 0.598 0.651
Diff 0.756 0.812 0.742 0.751 0.761
Discriminator 0.761 0.819 0.745 0.758 0.769
RNN 0.755 0.809 0.756 0.759 0.772
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(a) With Self-Attention (b) Without Sefl-Attention

Figure 2: t-SNE diagrams for thread representations.

5.5 Case study on Self-Attention
This section provides a case study on the impact of the self-attention
component. Table 1 shows the attention heatmap for four input
threads in Twitter15 from different classes. These heatmaps illus-
trate the attention weights between the pairs of tweets in the input
threads. One notable point is that there are no direct relations
between the reply tweets in such threads based on the inherent
structures of the networks. However, from the heatmaps, we see
that the reply tweets can be related to each other via the semantic
modeling. This helps to enrich the representations for the individ-
ual tweets in the threads (based on the self-attention mechanism)
to improve the overall performance for rumor detection.

Finally, to further understand the effect of the self-attention
component on the proposed model, we draw the t-SNE diagrams
for the final representations of the threads in the test datasets when
the self-attention component is included and excluded from the
model. Figure 2 shows the diagrams. These diagrams suggest that
combining the contextual information from the other tweets of the
same threads helps to promote the separability of the classes, thus
improving the prediction performance for rumor detection.

6 CONCLUSION
Fake news and rumors are one of the main problems in social net-
works. Due to the nature of these networks, rumors can reach out
thousands of people quickly and have devastating effects on dif-
ferent aspects of the society. In this paper we introduce a novel
method for rumor detection in Twitter. Compared to the previous
work, instead of using the explicit structures in the social network
structure (i.e., the direct reply relations), our model learns the im-
plicit relations among the main tweet and its replies based on their
content. In addition, we present a novel method for preserving
important information about the main tweet across the model com-
putations. The extensive experiments prove the effectiveness of the
proposed model for rumor detection in Twitter.
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