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Abstract—Link-flood attacks (LFAs) overwhelm bandwidth on links in a
network using traffic from many sources, which is indistinguishable from
benign traffic. Unfortunately, traditional DDoS defenses are incapable of
stopping such attacks and recently proposed software-defined solutions
are ineffective.

In this work, we observe a new opportunity for mitigating LFAs using
optical networking advances. In essence, we envision new capabili-
ties for topology programming, to scale capacity on-demand to avoid
congestion and add new links to the network to create new paths for
traffic during LFA incidents. Realizing these benefits of optical topology
programming raises unique challenges; the search space for candidate
topology configurations is very large and joint optimization of topology
and routing is NP-hard.

We present ONSET—a framework that tackles these challenges
to lay a practical foundation for topology programming-based de-
fenses against LFAs. We show that ONSET complements existing pro-
grammable network defenses and amplifies their benefits. We perform
a what-if style analysis of ONSET by simulating a wide-ranging set of
attacks, including terabit-scale attacks against every single link, on five
networks with two different routing capabilities and observe that ONSET
provides the means to mitigate congestion loss in more than 90% of the
hundreds of diverse attack scenarios considered.

Index Terms—DDoS Defense, Optical Networks, Wide Area Networks,
Computer Simulation Experiments,

1 INTRODUCTION

Distributed denial-of-service attacks (DDoS) that over-
whelm a network’s bandwidth are on the rise [1], [2].
The immense attack volumes, attack diversity, sophisticated
attack strategies, and low cost to launch attacks make them
long-term cybersecurity issues. In 2021, 9.7 million DDoS
attacks occurred. This number marked a 14% increase over
2019 [3].

Of particular concern within this broader class of threats
are link-flood attacks (LFAs) which are also known as
network-layer DDoS attacks. While this attack variant has
been a scholarly curiosity in years past, it is now a legitimate
threat to networks; according to a CloudFlare report, the
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number of LFAs recorded in their network increased by
109% in the second quarter of 2022 year-on-year. They
also recorded an 8% increase in the number of LFAs with
100 Gbps of attack traffic during the previous quarter [4].
LFAs are more effective than conventional volumetric at-
tacks as they are targeting on shared links instead of victim
hosts. In this context, we observe a few key trends in the
LFA landscape. First, the attacks are adapting to defenses
by changing their traffic characteristics frequently. Static
mechanisms to defend them become ineffective and treat
attack and benign flows equally, affecting the performance
of benign flows. Second, the attackers are generating terabits
per second (Tbps) of malicious traffic [2], [5], [6], [7].

In light of this increasing LFA sophistication, existing
defense capabilities (e.g., packet scrubbing [8], [9], [10],
[11], [12], in-network filtering [13], [14], [15], [16], routing
around congestion [17], overlays for tracking [18], and more
recent software-defined defenses [19], [20], [21]) can be
improved. For example, since simple network layer filters
are ineffective (the indistinguishable nature of the benign
and malicious traffic), we need to reroute traffic to sophisti-
cated packet scrubbers for deeper inspection. This inevitably
impacts benign traffic and/or worsens network congestion.
Similarly, even programmable defenses (e.g., [19], [21]) are
ineffective. As we show empirically in our results, LFAs
can induce a substantial penalty for legitimate traffic as
programmable defenses simply shift the attack-induced
congestion elsewhere in the network.

In this work, we observe a new opportunity to bolster
LFA defenses in wide area networks (WANs) by leverag-
ing recent advances in optical networking called topology
programming. Topology programming scales/augments ex-
isting LFA defenses by dynamically adding new optical
wavelengths to scale the network capacity and alleviate net-
work congestion [22]. Similarly, using reconfigurable add-
drop multiplexers (ROADMs) [23], topology programming
allows steering of wavelengths at finer granularities and
enables fast traffic rerouting [24] in the face of congestion.
Optical topology programming has been adopted for classi-
cal networking tasks (e.g., traffic engineering [24], [25]) and
is increasingly being commoditized [26], [27], [28], but its
benefits have not been explored in depth for LFA defenses.
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Leveraging optical topology programming leads to two
novel opportunities in combating terabit LFAs. (1) Scaling
capacity on demand to avoid congestion. By dynamically
scaling the capacity of optical paths on-demand, we can
potentially reduce network congestion in targeted links.
(2) New capabilities for advanced/future LFAs. With novel
optical features such as rapid wavelength reconfiguration,
we can improve defenses for LFAs by providing new links
and paths to route around congested links.

Realizing these benefits in practice, however, requires
addressing two key challenges. The first challenge is to
dynamically identify the optimal topology, out of O(2n2

)
possibilities for a network with n nodes, achievable using
topology programming1. We refer to this as topology enu-
meration. Here, optimal is with respect to the maximum re-
duction in attack-induced congestion. This is key because a
sub-optimal topology configuration can shift attack-induced
congestion to a different link. Second, there is a challenge
for managing network performance with dynamic topology
changes; i.e., given a set of links and paths we can activate,
we need to choose a routing configuration that is optimal
with respect to network demand from both legitimate and
attack traffic. In other words, we must jointly optimize
routing and topology to effectively address attack-induced
congestion. Joint optimization of topology and routing is an
NP-hard problem [29].

To address these challenges, we propose ONSET (Optics-
enabled Network defenSe for Extreme Terabit LFAs). ON-
SET is a framework for augmenting existing link-flood
defenses with topology programming and consists of two
components. First is the topology pruning algorithm that
addresses the enumeration challenge. This algorithm com-
putes a subset of the potential network topology link sets
considered by introducing k new links. Subsequently, the
algorithm computes a set of shortest paths based on the
augmented topology with k new links. Second is the opti-
mization component that tackles the NP-hard problem by
formulating a mixed-integer linear program to optimally
map and forward traffic atop the augmented links, minimiz-
ing attack-induced congestion. This formulation is agnostic
to any packet-processing logic or mitigation methods and
can be augmented to any existing defenses and network
controllers. The links added to the network to mitigate an
attack can persist on the network, providing stability for
repeat attacks, or be relinquished to the system and used to
defend subsequent attacks. Our integer linear programming
solution provides support for both of these cases, which the
network operator may choose between.

Given the limitations of existing network simulation and
emulation tools to study topology programming, we use
a custom discrete-event network simulator to analyze the
benefits of ONSET.2 Our simulator models how different
topologies forward the same traffic, allowing us to see how
this change affects link utilization across the network. We
use it to test ONSET using different terabit LFA scenarios
for a diverse set of networks.

1. Because a complete graph of n nodes has O(n2) links, the number
of topologies possible is the power set of these links |P(n2)| = 2n

2

2. Source code of the simulator is at github.com/mattall/topology-
programming and datasets will be released to the community upon
publication.

Using the simulator, we explore what-if questions re-
garding the value added by our framework for topology
programming with analysis on the merit of defenses that can
employ it. We approach these questions by processing traffic
on simulated networks for which the topology can change
subject to a set of real-world limitations. To this end, we
simulated a wide variety of LFAs against several networks,
where each attack targets a specific link or set of links.
Full details about our attack generation and assumptions
are discussed in § 6. We observe that defenses with topology
programming offer traffic performance that is always at least
as good as a defense without it. Concretely, in 93% of
the hundreds of attacks simulated, topology programming
helped mitigate all congestion loss from the attack. In every
case, ONSET yields its solution in under 1 minute.

In summary, we make the following contributions:
• The first optical topology programming-based defense

framework for terabit LFAs. In our prior work [30], we
introduced the idea of a topology programming-based
defense for DDoS and presented simple numerical mod-
els to demonstrate its benefit for simple topologies and
attacks. In this work we go much further in our analysis,
presenting a complete framework for applying an optical
topology defense for LFAs for any topology, considering
various instances of attacks.
• A topology pruning algorithm to tame the complexity

associated with modeling the exponential number of pos-
sible network topologies and paths on each of them.
• A formal mixed-integer linear programming model for

the optimal mapping of traffic to new optical links.
• A simulator for what-if analysis, demonstrating our ap-

proach under diverse attack scenarios and for a diverse
set of networks.
• A decision-support capability for incremental deploy-

ment of ONSET and measure the cost-benefit trade-off
for enabling the optical topology programming-based
defense at different locations in a network.

2 BACKGROUND AND MOTIVATION

In this section, we first provide a brief background on LFAs
and their threat model. We then present the limitations of
state-of-the-art LFA defenses, followed by the requirements
for an ideal LFA defense.

2.1 Link-Flood Attacks
An LFA is a DDoS attack that overwhelms the network
bandwidth for a victim [1]. The attacker presupposes knowl-
edge of the topology, which may be gained through active
measurement campaigns (e.g., utilizing traceroute) or by
stealing insider knowledge. Given the topology information,
pairs of nodes that share common intermediate hops (e.g.,
bottleneck links) are targeted by the attacker with an over-
whelming volume of traffic.

There are three types of LFAs we briefly scope. These
types differ based on their methods for selecting a targeted
link (or set of links). First is the Coremelt attack [31] which
targets a network link in an attempt to remove it from the
network with precision. Second is the Crossfire attack [32]
which targets an entire region of a network by flooding
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all links surrounding the region in an attempt to partition
it from the rest of the network. Finally, we consider the
attack studied in the Spiffy paper [33], which assumes a
cost-sensitive attacker who may leverage either the Crossfire
or Coremelt attack strategy, but behaves rationally with the
goal of maximizing impact with the minimal amount of
attack traffic.
Threat Model: The attacker has access to a botnet or large
number of compromised hosts and services. The attacker
uses the botnet to send terabytes of traffic to a network. We
are primarily concerned with sustained attacks where the
duration is at least five minutes or longer. The attacker can
flood either or both directions of a bidirectional network link
that is critical for the service of targeted hosts. The attacker
measures their success based on whether they can induce
network congestion and thereby degrade the performance
of legitimate traffic intended for the network. We assume
that all attack traffic comes from legitimate non-spoofed
senders, is protocol-conforming, and is indistinguishable
from benign network traffic. We assume that an attacker has
obtained an accurate map of a network’s link-layer topology,
with which it determines which bots to activate and what
destinations they will send traffic to. How the attacker
acquires the network topology information is beyond the
scope of this paper. In this work we do not consider a “smart
attacker” who updates their network reconnaissance—the
attacker has a one-time snapshot of the network topology
and deploys bot traffic strategically based on that snapshot.
This assumption keeps the work grounded in LFA defense
specifically, rather than entering the network reconnaissance
and obfuscation space which is out of scope for this paper.
Note that this assumption in our threat model is consistent
with prior efforts (e.g. Ripple [20]). Finally, we assume there
exists a mechanism to detect an LFA. This is reasonable
because the bandwidth utilization of links is easy to monitor.
We do not assume that detecting an attack implies easily
flagging/dropping attack traffic with high accuracy.

2.2 Prior Efforts and Their Limitations

State-of-the-art defenses against LFAs use software-defined
networking (SDN), thus altering only the network’s forward-
ing behavior to mitigate attacks [20], [33]. The SDN-based
approaches for LFA defense can broadly fit into three cat-
egories: programmable control plane, programmable data
plane, or hybrid. Control plane programmable defenses
(e.g., Spiffy [33]) use a central network controller to monitor
traffic. The controller issues commands to network for-
warding devices and updates their forwarding paths when
an attack is detected. Data plane programmable defenses
(e.g., Ripple [20]) cut out the centralized aspect from prior
work, and implement monitoring and mitigation within
the network switches themselves. Hybrid approaches (e.g.,
Jaqen [34]) use a mix of both data plane and control plane
programmability; they can adapt the forwarding paths for
suspicious traffic, thereby sending it to specialized switches
that will run defense programs and drop malicious traffic
or allow benign traffic to traverse the network further. We
note that Jaqen has not been applied to LFAs, but include
it in our taxonomy of prior work to show that the hybrid
approach has been applied to DDoS mitigation in a general

sense. Another recent defense, ACC-Turbo [35], employs a
fast clustering technique to flag and deprioritize suspicious
traffic at line rate.

State-of-the-art LFA defenses treat topology as a static
entity and thus overlook an opportunity to remove the
network bottlenecks created by LFAs. There are no defenses
that optimize or change the underlying topology, and there-
fore prior efforts are forced to filter and drop traffic during
an attack on a highly congested link shared by multiple
hosts. As we will see in the empirical example below (in
§ 2.2.1), the lack of topology flexibility implies inevitable
congestion loss for high-volume LFAs. We discuss related
work in more detail in § 8.

2.2.1 Empirical Example
Figure 1 illustrates the limitations inherent in adapting
forwarding behavior to defend against LFAs for a real-world
network, Sprint, from the Internet Topology Zoo [36]. In this
quantitative demonstration, we created a set of Coremelt
attack traffic matrices, each targeting an individual link in
the network; see § 6 for details. We also varied the attack
strength from 200 Gbps to 300 Gbps. We gave the network
SDN routing defense capabilities, whereby the network
optimally routes traffic and minimizes max link congestion.
The routing strategy used in this example is more optimal
than the current generation of traffic engineering systems
(e.g., B4 [37], Orion [38]) because those systems rely on
heuristics to scale and compute allocations quickly. In our
example, this routing system has unlimited time to find the
optimal set of paths for each flow. Figure 1b shows CDFs of
max link congestion for both of these attacks. We observe
congestion loss with 200 Gbps of attack traffic in only one
instance, where a link to a leaf node was flooded (this link
is identified with the highlighted nodes in Figure 1a). When
we increase the attack to 300 Gbps we see that SDN-based
rerouting has significantly greater difficulty mitigating loss.
In fact, about 50% of all links targeted with this attack
incurred a loss.

(a) Sprint Network.

1 2 3
Max. Congestion

0.00
0.25
0.50
0.75
1.00

CD
F Attack

200 Gbps
300 Gbps

(b) CDF of Max Congestion.
Dashed line shows congestion-
loss threshold.

Fig. 1: Every link in the network was targeted individually
with a 200 and 300 Gbps Coremelt attack. At 200 Gbps, it
was impossible to guard one link from congestion loss. At
300 Gbps, ∼50% of links experienced loss.

This result illustrates that defenses that only adapt for-
warding behavior have a finite breaking point at which
congestion loss is unavoidable, even when routing choices
are optimal. Observing these factors, we raise our moti-
vating question: how can we enable capacity on demand
and topology flexibility without the attendant problem of
collateral loss?
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Summary: We observe that state-of-the-art LFA defenses suffer
from a key limitation that network topology is treated as a static
entity. It is often impossible to reroute malicious traffic and
insulate benign traffic from loss in the face of attacks that can
overwhelm a link’s bandwidth multiple times over.

3 APPROACH: OPTICAL TOPOLOGY PROGRAM-
MING FOR LFA DEFENSES

We observe a new opportunity to bolster LFA defenses
by leveraging a recent advancement in optical networking
called topology programming to achieve topology adaptation.
Using topology programming, an operator can affect a
network’s topological structure via optical wavelength re-
configuration in addition to the traffic forwarding behavior.

Combining topology programming, provided by optics,
and adaptive forwarding behavior, provided by SDN and
programmable switches, leads to two new opportunities in
combating terabit LFAs. First, it allows a network’s underly-
ing topology to scale capacity on demand to avoid conges-
tion. Second, topology programming enables a defender to
amplify the benefits of traditional programmable defenses.
Improved general network performance is possible because
changes made at the optical layer give us increased possi-
bilities to forward traffic on new paths in the face of attacks.
Note that we do not claim that topology programming offers
a panacea for all DDoS-related concerns—we claim that it
provides a novel means to bolster existing programmable
defenses for LFAs as described above, and investigate that
means more deeply than any prior work to date.

While topology programming is compelling, it has not
received a great deal of attention for DDoS. Hence, we
provide a brief background of optics and topology program-
ming in § 3.1. In § 3.2, we outline the challenges of using
topology programming for LFA defenses.

3.1 Primer on Optics

To introduce a new link or scale capacity in a network
with topology programming, we must establish a circuit or
wavelength between two network elements (e.g., switches
or routers). Modern WANs have optical cross-connects
(OXCs) where electrical or optical signals from switches are
multiplexed and routed onto a shared fiber [39]. A ROADM
is a specialized OXC that can dynamically route wave-
lengths. That is, it can add circuits to a fiber, drop circuits
traversing it from the fiber, or enable transit wavelengths
to pass through without adding or dropping them. A pair
of transponders tuned to the same wavelength is required
at the two ends of the circuit to route a wavelength at an
OXC. Figure 2 shows how a linear physical topology can
be configured into a mesh logical topology with wavelength
routing at OXCs.

To allow the dynamic adding or dropping of new links
in a network, there must be resources at the network end-
points (henceforth, fallow transponders) and optical switch-
ing capabilities in the core (ROADMs). While ROADMs
are commonly deployed in WANs [40], [41], [42], fallow
transponders are not. In this study, we posit that this cost
is worth exploring, and we take measures in our evaluation
to succinctly present the cost of deploying this defense with

A
B

C

D

Physical Topology Logical Topology

A B C D

Fig. 2: Four routers (A, B, C, D) are connected with OXCs in
a linear topology. The OXC at router B is allowing a bypass
signal from A to C.

respect to the number of fallow transponders required to
defend against attacks of various magnitudes and against
different sets of links.

From a deployment perspective, new advances in terms
of the timescales and capabilities for topology programming
are increasingly being commoditized [28]. For example,
efforts have shown the benefits of topology programming
including wavelength steering at finer granularities to en-
able fast traffic rerouting [43]. Researchers have also demon-
strated these capabilities for classical networking tasks (e.g.,
traffic engineering [24], [25], [26], [28], [44]). Preliminary
studies have also explored the security benefits enabled
by programmable optics in limited DDoS scenarios (e.g.,
for simple, 3-node topologies [45] or data centers [46]),
however, an in-depth study of optical defenses against LFAs
is critically needed.

3.2 Challenges

To use topology programming for LFA defense, we need to
solve two unique challenges (Cs).

C1: Topology Enumeration. When we open the door
to topology programming, we are immediately confronted
with an exponential number of network link-layer config-
urations to choose from. This size is further compounded
with every path on each of those topologies and the number
of ways to split traffic among a set of paths. The state
space for network topologies wherein the set of active links
can change is O(2n2

) where n is the number of nodes.
Considering these topologies and their relative benefit for
attack-specific demand introduces the challenge of topology
enumeration.

To illustrate, consider a network with 30 nodes has 435
possible links (30∗29/2). The set of all combinations of these
links is 2435. Therefore the number of different topology
instances that we might create is ∼50 orders of magnitude
larger than the number of atoms in the known universe.
The runtime complexity for enumerating all shortest paths
on every instance of the network topology, therefore, is
O(2n2

n3)3. Clearly, enumerating each potential network
state (the paired sets of active links and available paths on
those links) and storing these states is a daunting task, but
it will enable us to quickly instantiate the most opportune
configuration of links given the shifting behavior of an
attacker.

C2: Managing Network Performance. Any addition or
removal of a link from the network can have a unique

3. The Floyd-Warshall all-pairs shortest path algorithm is O(n3)
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effect on traffic performance across the entire network as
seen in Figure 3; these plots show that arbitrarily adding a
new link on the ANS network (from the network topology
zoo [36]), while employing ECMP routing, can occasionally
increase link utilization and induce network congestion.
Figure 3a shows that the original 90th percentile congestion
was 72.7%, indicated by the vertical bar, and roughly 15%
of all links that were added increased the 90th percentile
congestion. Similarly, Figure 3b shows an increase in maxi-
mum link congestion for roughly 25% of all possible single-
link additions. This observation holds on any network that
uses a link-state routing strategy such as ECMP because
when we add a link we change the set of paths favored
for routing traffic between some pairs of hosts. If a new
link creates a new shortest path for every pair of nodes,
then that new link will quickly become congested. This is an
instance of Braess’s paradox [47]. Therefore, we must have
an optimization method to ensure that the changes that we
introduce to a network by adding or removing links has a
net-positive benefit for all traffic across the network.
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(a) CDF of 90th percentile conges-
tion after adding different links.

80% 100%
Max. Congestion
Original: 93.1%

0%
25%
50%
75%
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F

(b) CDF of maximum congestion
after adding different links.

Fig. 3: Effect on network congestion in ANS from adding
different links with ECMP routing.

In SDN-based networks wherein routing paths can be
centrally defined and controlled, we must also choose to
tread carefully between the trade-off of congestion avoid-
ance and topology adaptation. We seek to optimally choose
a topology and the set of routes based on it, but choosing a
set of new links to activate in a network while considering
the different routing choices available is NP-Hard [29].

As adding and removing links affects traffic paths, it may
be that the frequency with which those paths are changed
can lead to performance impacts. Therefore, we must verify
that the frequency with which optical topology changes are
made is not a cause for a performance error in § 6.4.

3.3 Post-attack Decisions
The decision to revert the adapted links is an implemen-
tation detail within the network operator’s purview, and
trade-offs are involved in such decisions. For example, if
the adapted links are not reclaimed, they serve as insurance
against the impact of a repeat attack. Conversely, if they are
reclaimed, they become available to defend against attacks
on previously unaffected paths. Regardless, in the event of a
new attack, a combination of unused (fallow) transponders
and those with low utilization can be employed—this in-
cludes transponders that were not reclaimed, if applicable.
In § 6.4 we evaluate the performance of the defense for
rolling attacks.

𝑈 𝑉

𝑢1

𝑢2

𝑣1

𝑣2

(a)

𝑈 𝑉

𝑣1

𝑣2𝑢2

𝑢1

(b)

𝑈 𝑉

𝑢1

𝑢2

𝑣1

𝑣2

(c)

Fig. 4: (a) Nodes U and V represent a bottleneck link
between their neighbors, u1, u2, v1, and v2. (b) Set off all
possible candidate links around U and V . (c) Illustration of
the topology programming idea. ONSET considers a pruned
down set of candidate links, containing. For each (U, V ) link
in the top 10% of ranked links, it chooses (U, v∗) and (V, u∗)
where v∗ and u∗ are mutually exclusive neighbors of U and
V respectively.

4 ONSET: AN LFA DEFENSE FRAMEWORK
USING OPTICAL TOPOLOGY PROGRAMMING

We present ONSET (Optics-enabled Network defenSe for
Extreme Terabit LFAs)—a defense framework for augment-
ing existing programmable defenses with optical topology
programming to defend terabit LFAs. ONSET consists of a
model and algorithm that address the major challenges for
an LFA defense. Figure 5 outlines the two major algorithmic
and modeling components of our framework. The first
component, Topology Pruning, is an algorithmic step that (1)
catalogues the different topologies that we may instance
by activating a set of links and paths and (2) finds the
set of shortest paths available under these topologies. The
second component, Joint Topology and Routing Optimization,
is an optimization model that runs when an ongoing LFA is
detected (the instrument for detection is beyond the scope
of this work). This component accommodates the demand
present in the network using the topologies found during
Topology Pruning. The result of this optimization is a set
of links to add to the network that will alleviate congestion
loss from the ongoing LFA.

Topology Pruning

Joint Topology & Routing Optimization

Attack Traffic

Congested  Link

New Link

1.

2.

Fig. 5: Overview of the ONSET defense framework.

Hardware Requirements: The hardware requirements
for ONSET under this framework are (1) optical fiber and
transponders for establishing new links, and (2) ROADMs
at nodes where new links originate, terminate, and bypass
other nodes. ONSET can be incrementally deployed with
these resources deployed at a subset of the network.
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4.1 Topology Pruning

We address C1 as follows. Given topology, T , and budget,
B, we first find a set of links, L, and the network paths on
these links, PL. The set is large but can be pruned down
considerably. As a first-order pruning step, we eliminate
the possibility for links that are longer than the maximum
transmission distance supported by the transponders (e.g.,
5,000 km for 100 Gbps circuits [48]). This pruning removes
infeasible links in large networks but does not help reduce
the number of topologies in networks for which all of the
nodes are closer than the max transmission distance.
Link Rank: A striking observation allows us to trim the can-
didate set further and consider a smaller set of topologies.
We observe that for a diverse set of attacks on a network,
each targeting a different subset of links, there is a consistent
set of links that are disproportionately affected. We intro-
duce a metric, link rank, which captures this phenomena.
Consider a set of possible LFAs on a network, each of which
targets a different set of links. The link rank is the percentage
of attacks in which a given link is congested. For example,
when 100 attacks are considered on a network, and a given
link experiences congestion loss in 12 of those cases, the link
rank for that link is 12%.

Figure 6a shows the CDF of link rank for networks of
different sizes. From this result, we observe that a majority
of links (for all networks considered) have a small link rank
(i.e., less than 10%). Only a minority of links experience
congestion during a relatively high proportion of the total
attacks. Concretely, in the network with 50 nodes, only
two links are congested in 43% and 37% of the attacks,
respectively. At the tail end of the distribution, 74 of the
links were only congested for one attack, or not congested
at all. This observation suggests that only a handful of
vulnerable links are severely affected by LFAs. We leverage
this insight to prune candidate topologies: more redundancy
is granted to links with high rank by prioritizing the k
highest ranked links when enumerating potential candidate
links and topologies.
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Fig. 6: (a) Link Rank for attacks on networks with different
sizes, noted by the number of nodes. (b) Space complexity
for comparison for path finding methods. ”Original” repre-
sents the set of paths that would be stored in a traditional
SDN system. ”K-shortest” is the set of ”K-Shortest” paths
among the ranked links. ”A*” is the pruned down selection
of those paths.

In practice, we choose the top 10% of links and consider
the potential to add new, candidate links links dynamically
that bypass these bottlenecks. Figure 4 illustrates how the

pruning process drastically decreases the search space for
the reconfigurable topologies by honing in on bottleneck
links and considering candidate links as those the provide
potential for new paths that don’t traverse the bottleneck.
The sub-graph (4a) has a bottleneck (U, V ). The complete
graph induced by connecting all nodes in the neighborhood
of (U, V ) (4b) has 15 edges, 10 of which are not in the
original topology. ONSET considers just 4 of the 10 links (4c)
when enumerating topology and routing solutions.
Path Selection: While a general K-shortest paths search
gives a small number of paths for a fixed topology, we must
include paths with links that may or may not be members of
the physical topology at any given time. Therefore, we must
broaden the search. We might enumerate a set of paths for
each pair of nodes that is exponentially greater in magnitude
than the original set of K shortest paths. Therefore, we add a
heuristic function to our graph searching process to mitigate
the explosion in space complexity for our paths. Our path
finding method is implementation of the A* algorithm [49].
Figure 6b shows the number of paths found with a A* versus
a general all-pairs k-shortest paths. To ensure that the set of
paths includes enough diversity with respect to candidate
links, we populate that paths until the length of the path is
greater than the length of the original path. Furthermore, to
account for the potential of a link from the original graph to
be removed, the original set of “shortest paths” for single-
hop paths is expanded to include paths that are at least 3-
hops long.

4.2 Joint Topology & Routing Optimization

We address challenge C2 with a mixed-integer linear pro-
gram (MILP), presented below. The intent of this optimiza-
tion model is to find the set of links that will reduce network
congestion by the greatest amount. The MILP is hosted by
the ONSET controller, as shown in Figure 7. The model uses
the enumerated topology and path data set to yield a set of
optimal links to activate in a network in light of an ongoing
LFA. These optimally chosen links come from the set of
candidate links which are input to the system. Candidate
links are links that don’t exist in the network at the time
the optimization solver is invoked but that can be quickly
activated to augment the topology and allow data to travel
directly between two nodes.

The controller periodically receives a traffic matrix and
link utilization data with flow demands aggregated over
a series of epochs. We assume an oracle for detecting the
presence of an attack Note that this oracle does not identify
attack traffic. It merely answers the yes or no question, “Is
the network under attack?”; when an attack is detected the
controller runs the optimization model and yields a set
of links to add to the network. These links persist until
network congestion falls below the levels that were seen
before the attack. Table 1 shows the descriptions of variables
used in this model.

The objective is to minimize the max link utilization (U ).

minimize U (1)

∀(u, v) ∈ E,cap(u, v) = cap(v, u) (2)
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Constants
G0 Initial topology
E0 Initial set of (directional) links
E Set of potential (directional) links (includes E0)
V Set of all nodes
D Set of all demands

txp(v) Transponders at v
Variables

be or b(u,v) Binary link-status variable
Fs→t The set of links that are available

to any potential path s→ t
flows→t

(u,v)
Flow allocated from D(s, t) onto
edge (u, v) s.t. (u, v) ∈ E

in(n) Total flow from all demands going into node n
out(n) Total flow from all demands departing node n

cap(u, v) Capacity of edge (u, v)

TABLE 1: Reference for notation, variables, and constants in
equations 1–8.

capacity of each directional link, (u, v), is symmetrical. This
ensures that a link is only active if it can be activated in each
direction.

∀n ∈ V,txp(n) ≥
∑

u∈b(u,v)

u (3)

the total number of fallow transponders at a node, txp(n)
limits the total number of links in the topology that can start
from n.

∀e ∈ E ,cap(e) = beCe (4)

An edge’s capacity is Ce or 0, whereCe is capacity of a
network link when edge e is active in the network.

∀(s, t) ∈ D,
∑

e∈Fs→t

flows→t
e ≤ cap(e) (5)

That is, the sum of flows allocated from all demands allo-
cated onto an edge must be bound by the capacity of that
edge. Note that in the constraint, the only edges considered
for a demand, s → t, are limited to Fs→t rather than the
entire set of links E . In practice, we employ the link selection
and path finding strategies described in Section 4.1 to find
the appropriate set of candidate links for each pair of nodes
in the graph induced by all possible edges, E .

∀n ∈ V,∀(s, t) ∈ D, in(n) =
∑

(u,v)∈E|n=u

flows→t
(u,v) (6)

∀n ∈ V,∀(s, t) ∈ D, out(n) =
∑

(u,v)∈E|n=v

flows→t
(u,v) (7)

∀n ∈ V,∀(s, t) ∈ D,


d(s, t) + in(n) = out(n) if n = s

in(n) = d(s, t) + out(n) if n = t

in(n) = out(n) otherwise.
(8)

Constraints (6–8) are general multi-commodity flow opti-
mization constraints [50] and ensure conservation of flow
along paths through the network.

Having described the topology pruning and joint opti-
mization components, we next focus on meaningfully as-
sessing the efficacy of ONSET in the face of diverse terabit
LFAs.

Joint Topology & Routing Optimization

Traffic Matrix +

Link Utilization

Set of 
New Links

Choose links
such that:

ONSET Controller

𝑚𝑖𝑛(𝑈 + 𝛽)

Fig. 7: Topology optimization process for ONSET.

5 ONSET SIMULATOR FOR WHAT-IF ANALYSIS

Evaluating the methods we have proposed in absence of a
backbone network requires a simulator, the likes of which
are not presently available. While there are traffic engineer-
ing simulators (e.g., Yates [51]) that let us process traffic
through a network and see the effect of different routing
methods on link utilization, to the best of our knowledge,
there is no simulator that incorporates topology program-
ming in the context of terabit LFAs. Furthermore, our design
of a new simulator is motivated by the need to evaluate how
different topological link configurations perform when they
are forwarding the same attack traffic. The goal is to see
how topology changes link utilization across the network in
the face of terabit LFAs.

To this end, we build a cross-layer optical-network layer
discrete-event simulator. This simulator enables us to ask
valuable what-if questions about topology programming
and its applicability for defending LFAs without access to
a wide-area backbone optical network. Pertinent questions
include how can the ONSET framework augment existing
defenses to combat different types of LFAs, against attacks
on different sets of links? What quantity of fallow transpon-
ders is required at the network’s nodes to support the
flexibility required to mitigate those threats using ONSET?
How does the distribution of fallow transponders among
nodes affect the ability of ONSET to mitigate traffic loss for
a set of attacks?

Figure 8 shows a block diagram of the simulator, which
models the way we envision ONSET to be used in a live de-
ployment. The network operator defines optical constraints
and traffic engineering system. Optical constraints include
the number of simulated links available for adding, the max.
link utilization thresholds which will trigger a topology-
update event, and a target link utilization threshold which
is used by the optimization method to find the best set of
links to add. The ONSET controller, which controls SDN
and optical components of the network, receives these input
parameters from the operator and uses them along with
the link utilization data to decide on a runtime defense
strategy, whereby it adds links to the network and monitors
their utilization. The traffic matrix processed by ONSET is a
mixed bag of attack and benign traffic, the two of which are
indistinguishable.
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Fig. 8: Overview of ONSET simulator.

We wrote the simulator in Python 3 and implemented
our defense optimization model in Gurobi [52] with Python.
Our framework uses Yates [51] to implement traffic engi-
neering and routing constraints with two methods: ECMP
and multi-commodity flow (MCF); ECMP routing is com-
monly implemented in enterprise networks, as it is sup-
ported out-of-the-box by commodity switches and routers
while MCF is seeing adoption in emerging SDN deploy-
ments [53] and is used in our analysis to emulate Ripple [20].

6 EVALUATION

In this section, we evaluate the ONSET framework for
defending LFAs. The key metric of success is link congestion
(the aggregate traffic demand for the most-utilized link in
the network). Traffic loss and reduced throughput occur
when link congestion is greater than one. We compare ON-
SET against a baseline ECMP-routed network and an SDN-
enabled network that optimizes traffic allocations to mini-
mize max utilization across all network links. We denote the
SDN defense as Ripple* throughout this section. We show
that ONSET is an additive capability for network defense
that can be applied to ECMP-routed networks or SDN-
controlled networks employing the Ripple defense. We,
therefore, compare network performance for both strategies
with and without ONSET. To this end, we demonstrate the
following key results.

(1) ONSET improves the capabilities of the Ripple de-
fense for multi-target high volume attacks such as Coremelt
(§ 6.2). We show ONSET can complement Ripple to mitigate
terabit LFAs.

(2) Regional attacks, such as Crossfire, that target all
links adjacent to a node, can be mitigated with the ONSET
framework (§ 6.3). We show ONSET improves crossfire
attack mitigation in over 90% of simulated attacks on 5
networks.

(3) ONSET can respond and mitigate rolling attacks,
where a series of attacks with different volumes, numbers
of links target targeted, and attack styles, vary in succession
(§ 6.4). ONSET was effective at mitigating congestion loss in
64 out of 70 rolling attacks.

We conclude this section by presenting a cost-benefit
analysis for ONSET vs. statically over-provisioning network
links (§ 6.5), and taking a deep-dive into cost optimization
with variable fallow transponder allocations where ONSET
is enabled only for a subset of network links (§ 6.5).

6.1 Experiment Setup
Attack Matrices: We generate attack matrices using a
custom tool written in Python to emulate three attacks:

Coremelt [31], Crossfire [32], and Spiffy [33], which we refer
to as TMCoremelt, TMCrossfire, and TMSpiffy respectively.
The TM tool takes in the topology of the network as an
input, then finds the shortest paths between pairs of nodes,
and creates demand between hosts that share a common
link. TMCoremelt is made by choosing a random link (or
links) in the network, and then choosing pairs of hosts for
which their shortest paths use the chosen link(s). The Cross-
fire attack targets a region of the network. In our evaluation,
we restrict a region to a single node. TMCrossfire floods
all of the adjacent links to the target node. TMSpiffy is
constructed by finding that most-shared link(s) or node(s)
and flooding them.

We emphasize that the attacker does not have control
over the network routing. Our attacker assumes traffic is
routed via the shortest path. The assumption does not hold
for Ripple’s defense due to its ability to optimize path and
flow allocations, and we will see that Ripple, therefore,
performs well enough for mild attacks. However, as an
attacker increases their power with more traffic, Ripple’s
defense has a breaking point where ONSET improves the
capability to defend.

An attack traffic matrix encapsulates two important at-
tributes of the botnets, namely the size of the botnet (by
proxy of its aggregate bandwidth), and the locations of the
bots in the network (explicitly by the nodes from which their
traffic originates).
Benign Traffic Matrices: Unless otherwise stated, we used
TMGen [54] to create random gravity model traffic matrices
for benign traffic in our experiments.
Routing: Our evaluations address two routing strategies,
ECMP and Ripple*. ECMP is commonly implemented in
service-provider networks. We pair it with ONSET to ob-
serve how legacy networks might benefit from the ONSET
framework. On the other hand, modern enterprise and
cloud backbone networks are increasingly looking to SDN
to address network resource (e.g., bandwidth) management.
Recent proposals for LFA defenses use SDN as a primary
tool to insulate legitimate traffic from the effects of malicious
traffic [20], [33]. SDN-based networks can use a central net-
work controller to update forwarding paths and flow rates
applied to these paths. Ripple attempts to drop malicious
traffic before forwarding it, but when attack traffic cannot
be detected, the Ripple defense reroutes traffic to avoid
congestion on links. We emulate this capability by using a
multi-commodity flow optimization to route traffic during
attacks and denote this as Ripple*. The implementation of
the ECMP+ONSET defense cannot tune traffic forwarding
rates among paths by definition, and to model ECMP rout-
ing with binary links would introduce quadratic constraints
to the model. However, to compute an ECMP routing
assignment for a single topology is quick and efficient.
Therefore, we elect to generate 100 sub-optimal solutions
from our model and simulate the ECMP link utilization for
all network links in all of the model’s solution topologies in
parallel. The network’s topology is then configured based
on the solution with the best ECMP congestion result.
Networks: Our evaluations consider five real-world net-
work topologies, shown in Table 2. These networks are
representative of enterprise optical backbone networks and
have been used to investigate other LFA defenses in prior
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work [20]. These networks range in size from 18 to 68
links. For each of these networks, we apply a similar se-
ries of tests where we vary the strength of an attack and
the number of links targeted. In our experiments, every
link in the network has a bandwidth of 100 Gbps un-
less otherwise stated. We gave every node in the network
10×100 Gbps fallow transponders; we revisit this allocation
in § 6.6. Therefore, each node is capable of establishing a
100 Gbps link between itself and up to 10 other remote
nodes. This bandwidth constraint per transponder is em-
ulative of a 100 Gbps polarization multiplexed quadrature
phase shift keying (PM-QPSK) transponder [55]; this type
of transponder has been widely deployed in backbone
networks for decades, and can reliably transmit 100 Gbps
data channels approximately 5,000 km [56]. While higher-
bandwidth transponders are also widely deployed, we
only consider 100 Gbps QPSK transponders in this study.
This is a conservative assumption for a lowest-common-
denominator evaluation of the ONSET defense—we expect
higher power/bandwidth transponders will improve the
network performance further.

Network Nodes Links
Sprint 11 18
ANS 18 25
CRL 33 38
Bell Canada 48 65
SurfNet 50 68

TABLE 2: Networks used in our study.

Optimization Time: Our model implementation has a 1
minute cut-off window. Said differently, if the model does
not find an optimal solution by then, it returns the best
feasible solution. In cases where the solver finds a solu-
tion early, it may populate a set of alternative feasible
solutions with the remaining time. We find that ONSET
is able to dynamically derive topology configuration and
routing settings for many attack scenarios presented to it.
Figure 9 shows the time distribution for all of the ONSET
models evaluated in this section. We observe that for the
graphs Sprint, CRL, and ANS, all have a strong majority of
evaluations where an optimal solution is found before the
cut-off period at one minute. Bell Canada has 15 more nodes
than CRL and nearly twice as many edges. ONSET found
an optimal solution for attack on Bell Canada within the
prescribed time in 38% of experiments. Surfnet, with only
marginally more nodes and edges than Bell Canada, found
optimal solutions in the allotted time in 25% experiments.
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Fig. 9: CDF of optimization time for ONSET experiments by
network.

Presentation of Results: Due to the different nature of
the coremelt, Crossfire, and Rolling attacks, we plot the
results for each test differently. Coremelt attacks target one
or more network links, and the targets can be arbitrary and
random. Therefore, we plot these results as grouped bar
charts, where a group corresponds to a specific attack, and
each bar represents the network performance of the different
mitigation strategies (ECMP, ECMP+ONSET, Ripple*, and
Ripple*+ONSET). The attack in each group of bars targets
the same exact set of links with the same volume of traffic.

In many of the results we show network performance
as it relates to maximum link congestion because LFAs,
by purpose, attempt to maximally congest a link or set of
network links. Therefore, we use this metric to determine
the success or failure of an attack for each experiment.
Related studies, e.g., Ripple [20], also narrow the scope of
their evaluation specifically to links that are targeted by an
attack. However, we include the complimentary results for
total network throughput in the evaluation of the coremelt
attacks in § 6.2, as it illustrates the relationship between
maximum congestion and the overall performance of the
network traffic. After establishing this relationship we omit
throughput from the results as we are primarily interested in
keeping maximum link utilization below 100% and keeping
throughput at 100%.

The Crossfire attack targets a region of the network.
To see how the different mitigation strategies perform, we
launch crossfire attacks against each node in the network
independently by targeting each link incident to each node
targeted with an LFA. To view the performance of multiple
attacks for each network, we present the results as CDF,
where the X-axis shows max network congestion for each
attack in the distribution and the Y-axis shows the CDF
function for a given value of congestion.

The rolling attacks can be composed of crossfire and
coremelt attacks, and we are interested in seeing how the
network performance changes as the attacks change over
time. Therefore, we plot network performance as a time
series, where the X-value is a point in time, and the Y-value
is the relative network performance metric at that time.

6.2 Coremelt Attack

To evaluate the performance of our framework against the
coremelt attack, we consider a variety of attack strengths
and attacks against a varying number of total links. In
particular, we generate matrices composed of attack traffic
with volumes of 100, 150, and 200 Gbps, each targeting 1 to
5 links simultaneously. These parameters are chosen in an
attempt to get a broad-scope view of the impact of ONSET
for a range of (multi)-attacks, each of which is capable of
flooding a link with 1x to 2x its maximum capacity. We
settled on these settings after discovering that they are
severe enough to demonstrate a breaking point for Ripple*.
Figure 10 shows the effect on network congestion from this
suit of attacks for all of the networks in this study. In this
figure, the x-axis is encoded as (number of links targeted ×
attack strength per link). For example, a 5×200 Gbps traffic
matrix has a total volume of 1 Tbps; this volume is spread
between 5 attacks targeting different links with 200 Gbps of
traffic each. The matrices that we use in this test are made up
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Fig. 10: Network congestion induced by coremelt attacks varying in strength and total targets on networks with different
routing strategies and optical topology programming capabilities. The x-axis is encoded (links targeted × attack strength
per link).

completely of attack traffic. The y-axis shows the maximum
link congestion (max congestion) in the network. When max
congestion is greater than 1 the attacker successfully induces
traffic loss.

We separate these results based on routing strategy
(ECMP or Ripple*) and whether or not the network em-
ployed an ONSET topology programming defense. We see
that SDN-based routing with Ripple’s defense can offer
notable savings up to a point. For example, in the CRL
network, when 5 links are targeted with a 100 Gbps attack
each, this network experiences congestion loss. However,
Ripple*+ONSET is able to prevent congestion loss in every 100
Gbps attack against 5 or fewer links in every network.

We also observe that link-state routing with ECMP has
greater difficulty mitigating loss from adversarial traffic. A
100 Gbps attack is able to induce congestion when only two
links are targeted in ANS. As the number of targets increases
to three, all of the networks experienced congestion loss. In
every attack shown, ONSET is able to find a topology and
routing solution in under 1 minute that completely mitigates
all congestion loss.
Summary: Out of 94 crossfire attacks against 5 networks, only 15
attacks resulted in congestion loss with ONSET. Of the routing-
based defense without ONSET (plain ECMP or Ripple*) 68 of the
attacks resulted in traffic loss. ONSET reduced loss rates in the

limited cases where it faced loss.

6.3 Crossfire Attack

We evaluate the resilience of ECMP and the Ripple* defense
against crossfire attacks, where each node in each network
is targeted with a 100 Gbps attack on all incident links
and a 200 Gbps attack on all incident links. Similar to our
evaluation of ONSET’s added benefit for Coremelt attacks,
these parameters are chosen because they represent a range
of moderate to strong attacks that are capable of inducing
traffic loss under ECMP and Ripple* respectively. In this
section, we highlight the results for both these attacks on
Sprint, ANS, and CRL, Bell Canada and SurfNet. Figures 11–
15 show the results for each network. Subfigures, (a) and (b),
show the effect on max. congestion when the network uses
ECMP routing with and without ONSET for a 100 Gbps
attack (a) and a 200 Gbps attack (b). Subfigures (c) and (d)
show the effect when the network uses the Ripple* defense.

We find that the link-state routing protocol, ECMP, is
highly vulnerable to crossfire attacks. An attack of 100 Gbps
is enough to cause congestion for approximately 20% of
the 100 Gbps attacks to induce traffic loss. In comparison,
ONSET had congestion loss in less than 5% of all events at
this volume.
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Fig. 11: All Crossfire Attacks on Sprint.
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Fig. 12: All Crossfire Attacks on ANS.
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Fig. 13: All Crossfire Attacks on CRL.
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Fig. 14: All Crossfire Attacks on Bell Canada.
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Fig. 15: All Crossfire Attacks on Surf Net.
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When networks use the Ripple* defense, they can aptly
mitigate the lower-rate, 100 Gbps attacks (Figures 11c, 12c,
and 13c). However, for larger scale attacks, at the 200 Gbps
level (Figures 11d, 12d, and 13d) 68 of the attacks are
successful at inducing congestion. Ripple*+ONSET had 37
congestion loss events for the same set of attacks.

The reason that performance in Sprint is not perfect for
every attack is due to the size of the network. It is the
smallest network in the evaluation and therefore has the
fewest possibilities for adding links dynamically with ON-
SET. Similarly, the aggregate bandwidth from the attacks is
concentrated on fewer total links, magnifying their impact.
This underscores the notion that bandwidth is limited—
even if you can establish new links opportunistically. How-
ever, ONSET increases the amount of traffic needed by an
attacker to induce congestion loss with an LFA.
Summary: Defending Crossfire attacks with ONSET can greatly
improve the defensive posture of a network and is complementary
to SDN defenses that adapt the forwarding behavior of network
traffic. In total, we simulated ONSET against 222 attacks on five
networks. ECMP (without ONSET) led to traffic loss in 84 attacks
(67%). With ONSET, ECMP led to traffic loss in 6 attacks (4%).
The Ripple* defense without ONSET resulted in traffic loss for
50 of the 124 attacks (40%). With ONSET, the number of attacks
that resulted in traffic loss fell to 3 (2%).

6.4 Rolling Attack

Next, we evaluate ONSET’s ability to adapt to an ongo-
ing/rolling attack. We evaluate a series of traffic matrices
constructed to model several attacks. We model the at-
tack traffic matrices for Crossfire and Coremelt attacks as
described above. We also included a Spiffy attack, where
the attacker gradually increases their demand until a cost
threshold and targets a link that is expected to be shared by
the greatest number of paths.

We simulated seven attacks, sampling traffic metrics
(throughput/loss/congestion) at 5-second intervals over a
60-minute period. The time between attacks varies from 5
seconds to 5 minutes. Figure 16 shows the network perfor-
mance with respect to congestion during these attacks for a
Ripple* routed network. Figure 17 shows simulated network
congestion over an hour, sampled at 5-minute intervals
for rolling attacks in an ECMP-routed network with and
without ONSET. The black dashed line at Congestion =
1.0 marks the loss threshold; congestion beyond that point
results in traffic loss. These results show that the ONSET
framework can quickly adapt to dynamic attacks. In over
90 percent of instances, ONSET mitigates attack-induced
congestion loss.

Figure 18 shows the total number of active network
links during the rolling attacks. Our optimization is trig-
gered whenever congestion is above the loss threshold. If
congestion remains above that threshold, then we invoke
the optimization again to find more links to add to the
network. In every event, the optimizer yields a solution
that the network can instantiate in under sixty seconds. The
added links are released when congestion reduces back to
a level seen before the attack started. Therefore, in the last
two attacks, which happen in quick succession, the number
of links drops as the attack ends and then quickly jumps up

again after the next attack begins. The decision to release
the added links after the attack or not is configurable by the
network operator, but for this demonstration, we chose to
release them.
Summary: ONSET can be used with SDN and link-state routing
to react and adapt to rolling attacks. When traffic demand falls
after an attack is over, ONSET is able to detect the change in
utilization and deactivate links that it had activated. These fallow
transponders can then be used to respond to new attacks that
target different sets of links.

6.5 Cost Benefit Analysis
We now assess how the cost of provisioning ONSET (i.e.,
the capital expense for hardware required to realize op-
tical topology programming) compares with defenses on
a static topologies. To this end, we count the number of
transponders required to insulate legitimate traffic from
attack induced-congestion when an attack occurs leverag-
ing 2x and 3x the bandwidth of one transponder. Table 3
shows that the cost-benefit of ONSET comes from scaling
our defense with the number of nodes in the network,
rather than links; to defend an arbitrary attack in a static
topology, you must over-provision all of the links by a
factor, e.g., 2 or 3x, depending on what the volume of the
attacks you want to be protected from is. In ONSET, if you
simply provision 1 or 2 fallow transponders per node, you
can provide the same bandwidth guarantee for any link
without over-provisioning them all. To see this intuitively,
consider star graph with 5 spokes. To guarantee an attack
threatening 2x bandwidth utilization on any link, you will
need 20 transponders (4 per edge given by 2 per each end
of each link). If you wanted to provide the same benefit
with ONSET, you just need 16 (the original 10 and one more
per each of the six nodes). This benefit is modest for the
simple example but translates to hundreds of transponders
in savings for real-world networks as seen in Table 3.

Network 2x Static 2x ONSET 3x Static 3x ONSET
Sprint 72 47 108 58
ANS 100 68 150 86
CRL 152 109 228 142
Bell Canada 256 176 384 224
SurfNet 272 186 408 236

TABLE 3: Cost to defend an attack threatening 2 or 3x Max
Link Utilization on an arbitrary link with a Static Topology
vs. ONSET.

6.6 Cost Reduction via Variable Fallow Transponder
Allocation
Cost numbers in Table 3 and link ranks from Figure 6a to-
gether suggest that we may be able to further reduce the cost
of provisioning ONSET by deploying more fallow transpon-
ders around critical links and fewer fallow transponders at
other nodes in the network. We evaluate this prospect by
starting with a naı̈ve approach wherein we provision 10
fallow transponders to the top 10% ranked links (given by
link rank metric defined in § 4.1) and then provision half
as many fallow transponders at every other node in the
network. We then simulate coremelt attacks on each single
network link and compare the performance of ONSET with
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Fig. 16: Max. Link Congestion
During Rolling Attacks on dif-
ferent networks, Ripple* vs. Rip-
ple*+ONSET
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Fig. 18: Total Network
Links Active During Rolling
Attacks on different net-
works, ECMP+ONSET vs.
Ripple*+ONSET.

the static and variable fallow transponder allocations. We
reproduce this experiment for all of the networks considered
in this study, both using ECMP routing and the Ripple*
defense. Our results conclusively show that reducing the
number of fallow transponders we provision for the bottom
90% of nodes does not reduce the performance of ONSET
in defending single-link coremelt attacks—the results were
identical to those seen in Figure 10.

Motivated by this result, we explore the effect of variable
fallow transponder allocations on ONSET’s performance
more deeply. In this pursuit, we seek for a decision-support

capability to determine the appropriate fallow transponder
allocation strategy based on an operator’s budget and the
magnitude of loss they are willing to tolerate. We now
allocate only two fallow transponders to each node if the
node’s rank is greater than or equal to a given rank, n. We
vary n over all of the numeric rank values for nodes in the
given network. We identify the cost of an allocation n as the
total number of fallow transponders provisioned under that
allocation. In practice, this cost can be swapped with the
dollar value of that same number of transponders. Figure 19
shows the cost of each allocation strategy in ANS (19b) and
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CRL (19a). The most costly solution is to deploy the fallow
transponders at every node (where n ≥ 1). As n grows, we
restrict fallow transponders to more highly-ranked nodes. If
we limit these to nodes with a rank of 3 or higher, we reduce
the cost from 36 to 24 in ANS, and from 66 to 36 in CRL.

To gauge the relative value of each of these allocations,
we enumerate a series of stressful attacks against every
link in each network, repeating this series of attacks on the
networks under each fallow transponder allocation, n. We
plot the total number of loss events for this set of attacks
against the cost of a given fallow transponder allocation.
We conducted this experiment for both ECMP-based routing
and Ripple*. The results, shown in Figure 20, show a Pareto
front cost and loss events under each allocation n. In these
graphs, better quality solutions fall closest to the origin of
the graph, where Loss Events and Cost are both minimized.
Summary: We provide a decision-support capability in ONSET
with which operators can choose how to deploy fallow transpon-
ders based on their needs and budget. In practice, an operator
can use this capability to deploy ONSET by leveraging data
from historical attacks they have been exposed to and the existing
routing and defense strategy they employ.
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Fig. 19: Cost vs. n where cost is the number of fallow
transponders allocated to the network for different values
of n. n is defined as the minimum rank a node must have to
be allocated fallow transponders. When n is equal to one all
nodes receive fallow transponders.

7 FUTURE WORK

In this section, we discuss three opportunities that we plan
to explore as part of future work.

(1) Topology Programming API: As ongoing work, we are
considering methods to construct a high-level API that can
be leveraged to programmatically control network topology
and routing. Concretely, our envisioned list of API calls
includes:

1) get_available_transponder(node) which
returns an index to a fallow transponder at node

2) add_circuit(nodeu, nodev) which queries fallow
transponders at both nodes and pairs them.

3) get_peer_transponder(nodeu, nodev) which re-
turns an index to a nodeu transponder peered with
nodev

4) drop_circuit(nodeu, nodev) which queries peered
transponders at both nodes and de-allocates them.

An example of how these API calls can be employed
in coordination with the optimization model described
in § 4.2 is shown in Algorithm 1. In this example,
SIG_LFA_DETECTED and SIG_LFA_OVER are flags that are
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Fig. 20: Cost vs. Loss Events for various networks under
ECMP or Ripple*. As cost increases and fallow transponders
are deployed more liberally, the number of Loss Events for
the set of attacks falls. An operator may use charts similar
to these, with their own network and historical attack data
sets, to determine which level of defense they would like to
achieve based on their budget.
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Fig. 21: The ONSET controller leverages its optical layer API
to query the set of transponders at the two nodes, U and X. It
finds that the pair of nodes each have a fallow transponder.
It maps the fallow transponder at U to X and the fallow
transponder at X to U. After the transponders are mutually
paired the link is active and able to forward traffic.

set by a network monitor. We assume that this signal is
generated by a mechanism outside the scope of this work,
e.g., from a programmable switch. This program is agnostic
to the type of LFA occurring (e.g., crossfire or coremelt). It
uses link utilization data to choose where to add one or
more flux links to the network using the available fallow
transponders.

Line 2 states the triggering condition for activating the
optimization step. Line 3 invokes the optimized method
from § 4.2. The solver returns a set of links that will mini-
mize max link utilization in the network, and in lines 5–6 the
links are added to the network with the link provisioning
API call. When LFA is over, lines 9–10 remove the flux links
from the network.

Other low-level optical hardware configuration require-
ments must be met to support this high-level API, e.g.,
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Algorithm 1 Topology Programming API for LFAs
1: flux links← [ ]
2: if SIG LFA DETECTED then
3: flux links← optimize topology()
4: end if
5: for (u, v) ∈ flux links do
6: add circuit(u, v)
7: end for
8: if SIG LFA OVER then
9: for (u, v) ∈ flux links do

10: drop circuit(u, v)
11: end for
12: end if

configuring transponder power, amplifier gain adjustments
on the optical path, and configuring paths with ROADMs.
In this work, we are most interested in defining the require-
ments of our framework at a high level and evaluating the
potential benefit of it for LFAs.

Figure 21 illustrates the controller’s view of transponder
allocations while using the API. The API enables the net-
work operator programmatically query the set of allocated
and fallow transponders at each node in the network. The
API also has methods to pair fallow transponders together,
thereby establishing a new link in the network. When a link
is added to the topology, a pair of fallow transponders be-
tween the nodes is activated and those transponders become
unavailable for future links until the pair is deactivated.

(2) Topology Jitter: Before launching infrastructure-centric
attacks targeting specific network links such as Cross-
fire [57], attackers must obtain sufficient network topology
information, usually through network reconnaissance. This
is effective if the network topology is stable/static and
attackers use path probing tools such as traceroute.
Existing countermeasures [20], [58] on infrastructure attacks
tend to distinguish between legitimate and attack traffic
without handling network reconnaissance. However, these
solutions make an unrealistic assumption that link flooding
attack traffic is distinguishable from legitimate traffic while
reconnaissance tools let attackers easily probe the network
paths around the target link and access public services
with “indistinguishable” traffic. Ideally, we should thwart
attackers’ reconnaissance to effectively mitigate the attacks
from the root.

To tackle network reconnaissance, we plan to investigate
“topology jitter” using ONSET. The idea is to employ a
moving-target defense by dynamically changing the optical
topology to combat network reconnaissance in two steps.
(1) In the first step, we will enable dynamic capacities by in-
voking ONSET to allocate new wavelengths on-demand to
physically isolate suspicious and malicious flows and steer
away from the attack-induced congestion on a targeted link.
(2) Second, we will write a defense application using the API
calls described above to periodically reallocate wavelengths
for suspicious traffic in the optical layer.

(3) Stress Testing and Adversarial Considerations: Our
simulation-based analysis of ONSET only scratches the sur-
face for evaluating a topology-programming defense against
LFAs. In the previous section, we have attempted to deeply

explore basic questions regarding the potential benefit of
ONSET with some generous assumptions regarding the
availability of optical resources while looking deeply at the
effect of network throughput in the face of high-volume
attacks. More work is yet to be done in expanding this
analysis; for example, we have yet to consider the cross-
traffic dynamics for legitimate and benign traffic as they
compete with network services on a dynamic topology.
Low-level implementation of the physical links concerning
optical-grid spacing and the impact of bandwidth-variable
transceivers on the defense framework is also a ripe area
of exploration for future work. We hope that our open-
source implementation of the framework aids researchers
in exploring this area more deeply.

Inspired by [59], adversarial considerations including
potential attacks against the ONSET system, overwhelming
the compute capability of the network controller that runs
the optimization to configure the network topology, among
others, are also needed. We plan to consider these as part of
future work.

8 RELATED WORK

In addition to the work described in § 2, we refer the readers
to recent surveys [60], [61] about LFAs and other DDoS
attacks. We cover a few other related efforts here.
Software-based DDoS Defense: SDN and network func-
tion virtualization (NFV) enable a wide range of software
solutions to detect and mitigate DDoS attacks. For instance,
Bohatei [19] orchestrates available NFV resources dynami-
cally to allocate sufficient defense capabilities towards vari-
ous volumetric attack vectors. SPIFFY [33] leverages SDN
capabilities to temporarily increase the bandwidth on a
congested link by rerouting around the link and identify
the potential attackers via sudden bandwidth augmentation.
While software-based defenses bring highest flexibility, they
do not scale to terabit LFAs. ACC-Turbo [35] presents a
programmable switch based defense for pulse-wave DDoS
attacks without dropping suspicious traffic, but rater, pri-
oritizing it. However, ACC-Turbo is not suited towards
sustained LFAs, and when congested, will drop traffic.
Switch-based DDoS Defense: Programmable switches
have emerged as a promising platform to perform DDoS
detection and mitigation. Unlike traditional switches that
focus only on packet forwarding, programmable switches
adopt a new type of programmable ASICs and can support
additional computation (e.g., DDoS related computation like
packet filtering, rate limiting, and hash tables) at a per-
packet basis while retaining high line rate guarantees. For
instance, Poseidon [21] uses programmable switches as a
first-line defender to augment a DDoS scrubbing cluster.
Jaqen [34] introduces a switch-native approach to detect and
mitigate volumetric attacks. Their design includes a range of
probabilistic data structures to efficiently utilize the switch
resources for DDoS defense. However, switch-based DDoS
defenses highly rely on accurate identification of malicious
and benign traffic, which is fundamentally challenging in
LFA scenarios where attack traffic may appear as legitimate.
Topology Obfuscation Techniques: There has been a con-
certed effort to stop attackers from gaining the information
about topology required to launch an LFA. These efforts
revolve around topology obfuscation, or techniques to hide
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topological information from an adversary. Efforts include
NetHide [62], BottleNet [63], EqualNet [64] and references
therein. Topology obfuscation is an orthogonal goal to LFA
mitigation. In this work we assume that the attacker has
gained knowledge of the topology, and is able to use that
knowledge to launch their attacks. We are concerned with
finding ways to mitigate loss that may occur during such an
attack.
Topology Reconfiguration Techniques: Optical layer topol-
ogy programming has recently gained attention in several
networking contexts. Its benefits have been demonstrated
in the context of traffic engineering in WANs [26], [65], [66]
and data centers [24], [25]. Prior work has posed topology
reconfiguration to augment DDoS defense [45], [46]. Our
paper moves beyond prior work by providing the first
general framework for an optical defenses against LFAs and
demonstrating its applicability to various networks.

9 SUMMARY
LFAs present a particularly insidious and difficult-to-
defend-against form of DDoS attacks. While some early
work has proposed LFA defenses, the techniques treat the
network topology as a static resource and only alter the
forwarding behavior for traffic. Consequently, they incur
fundamental limitations in terms of tackling attacks, or
worse inducing collateral damage elsewhere in the network.
Our vision is to leverage optical layer advancement called
topology programming to augment existing LFA defense
capabilities. Our framework, ONSET, paves the way for
this feat. ONSET jointly optimizes topology and routing,
using fallow transponders at nodes in the network to create
opportunistic links. We show via what-if style analysis that
ONSET amplifies the benefits of existing LFA defenses for
diverse terabit attack scenarios and for a diverse set of
networks.
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