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Benefits of container technology for Internet research:

e Consistent and repeatable experimental interface;
* Streamlined tool deployment process;

* New vantage points at cloud-oriented data centers around the

world.

Challenges for Internet measurement tools deployed in containers:

* One-way delays (OWDs) and round-trip-times (RTTs) are
distorted by virtualized network stack;'

* No principled method to measure, quantify, and characterize
the latency overheads.

Design

We develop MACE (Measure
the Added Container
Expense) to dynamically
monitor latency overheads:

* MACE parses a stream of
Linux trace events” to
calculate egress and ingress
latencies for each packet;

* MACE uses a
configurable event path to
determine target trace event /
network device points for
outbound and inbound
packets;

e Different event paths
measure different sources of
latency in the kernel;
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Fig. 1: MACE design overview
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Fig. 6: Time series of 'inner-dev' event path under 10Mbps traffic
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and the ‘syscalls’” method for MACE includes
this latency from the container up to the kernel

boundary.

Method Mean Mode Sample Deviation
native, original 169.2563 1566.5 65.338
native, hardware timestamping 118.793 119.6 21.620
native, N0 SO_TIMESTAMP 197.716 185.5 63.431
container, monitored, raw 275.639 231.5 110.418
container, adjusted by ‘inner-dev’ 205.400 1/7.5 86.545
container, adjusted by ‘'max-dev’ 204.042 173.5 ?1.751
container, adjusted by ‘syscalls’ 161.107 132.5 82.758

Fig. 5: Summary of RTT evaluation results (ps)
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