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ABSTRACT

Studies of inter-domain routing in the Internet have highlighted the
complex and dynamic nature of connectivity changes that take place
daily on a global scale. The ability to assess and identify normal,
malicious, irregular and unexpected behaviors in routing update
streams is important in daily network and security operations. In
this paper we describe Bigfoot, a Border Gateway Protocol (BGP)
update visualization system that has been designed to highlight and
assess a wide variety of behaviors in update streams. At the core of
Bigfoot is the notion of visualizing the announcements of network
prefixes via IP geolocation. We investigate different representations
of polygons for network footprints and show how straightforward
application of IP geolocation can lead to representations that are
difficult to interpret. Bigfoot includes techniques to filter, organize,
analyze and visualize BGP updates that enable characteristics and
behaviors of interest to be identified effectively. To demonstrate
Bigfoot’s capabilities, we consider 1.79B BGP updates collected
over a period of one year and identify 139 candidate events in this
data. We investigate a subset of these events in detail, along with
ground truth from existing literature to show how network footprint
visualizations can be used in operational deployments.

Keywords: BGP Security; Routing anomalies; Visualization.

Index Terms: •Human-centered computing → Geographic vi-
sualization; •Information systems → Location based services;
Geographic information systems; •Computing methodologies→
Anomaly detection;

1 INTRODUCTION

The transmission of reachability information (updates) between au-
tonomous systems (AS) via the Border Gateway Protocol (BGP) is
one of the most basic aspects of Internet operation. BGP updates
convey information about IP address space availability, AS path and
other associated attributes. The AS path attribute lists the ASes tra-
versed to reach the announced address space. These updates enable
policy-compliant routes between networks to be established and
maintained. However, the enormous volume and diversity of BGP
updates, the possibility of malicious behavior and the lack of global
coordination between participants present significant challenges to
network operations on a daily basis.

To build a foundation for understanding and improving BGP, up-
date streams have been analyzed extensively in prior work. Early
studies such as [40] helped to elucidate latencies in routing conver-
gence after failures, while [48] examined the impact of route updates
on network traffic. Prior studies have also developed methods for
automating analysis of update streams. For example, a number of
studies have described tools that assist in the process of identifying
reachability problems and determining root-causes for BGP routing
changes (e.g., [36, 49, 57]). While such tools are useful in network
operations, there continue to be outages, misconfigurations and at-
tacks that can have a significant impact on service quality. This calls

for new methods for monitoring and analysis that can reveal both
expected and unexpected behaviors in BGP update streams.

Graphical visualization is a well known method for assessing
large, complex data sets. Visualizations are particularly useful for
outlier detection. In this paper, we present a new method for vi-
sualizing and analyzing BGP updates. The goal of our work is to
develop a capability that can be used in both research and operations
to identify and assess normal and anomalous activity in BGP updates.
The requirements for the system include the ability to ingest a large
volume of updates, winnow activity to specific networks or regions
of interest and highlight a variety of behaviors that are of interest
in security and operations (e.g., hijacks, black holes, DDoS attacks,
etc.).

At the core of our approach is the application of IP geolocation
to the network address prefixes that are included in BGP updates.
Our hypothesis is that polygons that emerge from drawing a border
around geolocated IP addresses projected on a world map are intu-
itive representations that provide insights on a range of behaviors
that are important to network operations. At first glance, the task
of drawing such polygons might seem to be straightforward. How-
ever, we show that simple approaches to drawing polygons result in
irregular shapes that preclude applications in target use cases.

We address this challenge by developing a methodology for visu-
alizing network address space in 2-D polygons projected on world
maps, which is the first contribution of our work. Our approach is
based on drawing convex hulls around a subset of IP address loca-
tions associated with a given prefix. The objective of subset selection
is to produce polygons are the unique and include characteristics
that are relevant to target use cases. Since geolocation of a given IP
address can be inaccurate [35]), the subset selection process remove
outliers that would otherwise inappropriately distort the resulting
polygon. However, this must be done with care so that meaningful
points are not inadvertently removed.

We implement our network polygon generator in a system that
we call Bigfoot1, which is the second contribution of this paper. Big-
foot includes three main components. The first is a data processing
engine that ingests static files or streaming BGP updates and gen-
erates geopositioned 2-D polygons that represent network address
prefixes. The second is the visualizer that is based on ArcGIS [7]
and that projects the 2-D polygons onto world maps. The third is an
analysis engine that is designed to identify unexpected or unwanted
behaviors in update streams. The analysis engine is designed to be
flexible. It can include anomaly detection algorithms that are based
on specific behaviors in update streams (e.g., [42, 52]) or on relative
characteristics of the generated polygons.

We demonstrate the potential utility of Bigfoot in network security
and operations through a series of case studies, which is the third
contribution of our work. The studies are focused on both “normal"
BGP update activity and on anomalous behaviors that have been
described in prior work. Specifically, we show examples of network
address space footprints from BGP updates that have a predictable
structure and that are useful as a baseline for recognizing anomalous
behaviors. We tune the analysis engine in Bigfoot to identify several
classes of network anomalies and then apply it to 1.7B BGP updates

1Bigfoot is deployed in Internet Atlas[33] and will be openly available to
the community at the time of publication along with all the case studies.
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collected over a period of one year from the RouteViews [23] and
BGPmon project [58]. We identify 139 candidate events in this data.
We evaluate a subset of these events by hand, along with ground
truth information from existing literature, to show how the resulting
visualizations effectively highlight unwanted behaviors in the update
streams.
2 VISUALIZING LOCATIONS OF NETWORK PREFIXES

In this section, we describe the basic approach for visualizing the
geographic footprint of IP network prefixes. We begin with a naïve
approach, and provide an illustrative example that motivates the
need for a more robust and consistent geographic representation of
prefixes. For the remainder of the paper, we assume IPv4 address
prefixes, although there is nothing inherent in our methods that
preclude their application to IPv6 address prefixes.
2.1 Naïve Visualization Approach
Our simple approach to generating geopositioned polygons for IP
address prefixes that are included in BGP updates takes two inputs:
(1) a stream of network prefixes, and (2) a percentage (p) that spec-
ifies the number of IP addresses to select for geolocation within a
given prefix. We assume the availability of an IP geolocation service
that is highly scalable and that can provide responses to queries in a
timely fashion [38]. There are many such commercial geolocation
services e.g., from Akamai, Maxmind, and others. We also assume
that only a subset of addresses within a prefix are required to convey
sufficient information for operational purposes. Optimizing p based
on prefix size, performance requirements and resultant polygons is a
subject for future work. For analyses presented in this paper, we set
p = 100% i.e., we geolocate all IP addresses in a prefix.

Using the specified inputs, the simple approach for generating
visualizations is as follows. (1) Select the specified percentage p of
IP addresses from each prefix (e.g., in a uniform random fashion). (2)
Geolocate the selected IP addresses. In this study we use Maxmind’s
IP Geolocation service [12]. (3) Project the geographic locations of
the selected IP addresses onto a world map. (4) Enclose the projected
points in a 2-D polygon. What we show below is that simple methods
for drawing polygons (step #4) can result in shapes that convey little
or no useful information. This is the main motivation for our Bigfoot
methodology (described in §3).

Given a set of points on a world map that can act as anchors, there
are many possible ways in which polygons that enclose these points
could be drawn. We examine three simple methods for drawing lines
between consecutive points that form the polygons in the following
section: unsorted (random), latitude-sorted and longitude-sorted.
2.2 Illustrative Example
To analyze the naïve approach methods, we used prefixes of different
sizes from network prefixes in different parts of the world. As noted
above, in each case we use p = 100% so that all IP addresses are
geolocated. However, we only project unique locations on the map
and we only use those unique locations as anchors for drawing
polygons.

Figure 1 shows the network polygons for the Fairpoint Commu-
nications network (a /16 prefix). Our observations of prominent
features in the polygons include (i) identical coverage (e.g., north-
eastern regions in all three polygons), (ii) absence of coverage (e.g.,
north and north-west regions are missing in latitude-sorted polygon
compared to the other two polygons), (iii) sharp spikes (e.g., all
over latitude-sorted polygon) and multiple overlapping spikes (e.g.,
unsorted polygon), and (iv) dense coverage (e.g., north-east and
northern regions of longitude-sorted polygon).
2.3 Discussion
• Using naïve methods one might expect polygons with the num-

ber of edges proportional to size of the network prefix due to
the number of cities represented in Maxmind [39]. However,
our visualizations suggest that the block-level aggregates are
much less diverse. We hypothesize that since prefixes are ei-
ther grouped or divided into super- or sub-prefixes respectively,

polygons created using simple methods actually highlight ge-
olocation inaccuracies [47]). This is counter to our objective of
providing visualizations that are useful in an operational setting.

• We observe inconsistencies in polygons of all of the prefixes
we examined using naïve methods. Omission of one or two
points can cause significant changes in shapes. The result is
that no intuition is conveyed in these representations making
meaningful assessment more difficult and precluding decision
support in an operational setting. This calls for context-aware
methods to visualize diverse and dynamic network data.

3 THE BIGFOOT FRAMEWORK

To create the ability to produce visualizations of network address
prefixes in BGP updates we developed Bigfoot. The objectives of
this system are to produce visualizations that eliminate the inconsis-
tencies and artifacts illustrated in §2 and to provide visual clues to
behaviors of interest in BGP updates.

Bigfoot is designed as a modular system in which each component
is open and configurable with a minimal set of interfaces. This
approach enables the system components to be fine-tuned, extended,
or replaced without affecting the rest of the framework. To maximize
the utility of the system, Bigfoot can send alerts about threat events
to analysts based on the network- and IP prefix-specific subscriptions
they create.
3.1 Core Components
Bigfoot consists of three components: the inconsistency solver, the
anomaly detector and the visualizer, and we describe each part of
this modular system below.

Inconsistency Solver. Bigfoot begins by ingesting BGP data in
batch or streaming mode and generates geocoded 2-D polygons.2
First, we start by extracting the announced address prefix and AS
path information from the data and create an in-memory hash of the
updates. This step is executed in parallel on a 32-core machine. Next,
we generate IP addresses contained in every prefix using p=100%
and simultaneously geolocate them using MaxMind geolocation
service.

The inconsistency solver borrows graphical techniques including
alpha shape creation [1] and convex hull-based boundary creation [6]
to produce consistent 2-D representations of network prefixes from
the geolocated addresses. Both of these options can be invoked from
the visualizer depending on the requirement. The inconsistency
solver acts as a post-processing step to the basic naïve approach
described in the prior section, and takes two inputs including a
(1) list of IP-geolocated coordinates/points for every prefix and
(2) a threshold type for outlier elimination to produce shape files
containing individual polygons for geolocated coordinates in an
input prefix list.

Specifically, given a set of (4 or more) unique IP-geolocated co-
ordinates for a prefix in the prefix list, the convex hull estimation
method produces a polygon that encloses the given points. For a
network prefix with only one available coordinate, a circle with that
point on the center is generated with a radius relative to the size
of other polygons, and for a prefix with two points, two circles are
created. A network prefix with three points is simply represented by
a triangle, which forms the base case for our polygon construction.
Similarly, the alpha shape creation method takes a set of (4 or more)
geographic coordinates and creates Delaunay triangles [31] to estab-
lish connections between nearby points. In the process, any outlier
points classified based on their inter-vincenty distance [27] exceed-
ing a given threshold are removed, where the threshold is computed
automatically using the input threshold type.3 Our design choice of

2All results in this paper are based on batch mode operation but capabili-
ties are in place to operate in streaming mode.

3Bigfoot currently supports three threshold types: mean, median and
mode. In this paper, mean of the all inter-vincenty distances is calculated
and is used to winnow points whose neighbor-vincenty distances exceed the
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Figure 1: Network footprint of Fairpoint Communications (AS 32645, 216.227.0.0/16) produced using unsorted (left), latitude-sorted
(center), and longitude-sorted (right) geolocation information for p=100%.

automatically calculating threshold value to winnow points based on
input threshold type, and not based on directly passing a threshold
value, is based on the fact that multiple IP addresses geolocate to a
single geographic location and carelessly chosen values increase the
chances of removing such important cliques in the polygon.4

Anomaly Detector. In addition to producing visually consistent
polygons of network prefixes in an update stream, Bigfoot includes
an anomaly detection component. The objective of this component
is to enable behaviors of interest to be highlighted by the system.
These include classes of anomalies that have been considered in other
studies as well as those that relate to relative shapes and positions of
network polygons.

Algorithm 1: Bigfoot Anomaly Detector

input : timeOfInterest
input :k
input :UpdateStream

1 foreach update U in UpdateStream[prev(k)] do
2 aggregates = combinePrefixes(prev(k));
3 basePolygons[U ] = generate2DPolygon(aggregates);
4 baseASPaths[U ] = getASPaths(U);

5 foreach update U in UpdateStream[timeO f Interest] do
6 f = compareASPaths(U , baseASPaths[U]);
7 if f == “match" then
8 newPolygon = generate2DPolygon(U);
9 i = comparePolgons(newPolygon, basePolygons[U]);

10 if i == “match" then
11 normalUpdate(U);

12 else
13 newASPath = augmentASNumbers(U);
14 j = compareASPaths(newASPath,

baseASPaths[U]);
15 if j == “match" then
16 normalUpdate(U);

17 else
18 anomalyUpdate(U);

19 else
20 asPath = findClosestASPath(U , baseASPaths[U]);
21 Phi jacked ,Phi jacking = getAttackInfo(asPath, U);

Consistent with standard approaches to anomaly detection, this
component establishes a baseline for “normal" behavior and uses
thresholds to identify anomalous behavior. Algorithm 1 shows the
key steps of our method that considers both AS path and network
polygon shape characteristics, and it works as follows. To estab-
lish the baseline for update behavior, the anomaly detector uses
updates from previous k days and aggregates the subnet information
announced in a particular AS path together to generate consistent
2-D polygons (steps 1 to 4). In our evaluation, to derive k, we use
a simple linear model on BGP update churn per day to obtain a
value of 4. These polygons are the base case polygons for detecting

calculated mean value.
4There are actually multiple points in the extreme north of Canada in

Figure 2-(left).

behaviors of interest in the BGP update stream. We show that this
simple approach is effective in our case studies but plan to consider
alternative approaches for future work.

Next, a window of time (e.g., hours, days, weeks) over which
updates will be analyzed is selected (steps 5 to 21). This window of
interest can range from a few hours to many months.5 The anomaly
detector compares the AS path included in each update with the base
case AS path (step 6). If they match, the subnet polygons in the up-
date are compared with the base case polygons by using Convex Hull
intersection comparison (specifically using equals and/or contains
comparison methods described in [34, 51]) which are available in
Python’s shapely library [15] (step 9). In a similar vein, the number,
area and geography of the base case polygons are also compared
with the polygons produced from the updates. In case of previously
observed AS path, the threshold criteria for anomaly detection is
currently set as a perfect mismatch from base case polygons in all the
comparisons. The criteria is set to perfect mismatch in order to detect
changes in geographical footprint of well known AS paths, which in
turn is used by the anomaly detector to find redirection attacks and
router misconfigurations. Based on this criteria, if there is perfect
match in all the comparisons, the anomaly detector classifies events
as normal updates (steps 10 and 11). When a mismatch is determined
using the intersection comparison methods, the anomaly detector,
for each update, augments AS numbers with subnet information by
looking up each of the AS numbers in Prefix2AS dataset [21] and
checks if the subnet in the update is associated with any one of those
AS numbers present in the AS path of the base case (steps 13 and
14). If it is, then the update is classified as a normal update. In our
design, lowering the threshold criteria from perfect mismatch, to say
95% mismatch, enhances Bigfoot’s ability to detect events at finer
granularities (e.g., to individual subnets.)

If there is a mismatch in the initial AS path comparison, the
anomaly detector compares the subnet information to the base data to
determine the previously observed AS paths. Among the previously
observed AS paths, it determines the closest matching AS path(s)
and performs polygon equals and contains comparison with the base
polygon to identify the misbehaving AS number(s) and the victim
subnets (steps 19 to 21). In case of previously unobserved AS path,
the threshold criteria for anomaly detection is currently set to perfect
match with base case polygons, which enables detection of potential
victims of man-in-the-middle attacks. The intuition behind having
a different threshold criteria for AS path mismatch case is that, for
subnets with well established AS paths, only when there is a routing
leak, the AS paths in the updates change. By doing this, it produces
two different types of information in the anomalous updates: (i)
networks for which the traffic is being hijacked and/or leaked, and
(ii) networks involved in the hijacking/leaking (step 21).

Visualizer. All visualizations shown in this paper are generated
from the third component of Bigfoot called the Visualizer. Visualizer
was developed as an extension of Internet Atlas [33], which is built
on top of ArcGIS. The GIS foundation enables polygons to be
displayed on maps of various types. Input to the visualizer are
the shape files (including .shp, .shx, .dfb, .cpg) and the associated
meta data generated by the inconsistency solver. Output from the
visualizer is available through the Internet Atlas web-based UI.

The visualizer includes usability features that enable it to operate

5We show the application of different time scales in §4.1 and §4.2.
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on update streams from multiple sources and to navigate through
updates (both spatially and temporally) and corresponding maps
in various ways. For example, we include the ability to highlight
sender/receiver characteristics in updates, which can be helpful in
identifying certain types of behaviors as illustrated in §4. This is
enabled in part by the ArcGIS tracking analyst [2] available as part
of Internet Atlas, which dynamically generates the corresponding
shape files in a computationally efficient fashion. While we empha-
size basic visualization techniques in this paper, the visualizer can
produce a variety of other representations (e.g., heatmaps).

Summary. The main features of Bigfoot include: (1) a method
for ingesting and grooming BGP update data that produces geoposi-
tioned polygons for network prefixes, (2) a filtering capability for
identifying anomalies in the update data, and (3) a visualization
component that can produce outputs in several standard formats
(e.g., .shp, .png). The system is modular and configurable in the
sense that each component can be tuned, modified and/or replaced
independently. The modular design offers an opportunity to enhance
situational awareness and configure for specific use cases as needed
with minimal modifications to the system.
3.2 AS Visualizations
In this section, we demonstrate Bigfoot’s ability to produce consis-
tent 2-D polygons for various networks, ranging from large tier-1
to regional networks with varying prefix sizes, by visualizing their
prefixes chosen from the CAIDA’s AS ranking project [4]. Figure 2-
(left) shows the network footprint of XO Communications, a tier-1
network, consisting of 7M addresses. Coverage of XO is large and
a simple consistency check shows that the polygons produced are
consistent with their network map [29]. 2-D polygons produced
using Bigfoot for Fairpoint Communications, containing 83K ad-
dresses, are shown in Figure 2-(center). The polygons produced are
consistent when compared with the naïve approach (see Figure 1).
Figure 2-(right) shows the network updates from Syringa, a regional
service provider in Boise, ID, containing 47K addresses. These
examples illustrate Bigfoot’s ability to produce geographically con-
sistent 2-D visualizations of diverse networks with varying prefix
sizes and geographic affinity.
4 DEMONSTRATING BIGFOOT

In this section, we demonstrate how Bigfoot can be used to provide
insights on routing errors that can lead to transient outages, and
eventually to inconsistent network state. Given our geographical
approach for prefix visualization, Bigfoot is particularly effective at
highlighting behaviors that involve sudden changes in geographic
footprints. We developed two approaches to test and evaluate Big-
foot: (i) based on isolated network events documented in prior
work [5, 26], and (ii) using archives of BGP updates from Route-
Views [23] and BGPmon [58] and validating with ground truth
information [22, 25].We discuss results from processing the BGP
update data and classifying those updates that do not have ground
truth for verification. Finally, we compare against RIPEStat [18] and
VIS-SENSE [30], to demonstrate the utility of Bigfoot.
4.1 Isolated Network Event Analysis
We begin assessment of Bigfoot by extracting BGP updates from
archived data that includes two documented events of interest [5,26].
These are presented as use cases 1 and 2 (below). We then provide
this data as input to Bigfoot and show the how visual representations
effectively highlight the target behavior.

Use case 1. In this scenario, we consider BGP updates from a
single day (5th of August 2014) that contained a routing leak based
on peering agreement between Vimpelcom (AS 3216) and China
Telecom (AS 4134) as described in [5]. BGP update data from
the target prefixes is extracted from archives and used as input to
Bigfoot.

Figure 3-(left) shows the base case polygons including the subnets
and AS information belonging to Vimpelcom. Both the subnets and
AS path information of the base case data are available at [33].

Figure 3-(right) illustrates the impact of routing leak by showing
victim subnets (Vimplecom) in red polygons and the misbehaving
subnets (China Telecom) in black polygons. These subnets are
detected using the polygon comparison method described in §3. On
the day of the routing leak, the AS paths associated with Vimplecom
subnets did not match with any of the AS paths in the base case data.
By setting the criteria for anomaly as perfect matches with base
cases using polygon comparison methods, the previously observed
AS path information is extracted from the base data. From the closest
matching AS path, the misbehaving AS is identified as AS 4134 and
the prefixes associated with AS 4134 are obtained from Prefix2AS
dataset [21] and are automatically generated and displayed as black
polygons.

Use case 2. The ability to monitor updates from all peers is
important in network operations. Problems related to performance
and security that can arise from unmonitored peers are described
in [26]. In this example, we focus on update data from May 22, 2014
that represents misbehaving peer events and use Bigfoot to visualize
the impact.

Figure 4-(right) shows the impact of Beltelecom (AS 6697) creat-
ing a detour of traffic from Yandex (AS 13238). These detours result
in degraded performance as described in [26]. This was due to the
effect of bogus routes announced by Beltelecom (black polygons)
on its peer, i.e., Yandex (red polygons). Bigfoot effectively high-
lights these bogus route events by providing the required filtering
and monitoring capability, and the ability to compare this against
normal/expected behavior (Figure 4-(left)).
4.2 Examination of Update Streams
Next, we demonstrate Bigfoot’s capabilities in operational deploy-
ments by considering two archives of update data from Route-
Views [23] and BGPmon [58] project for a period of six months each,
from February 2013 to July 2013 (D1) and January 2015 to June
2015 (D2). These archives included 699,091,503 and 1,091,009,199
BGP updates respectively. In this data corpus, we found 73 candi-
date events from D1 and 66 candidate events from D2 by applying
our anomaly detector. From the first 73 candidate events, we select
two events6 (as shown in use cases 3 and 4 below) and validate with
ground truth information [22] to show how anomalous prefixes in
update streams can be highlighted. Similarly for the remaining 66
candidate events from D2, we validate one event with ground truth
information [25]as shown in use cases 5.

Use case 3. BGP prefix hijacking is a well known threat in inter-
domain routing and can occur at varying time scales, typically lasting
from few minutes to several hours. In this scenario, we describe a
prefix hijacking event that we found using Bigfoot.

Figure 5-(left) shows the footprint for base case updates in
Guadalajara, MX to Washington, DC. During the hijack event, in-
stead of the standard AS path, a new AS path emerges that is directed
to the Belarusian ISP GlobalOneBel (black polygons). This causes
traffic to flow to Russia via Europe and then back into the US. The
hijacked prefixes are clearly illustrated in Figure 5-(right) We also
validated this hijacking event using the AS numbers and subnet infor-
mation given in [22]. This particular hijack happened throughout the
month of February 2013; for the purpose of succinct representation,
we show only the anomalies detected for three days of archived BGP
data. This demonstrates how Bigfoot can be employed to provide
visual cues on prefix hijacking, independent of the time scale at
which they occur.

Use case 4. Bigfoot detected another prefix hijacking event de-
scribed in [22] where traffic was being rerouted out of the US to
Iceland by Icelandic ISP Opin Kerfi (AS 48685). Figure 6-(left)
depicts the regular flow of updates where the announcements stay
within US. The divergent paths taken by updates after the leak are

6Remaining 71 events warrant careful investigation with similar ground
truth information. We are working on a feature that enables an operator to
flag events as false positives.
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Figure 2: (Left) - Polygons produced by Bigfoot for AS 2828 and AS 7014 assigned to XO Communications. (Center) - Network
footprint of AS 32645 assigned to Fairpoint Communications. (Right) - Network footprint of AS 15305 assigned to Syringa Networks.

Figure 3: Footprint of BGP update events produced before (left) and during (right) routing errors scenario described in [5].

Figure 4: Footprint of BGP update events produced before (left) and during (right) misbehaving peering scenario described in [26].

Figure 5: Footprint of BGP update events produced before (left) and during (right) prefix hijacking (Belarus) described in [22].

shown in Figure 6-(right) and the misbehaving AS is identified as
Opin Kerfi (AS 6677). Bigfoot’s ability to provide a visualization
of the difference between normal and hijacked routes should aid
network operators in identification and remediation of these kinds
of events.

Use case 5. Bigfoot also highlights a BGP routing hijack event
across different continents, which is overlooked by other methods.
Per the routing event explained in [25], traffic from the UK-based
customers of British Telecom, including Atomic Weapons Establish-
ment, alone are hijacked to Ukraine. Surprisingly, using Bigfoot, we
found that the impact of hijack event to be more serious than what
has been reported. Specifically, apart from the UK-based customers
reported in [25], we found that the traffic of customers from other
continents, including USA and India, were also hijacked during the
event as shown in Figure 7. In addition to validating the hijack
explained in [25] as shown in Figures 7-(top left) and -(top right),
Figures 7 depicts Bigfoot’s ability to identify the footprint of addi-
tional prefixes from other continents including countries like USA
(bottom left) and India (bottom right) that were also hijacked.

These use cases highlight how network operators can use Bigfoot
to identify the geographical region(s) affected by normal and anoma-
lous event updates. Bigfoot visualizations can also convey additional
metadata such as the AS path observed under normal operations, the
AS path observed during the anomaly, the timestamps associated
with the updates along with prefix details.
4.3 Validation of the Remaining Events
Validation of all candidate events identified in D1 and D2 is prob-
lematic because of the general lack of ground truth. To cope with
the lack of ground truth information, we adopt a classification-based

approach and manually examine (1) the meta-information includ-
ing AS path, prefix allocation, and duration of the attacks, and (2)
geographic characteristics of the remaining candidates in D1 and
D2. The idea is to compare the characteristics of candidate events to
events for which we have ground truth to determine their consistency
with our definition of anomalies. We plan to reach out to the net-
work operators to further validate these events in future work since
we cannot say with certainty that they are anomalies that required
action.

C1: Classification using meta-information. We start with ex-
amining various meta-information of the prefixes and classify them
into three categories: (i) C1A, where the hijacking AS inserts itself
or replaces one or more of the ASes in the AS path; (ii) C1B, where
the prefixes announced in the update forms an entirely new AS path;
and (iii) C1C, where the prefixes announced in the update belongs to
a different address registry.

Table 1: Classification of remaining candidate events using
meta-information.

C1A C1B C1C
D1 D2 D1 D2 D1 D2
25 23 44 41 9 7
U1, U3 All except U2 -

Table 1 shows the classification of the remaining candidate events
in D1 and D2 based on meta-information of the prefixes. On manual
examination, we found that 25 candidates from D1 and 23 candidates
from D2 either inserted itself or replaced the AS paths, similar to
use cases 1 and 3 (i.e., U1, U3). Similarly, 44 event from D1 and 41
events from D2 exhibited properties similar to all other use cases,
except U2, where a new path is seen in the updates. Finally, 16
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Figure 6: Footprint of BGP update events produced before (left) and during (right) prefix hijacking (Iceland) described in [22].

Figure 7: Footprint of BGP update events produced before (top left) and during (top right) prefix hijacking (Ukraine) described
in [25]. Customers from other continents including countries like India (bottom right) and USA (bottom left) were also attacked.

events from D1 and D2 did not exhibit characteristics as those for
which we had ground truth. We are currently investigating these
events in further detail.
Table 2: Sub-classification of candidate events using meta-
information and time duration of the events.

Sub−C1A Sub−C1B Sub−C1C
D1 D2 D1 D2 D1 D2

Short 10 9 9 17 2 0 U5
Moderate 13 10 16 11 1 1 U1, U2

Long 2 4 19 13 6 6 U3, U4

Next, we further classify candidates that are shown in Table 1,
based on time duration of the events, into (a) short, where the events
lasted for less than 12 hours; (b) moderate, where the duration of
the events were greater than 12 hours but lesser than 12 days; and
(c) long, where the events existed for more than 12 days. We show
the sub-classification of C1 (i.e., Sub−C1) for all three categories
(explained above) in Table 2. From the table, we find that the classi-
fication of candidates using time duration and meta-information is
quite effective for characterizing events for which we do not have
ground truth. For example, using U3 and U4 as seeds, we manually
examined the aforementioned properties of events in D1 and D2 for
all three categories and found that 6 events lasted for more than 12
days and the hijacking ASes replaced itself in the update AS path.
Similarly, for 26 events, the time duration was under 12 hours and
the announced AS paths were completely new. These 26 events were
similar to use case 5.

C2: Classification using geography. Finally, we analyze the
geographical characteristics of the events and classify them based on
prefixes that are (1) distributed across different continents (C2A); (2)
spread across different countries (C2B) but within the same continent;
and (3) regional, C2C, where the prefixes get geolocated to different

regions in the same country.
Table 3: Classification of remaining candidate events using ge-
ography of the prefixes.

C2A C2B C2C
D1 D2 D1 D2 D1 D2
36 26 31 37 6 3
U1, U3, U4 U1, U5 -

Table 3 shows the classification of the remaining candidate events
in D1 and D2 based on geography of the prefixes. We found that
prefixes of 36 candidates from D1 and 26 candidates from D2, simi-
lar to use cases 1, 3 and 4 (i.e., U1, U3 and U4) were geographically
distributed across different continents. Similarly, 31 event from D1
and 37 events from D2 exhibited properties similar to other use cases
(i.e., U2 and U5), where the prefixes were geolocated within the
same continent but across different countries. Lastly, 9 events from
D1 and D2 did not exhibit characteristics as those for which we had
ground truth, which warrants further investigation.
4.4 Comparison with other tools
To provide further perspective on Bigfoot, we compare it to other
tools for BGP update visualization and threat detection including
RIPEstat [18] and VIS-SENSE [28]. We do not report comparisons
to BGPlay [32], HERMES [10] and VAST [44] since those tools
(i) are only used for visualizing the AS interconnections and paths
extracted from BGP update streams and (ii) do not have anomaly
detection capabilities. Further, none of the existing tools have the
capabilities to visualize network prefix geographic footprints.

RIPEstat. RIPEstat [18] is a widely used web-based interface
for prefix and AS visualizations. For this comparison, we focus
on RIPEstat’s Observed Network Activity widget [19], a heat map
based visualization tool. To create heat map based visualization
functionality on Bigfoot, we plugged in a new heat map render-
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ing engine comprising of 106 lines of JavaScript code—created
using heatmap.js [9]—into the Visualizer. Figure 8 compares the
footprint of one of the prefixes of Fairpoint Communications (i.e.,
216.227.0.0/16) produced using RIPEStat (left) and Bigfoot
(right). We note that, apart from identifying locations that are identi-
fied by RIPEStat (left), Bigfoot identified additional footprint (right)
of Fairpoint Communications as seen in [8] highlighting Bigfoot’s
ability to effectively and exhaustively identify a network’s footprint.
Bigfoot also provides support to visualize multiple network prefixes
simultaneously, unlike the RIPEstat widget.

VIS-SENSE. The VIS-SENSE [28] project has produced visual-
ization technologies for identification and prediction of abnormal
behavior. Specific to BGP monitoring and hijack detection, VIS-
SENSE has capability similar to VisTracer[37], BGPfuse[46], BG-
PViewer[45]. Since, no public version of VIS-SENSE tools are
available, we focus on the attack scenario explained in Biersack et
al. [30] for this comparison. In that scenario, VIS-SENSE provides
visual analysis of a prefix hijack event where a spam attack was
orchestrated by the attacker and false ownership claim to the victim
network—Link Telecom (AS31733)—was achieved via Internap
(AS12182). Figure 9 shows the detection and visualization of the
scenario using Bigfoot, where apart from reproducing the results
shown in Figure 4 of [30], Bigfoot also highlights the scope of attack
events by providing geographical footprints of the victim and the at-
tacker networks. We also note that VIS-SENSE’s anomaly detection
requires inputs from both active measurements via a traceroute-
based tool called Spamtracer and a model that represents the normal
and expected behavior of the network. Unlike VIS-SENSE, Bigfoot
does not require any traceroute-based inputs to detect network threat
events.
5 RELATED WORK

Visualizations can be useful for analyzing large, complex network
data sets. A common technique for visualizing the spatial relations
between IP address blocks is a Hilbert representation [11, 13]. Other
interesting approaches for unraveling BGP’s complexity are to plot
AS relationships in a radial space [3], or to plot IP prefixes in a
quadrant-based 2D space [54]. BGPlay [32] creates graphical rep-
resentation of AS paths seen in BGP updates. Similar to BGPlay
are HERMES [10] and VAST [44] which are used for exploring
and visualizing the ASes and their interconnections. Elisha [53]
and Event Shrub [55] detect origin AS change events and anomalies
based on historical data respectively. Commercial tools (e.g., [24])
use similar techniques to understand the anomalies and attacks. Lad
et al. creates a ranking scheme for visualizing AS paths called Link-
Rank [43] and design PHAS [41] alerting system that builds upon
Link-Rank for alerting prefix hijacks. TAMP [56] and PGPeep [50]
are employed to detect router misconfigurations, flaps and other
routing anomalies.

A community effort that bears the strongest resemblance to ours is
the RIPEStat [18], which offers representations of IP address space
as heat maps. Another effort that is similar to ours is VIS-SENSE,
a visual analytics project for detecting prefix hijack attacks [30].
Bigfoot goes well beyond RIPEStat and VIS-SENSE by including:
(1) consistent geographical representations, (2) addresses visual
outliers, and (3) offers viable use cases. To the best of our knowledge,
Bigfoot is the first effort to establish a Geo-based visualization of
network footprints that includes capabilities to layer sizable network
updates on top of a map of the physical Internet [33].
6 SUMMARY AND FUTURE WORK

The reachability information exchanged in BGP updates is the basis
for establishing routing between networks and as such has direct
implications on a wide range of characteristics including security,
performance and robustness. Prior empirical studies on BGP update
behavior highlight the large volume and diverse characteristics as
well as a range of risks and threats. Visualizations offer an oppor-
tunity to unravel complexity and to bring attention to key events of

interest in large data sets such as BGP update streams.
In this paper we describe a new approach for visualizing BGP

updates that we call Bigfoot, which is based on generating 2-D
polygons of the geographic footprint of network prefixes included in
updates. We show how simple approaches to generating footprints
result in polygons that are inconsistent and thus not applicable in
target use cases. In contrast, Bigfoot generates polygons based on
convex hulls and using context sensitivity that enable the generation
of consistent representations. We demonstrate Bigfoot’s general
capability and how it can be used in specific use cases described in
prior work.

In ongoing work, we are focused on expanding and enhancing
Bigfoot’s applicability to a broader range of security (e.g., remotely
triggered black-holing for DoS attack mitigation [16, 17]) and op-
erational (e.g., unauthorized traffic redirection due to misconfigu-
ration [14]) use cases. In particular, we are focused on enabling
Bigfoot to produce visualizations that highlight a broader range of
anomalous and attack conditions and to potentially play a role in mit-
igation of these situations. We also plan to consider ways in which
network footprint visualizations can be used in network planning and
risk assessment. Future efforts will also include the enhancement of
Bigfoot’s anomaly detector to conduct a range of analyses on false
alarm rates for different configurations of thresholds.
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