Dynamic Measurement of Container Network Latency

with MACE

Motivation and Challenges

Chris Misa and Ramakrishnan Durairajan, University of Oregon

cmisa@cs.uoregon.edu

ram@cs.uoregon.edu

Benefits of container technology for Internet research:

e Consistent and repeatable experimental interface;
* Streamlined tool deployment process;

* New vantage points at cloud-oriented data centers around the

world.

Challenges for Internet measurement tools deployed in containers:

* One-way delays (OWDs) and round-trip-times (RTTs) are
distorted by virtualized network stack;'

* No principled method to measure, quantify, and characterize
the latency overheads.

Design

We develop MACE (Measure
the Added Container
Expense) to dynamically
monitor latency overheads:

* MACE parses a stream of
Linux trace events” to
calculate egress and ingress
latencies for each packet;

* MACE uses a
configurable event path to
determine target trace event /
network device points for
outbound and inbound
packets;

e Different event paths
measure different sources of
latency in the kernel;

¢ \We envision MACE

Phase 1

Phase 2

Phase 3

stream to remote

[trace—cmd record}

[trace—cmd report}

A

I

raw trace data

I

Ipa rse_streamI

outbound event on inner dev

O

output RTT latency

S

Y
save to disk

outbound event on outer dev

O T

container results

Y

observed Iatencies------>IadjustContainerI

adjusted results

inbound event on outer dev

O

inbound event on inner dev

Fig. 1: MACE design overview

O

o Outbound Inbound
providing key OS and network Path Name Inner Outer Inner Outer
behavior observations for the Device Event Device Event Device Event Device Event
AErtiE eE e e o inner-dev veth net_dev_xmit physical | net_dev_xmit | physical netif_receive_skb veth | nefif_receive_skb
,y , P nMax-dev veth net_dev_queue | physical | net_dev_xmit | physical | napi_gro_frags_entry | veth | netif_receive_skb
virtualized networks. syscalls NA | sys_enfer_sendfo | physical | net_dev_xmit | physical | netif_receive_skb NA | sys_exit_recvmsg
Fig. 2: Table of event paths chosen for evaluation
Evaluation
S | — container T —— container T Key Recommendations:
e} —— container adjusted T —— container adjusted
native control native control using SO_TIMESTAMP
un—-monitored native 1 8 — un—-monitored native using SO_TIMESTAMP . . .
o | un—-monitored container D IR un-monitored container 1 ¢ Measurement tOOIS "Uﬂnlﬂg InSICIe OI:
S T containers report different latencies compared
S T T to identical tools running natively in the host;
= 3 g @ E;/ﬁ\o/
I I e O E e R 2R (N (N N R Qoo . . ;- ,
” I e | ¢ MACE running with the ‘inner-dev
_ & 11 3. T method can account for and remove these
N s . e : .
8& T ¢ ¢ ¢ overheads, yielding results consistent with an
| g |- - 1 = i identical native installation of the same tool;
| | | | | | | | | | | |
S 8 3 3 3 8 g 3 8 3 3 3 ®* The ‘'max-dev’ method for MACE
c o) @) o) O o) c o) ®) o) @) QO L. .
= = = O 9 = = = O 9 additionally accounts for queueing delays
p— S — — o — . . . e .
- - which may become significant in busy servers;
traffic bandwidth traffic bandwidth
Fig. 3: Mean RTTs under the 'inner-device' Fig. 4: Mean RTTs under the syscalls’ event path e Native tool installations also include
event path compared with native ping using compared with native ping using SO_TIMESTAMP latency induced by the host's network stack

gettimeofday()

on inbound packets

800
I

600
I

s

400
I

I

!‘IIII

" |
I

|
|

200
I

0 (I L IlI III(‘
#III‘I\ ,I WIII| | II’I‘ IIIII,III';‘ IM HII ,III,-I!*III il I|(|';: |) II)

o

I

| |
![! III”‘*I]I II‘. MIlI‘j"d‘lH‘ le I

—— container
— adjusted container

raw latency

—— native

0l |
IIIIH|I‘IIII&II,~»IIII ‘IIII

L) I |
IIII,'!I I}‘I IIIIII.IDI.I;IIIII II.II,I'I}II

i

I I I
1538115400 1538115500 1538115600

I
1538115700

Time (s)

Fig. 6: Time series of 'inner-dev' event path under 10Mbps traffic

I
1538115800

1538115900

and the ‘syscalls’” method for MACE includes
this latency from the container up to the kernel

boundary.

Method Mean Mode Sample Deviation
native, original 169.2563 1566.5 65.338
native, hardware timestamping 118.793 119.6 21.620
native, N0 SO_TIMESTAMP 197.716 185.5 63.431
container, monitored, raw 275.639 231.5 110.418
container, adjusted by ‘inner-dev’ 205.400 1/7.5 86.545
container, adjusted by ‘'max-dev’ 204.042 173.5 ?1.751
container, adjusted by ‘syscalls’ 161.107 132.5 82.758

Fig. 5: Summary of RTT evaluation results (ps)

1. W. Felter, A. Ferreira, R. Rajamony, and J. Rubio,”An updated performance comparison of virtual machines and linux containers,”
Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software, 2015.
2. S. Rostedt, “ftrace — function tracer,” 2008. Available: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/

Documentation/trace/ftrace.txt

3. R. Ricci, E. Eide, and the CloudLab Team, “Introducing CloudLab: Scientific infrastructure for advancing cloud architectures and
applications,” ;login:, vol. 39, no. 6, pp. 36-38, 2014. Available: https://www.usenix.org/publications/login/dec14/ricci

This work is supported in part by a
fellowship from the University of Oregon
Office of the Vice President for Research
and Innovation.

