Layer-I Informed Internet Topology Measurement

Ram Durairajan*, Joel Sommers^, Paul Barford*

*University of Wisconsin - Madison Colgate University

Introduction

- Understanding Internet topology is important
 - Informs performance, security, risk, etc.

- Internet topology mapping is fraught with challenges
 - Huge size and distributed ownership
 - Always in a state of flux

Existing Approaches

- TTL-limited layer 3 traceroute-like probes
 - Rely on location hints in domain names
 - E.g., CAIDA's Ark, Rocketfuel

Network-layer maps

Existing Approaches (cont.)

- Search based
 - Maps available at ISP's website
 - E.g., Internet Atlas, Internet Topology Zoo

Physical maps

Topology measurement challenges

- Problems with TTL-based approaches
 - Management policies/Objectives of providers
 - Lack of visibility of lower layers

- Problems with Search-based approaches
 - ISP acquisition/merge
 - May not be up to date or complete

Research questions

Can physical maps be used to guide and reinforce the process of collecting network-layer data?

- How do physical maps compare to and contrast with network-layer maps?
 - Atlas vs. Ark comparison study
- How can probe methods be improved to reveal a larger portion of physical infrastructure?
 - POPsicle probing heuristic

How do physical maps compare to and contrast with network-layer maps?

Targets for comparison

- We consider 50 networks with footprint in North America
- Atlas
 - 7 Tier-I and 43 regional ISPs
 - 2507 POPs and 3477 links
- Ark
 - Use DNS data and traceroute data
 - PathAudit (Chabarek et al., HotPlanet '13) to decode location hints
 - E.g., for A.B.C.LAX2.D.NET, location code is LAX

Physical vs. network maps – results I

More nodes and links in physical maps.

Physical vs. network maps – results 2

 Sampling bias in network topology measurements (Shavitt et. al., IEEE Infocom 2009)

Physical vs. network maps – results 3

- Network map utility
 - 448 distinct networks in North America
 - Greater than physical maps in (worldwide) Atlas repository!
 - Dynamic properties

Results from network-layer maps can be used as guidance for searching physical maps

Implications

- Differences suggest opportunities for reinforcement
 - Networks in network-layer data
 - Clues for searching new maps
 - Engineering problem
 - Networks in physical data
 - Targets for additional probing
 - Calls for a coordinated topology mapping approach

How can layer 3 probe campaigns be designed to reveal a larger portion of physical infrastructure?

Considerations for targeted probes

- Source-destination selection
 - Vantage point (probing source or VP) and destination selection
 - Internal to an ISP or external to an ISP?
- Scalability
 - Exploit IXPs to aid in node identification
 - Vantage points for multiple networks?
 - Due to layer 2 connectivity

Source-destination selection

- Leverage publicly available vantage points
 - Planetlab, looking glass and traceroute servers
- Three modalities
 - $-VP_{out}$ to t_{in}
 - $-VP_{in}$ to t_{out}
 - $-VP_{in}$ to t_{in}

- Source-destination selection based on geographical proximity
- 25 ISPs containing 596 target POPs

Effects of source-destination selection

Sources and destinations within the same AS based on geographic proximity

- Effects of routing
 - $-VP_{in}$ to t_{in}
 - Greater diversity, more info. on paths, flexible routing
 - $-VP_{in}$ to t_{out} and VP_{out} to t_{in}
 - Interdomain routing

Scaling perspective with IXPs

IXPs could be the starting point for comprehensive mapping of physical infrastructure

- Enormous amount peering at IXPs
- VPs co-located with IXPs
 - 14 out of 65 have co-located VPs
 - Unique ISPs that peer at 14 IXPs is 625 (from PeeringDB)
 - So, 625 ISPs from these 14 IXPs alone

Pulling it all together

 Goal: use physical maps to enhance network-layer node identification

Sources:

- VP located within a target AS
- VP co-located with IXPs offers broader perspective

Destinations

Send probes toward a target with a known geographic location based on physical map

POPsicle: Probing heuristic based on these insights

POPsicle details

POPsicle - results

- 30 looking glass servers from Atlas
 - server co-located with an IXP
 - ground truth available

	POPs	Datacenters	DNS	NTP	IXPs	Total
POPsicle-based probing	149	487	9	627	37	1309
General probing	143	315	1	55	25	539
Ground truth	244	641	13	827	65	1790
Improvement	1.04x	1.54x	9x	11.4x	1.48x	2.42x

Multiplexing VPs at IXPs

Multiplexing VPs at IXPs

ISP	POPsicle	Ground Truth
BTN	29	29
HE	24	24
Internet2	10	10
Steadfast.net	3	3
Nexicom	9	9
HopOne	3	3
Indiana Gigapop	2	2
MOREnet	4	4
Atlantic Metro	9	12
PaeTec	54	61

Summary

- First-of-its-kind comparison of physical vs. network-layer maps
- Source-destination pairs within the same AS reveals most physical infrastructure
- POPsicle-based probing identifies 2.4x additional nodes
- IXPs can aid in broadening perspective
- Deployed and demonstrated POPsicle in a real IXP setting

Thank you! Questions?

www.internetatlas.org