Special Issue on The ACM SIGMETRICS Workshop on
Measurements for Self-Driving Networks

Arpit Gupta

University of California

arpitgupta@ucsb.edu

The design and implementation of autonomous or “self-
driving networks” represent some of today’s most significant
challenges in networking research. The vision for these net-
works is that they will be able to make management and
control decisions in real time, typically without human in-
tervention. Recent technological advancements, like SDN
and 5G networks, along with scientific innovations such
as XAl and transformers, have paved the way for this vi-
sion. Key innovations include: (1) fully programmable,
protocol-independent data planes and the languages to pro-
gram them; (2) scalable platforms capable of processing dis-
tributed streaming data, bolstered by the latest tools and
software for data analysis and machine learning (ML).

A particularly promising development is the fusion of pro-
grammable control capabilities in the data plane with ad-
vanced ML-based inference techniques. This combination
offers unprecedented opportunities for querying the net-
work’s state on a vast scale, providing the essential data
for the many network management and control tasks that
self-driving networks must autonomously perform.

However, the path toward realizing self-driving networks
is strewn with obstacles. Practical, deployable system de-
signs that are scalable and robust are scarce. Likewise,
many ML-based inference tools available today are not
production-ready; they typically lack generalizability, trust-
worthiness, or assurance of system safety. Realizing the vi-
sion of practical self-driving networks will require scalable
system designs that employ closed-loop feedback at mul-
tiple levels to ensure their robustness with respect to the
uncertainties of their environments. Moreover, a shift in
perspective will be necessary for developing ML-based infer-
ence solutions. The success of the learning models that drive
these solutions will have to be gauged by their explainabil-
ity, trustworthiness, and safety rather than just traditional
concerns like accuracy.

To assess the current level of interest and activity in this
area, we organized the 1st Workshop on Measurements for
Self-Driving Networks that took place in Orlando, Florida,
USA, on June 19, 2023. The workshop was sponsored by
NSF, organized by ACM SIGMETRICS, and held in con-
junction with ACM SIGMETRICS 2023/FCRC 2023. This
workshop served as a platform for researchers to present
and discuss their latest research on technologies poised to
make practical, deployable self-driving networks a reality.
We sought contributions from experts in fields such as net-

Workshop on Measurements for Self-Driving Networks Orlando, FL, USA
Copyright is held by author/owner(s).

Ramakrishnan Durairajan
University of Oregon

ram@cs.uoregon.edu

Walter Willinger
NIKSUN, Inc.

wwillinger@niksun.com

working, applied as well as theoretical machine learning, net-
work security, control theory, distributed systems, computer
architecture, and data science, all united by their enthusi-
asm to realize the vision of self-driving networks.

The workshop featured presentations from invited speak-
ers that represented 11 universities and included a diverse
mix of senior and early-career researchers, as well as grad-
uate students. All speakers were invited to submit a three-
page paper on the topic of their presentation. The papers
in this Special Issue are a testimony to the exciting ongo-
ing developments in this area of research and address topics
such as traffic monitoring, approximate querying, and de-
cision making at data plane speeds; deployability and engi-
neering challenges for self-driving networks; explainable net-
work controllers; learning-assisted QoE enhancements; and
the need for a paradigm shift in how ML-based solutions for
networking problems in general and self-driving networks in
particular ought to be developed and evaluated in the future
so that they can be deployed and used in practice.

This collection of papers also highlights four fundamental
limitations faced by researchers pursuing self-driving net-
works. These include: (1) a lack of capabilities to label
network datasets at scale; (2) an urgent need for frame-
works that facilitate privacy-preserving collaboration among
researchers; (3) difficulties in developing provably general-
izable ML artifacts; and (4) uncertainties about creating
feasible pathways for safely road-testing ML models.

Technical discussions between speakers and participants
during the workshop hinted at a potential path forward. In
particular, one possible way to overcome these limitations
involves building a community-wide infrastructure designed
specifically to: (1) facilitate flexible, high-quality data gen-
eration and collection efforts that can be easily replicated
across different networks; (2) offer an innovative framework
for collaborative and privacy-preserving knowledge sharing,
such as labeling functions, model specifications, and data
features; (3) bolster a principled approach to developing
generalizable learning models for networking problems; and
(4) establish a strategy for deploying ML-based solutions in
production networks.

We extend our gratitude to all the speakers, co-authors,
and attendees who contributed with their presentations and
actively participated in the workshop. We would also like
to acknowledge the support of ACM SIGMETRICS and,
in particular, the workshop co-chairs Leana Golubchik and
Daniel Sadoc, and the PER editor Zhenhua Liu for their
continuous guidance and assistance in producing this special
issue of PER.

Designing Traffic Monitoring Systems for Self-Driving
Networks

Chris Misa
University of Oregon
cmisa@cs.uoregon.edu

ABSTRACT

Traffic monitoring is a critical component of self-driving net-
works. In particular, any system that seeks to automatically
manage a network’s operation must first be equipped with
insights about traffic currently flowing through the network.
Typically, dedicated traffic monitoring systems deliver such
insights in the form of traffic features to high-level human
or automated decision makers. Inspired by the exciting ca-
pabilities of programmable dataplanes and the persistent
challenges of network management, the research commu-
nity has focused on improving the flexibility and efficiency
of traffic monitoring systems for a variety of management
tasks. However, a significant gap remains between the traffic
monitoring requirements of practical, deployable self-driving
networks and the capabilities of current state-of-the-art sys-
tems. This short paper provides a brief background of traffic
monitoring systems, discusses how their claims and limita-
tions relate to requirements of self-driving networks, and
proposes several open challenges as exciting starting points
for future research. Addressing these challenges requires
large-scale efforts in traffic monitoring techniques and self-
driving network design, as well as enhanced dialog between
researchers in both domains.

1 Background & Motivation
1.1 Traffic Monitoring Systems

Traffic monitoring refers to the process of observing packets
flowing through the network and computing metrics for a
particular goal. As shown in Figure 1, this involves the net-
work data plane where packets are observed, computation of
the desired traffic metrics (typically involving filtering and
aggregation), and finally the “self-driving” automation sys-
tem where the traffic metrics are used to make decisions
about how to update network forwarding behavior. For ex-
ample, a self-driving network controller might seek to ob-
serve DNS packets, compute total volume of DNS traffic
to particular destinations, then deploy mitigation if traffic
exceeds a volume associated with DDoS attacks [9].

The primary challenge in monitoring network traffic is
dealing with high traffic volumes (e.g., a single switch can
process up to several Tbps). In order to deal with this chal-
lenge, modern traffic monitoring systems leverage hardware
and/or software processing platforms at several points in the
network as shown in Figure 2. For example, DNS packets

Copyright is held by author/owner(s).

. Network
ge:wolrk packets Cortn_pute metrics | 4 tomation
ataplane metrics system
Figure 1: Traffic monitoring involves observing

packets in the network and computing metrics for
automation systems.

could be selected using TCAM-based match action tables
in programmable switch hardware [4] or using logic imple-
mented in CPU-based virtual switches [12].

pii(:)iuntﬁSwitch INIC |."[vswitch |, "[End-host

CPU programming:

® (+) Lots of memory

® (+) Lots of flexible ops.

® (-) Slow per-packet processing

Hardware programming:

® (+) Fast per-packet processing

@ (-) Limited memory

® (-) Limited operations
Figure 2: Processing platforms commonly consid-
ered in network traffic monitoring systems.

Although hardware processors (programmable switches
and NICs) can efficiently process high traffic volumes, they
do so by adopting simpler, constrained programming mod-
els with a limited set of per-packet operations (e.g., lim-
ited read-update-writes per packet) and a small amount of
memory (e.g., O(10MB) SRAM on typical programmable
switches). As a result, state-of-the-art traffic monitoring
systems develop hybrid approaches where as much of the
monitoring computation as possible is offloaded to high-
efficiency hardware processors (e.g., switches) while the rest
is implemented in lower-efficiency CPU-base software. For
example, Sonata [6] develops algorithms for partitioning mon-
itoring computations across switch hardware dataplanes and
CPU-based stream processors.

1.2 Self-Driving Examples

To illustrate how traffic monitoring relates to self-driving
network control systems, we consider two recently proposed
network automation systems.

DDoS defense. Recent proposals [9] develop approaches
to automatically defending against network-based DDoS at-
tacks by combining the data and control plan components
described in Figure 2. The core idea is to install traffic mon-
itoring programs directly into programmable switch hard-
ware, then automatically react based on the collected met-
rics to mitigate attack traffic. Although presented as end-to-
end defense systems, these proposals each leverage generic
traffic monitoring capabilities which could be satisfied by a
single unified monitoring system.

Flow-level offloading. Other proposals [14] seek to im-
prove performance of modern cloud gateway routers by of-
floading processing (e.g., encap-decap, forwarding) to hard-
ware processors with limited memory. The core idea is to
automatically select a few “heavy” flows for offloading to
the hardware processor (e.g., switch, NIC) so that the CPU
handles reduced traffic volume. Again, the traffic monitor-
ing requirements for self-driving flow offloading are generic
(finding the “heaviest” and the “lightest” flows) and could
be implemented by a unified system.

1.3 General Requirements

Based on these examples, we argue that unified traffic moni-
toring systems must meet the follow requirements to support
current and future self-driving networks.

R1: Set of monitored metrics changes at runtime.
Traffic monitoring systems must be able to change what
metrics are computed at runtime on-the-fly. For example,
the flow-offloading controller might need to adjust which
offloaded flows to monitor or the DDoS defense controller
might need to monitor new per-source metrics after detect-
ing an attack (e.g., to identify attack sources).

R2: Must retain resource efficiency for all metrics.
Traffic monitoring systems must be able to maintain consis-
tent accuracy for all metrics computed. For example, the
flow-offloading controller might be able to achieve high per-
formance even when the set of “heavy” flows reported from
the monitoring system is computed approximately using a
smaller amount of memory.

R3: Must remain robust in the face of changing
traffic. Traffic monitoring systems must be able to cope
with changes in resource requirements induced by the nat-
ural changes in traffic composition over time. For example,
per-source metrics required by the DDoS defense controller
might require memory proportional to the actual number of
sources observed which changes dynamically over time.

2 Current Traffic Monitoring Design Patterns

Current state-of-the-art traffic monitoring system propos-
als focus primarily on addressing R2. We consider two key
trends in this area: approximation using sketches and mon-
itoring task definition using query languages.

2.1 Sketches for Efficient Approximation

Sketch-based methods [15] extend the core idea of a hash
table to an approximation method for computing a keyed
sum (i.e., the number of packets or bytes in each flow). A
“sketch” is essentially a hash table which embraces hash
collisions—rather than implementing collision resolution, a
sketch adds multiple semi-independent hash functions. As
more hash functions are added, the probability of hash col-
lision (i.e., all hash functions hashing two different elements
to the same buckets) decreases multiplicatively so that when
properly parameterized and under a few other assumptions,

the error induced by hash collisions can be provably bounded.

The key advantages of sketch-based methods is that their
update algorithm is constant time (O(1)) and that they can
estimate several useful metrics beyond simple keyed sums.
Hash-indexed read, increment, write operations are rela-
tively trivial to implement on modern programmable switch
hardware making sketches an easy first choice for nearly all
switch hardware based traffic monitoring proposals. More-
over, in addition to simple per-flow counting, metrics like

heavy hitters, cardinality, and entropy can also be estimated
from sketch counters [8].

Despite their promise and popularity, several key limita-
tions have hindered the practical application and adoption of
sketch-based methods in realistic traffic monitoring settings.
First, sketches typically require fixing a flow key at com-
pile time making it challenging to address R1 since either
sketches for all possible metrics must be run all the time or
the monitoring program must be recompiled and redeployed
(inducing network down time). Several recent works [7, 17]
tackle this challenge head on, but the effectiveness of the
proposed methods remains untested for self-driving network
applications. Second, the accuracy of sketch-based results is
strongly dependent on the relationship between the number
of counters compiled in the sketch (i.e., the number of rows
in the “hash table”) and the actual number of flows observed
in network traffic. This inherently limits a sketch’s ability
to address R3 since the actual number of flows that must
be tracked in realistic network traffic can change drastically
over time and it is nearly impossible to select an optimal
number of sketch counters a priori.

2.2 Query Languages for Flexibility

Another focus of recent traffic monitoring research is in
developing expressive languages for expressing monitoring
tasks (often referred to as “queries”) which can be auto-
matically compiled into high-throughput platforms like pro-
grammable switch hardware. In particular, a form of map-
reduce language has emerged as a promising design choice
since it enables complex processing pipelines and has a rela-
tively straightforward mapping into the “match-action” model
of modern programmable switch hardware [11, 6].

The key advantage of developing a unified language for ex-
pressing traffic monitoring computations is that it separates
developers of self-driving control systems from the technical
low-level interfaces (e.g., P4 [3]) where these computations
are implemented. For example, the set of benchmark queries
originally proposed in Sonata has been used to demonstrate
performance of several other traffic monitoring systems [19,

| implying that a self-driving network that uses queries in
the Sonata language could be ported across multiple traffic
monitoring “backends”. Moreover, recent developments [19,

| have demonstrated how such a language can be mapped
to a more flexible hardware “interpreter” so that queries can
be changed on-the-fly satisfying R1.

Despite the success of these initial efforts, current query
languages are still limited in the types of aggregations they
can express (i.e., R2) as well as their robustness against
changing traffic compositions (i.e., R3). First, aggregation
operations are typically selected from a list of pre-defined
options and typically only support a few options like “sum”,
“count”, and “average”. In particular, specifying aggre-
gations in this manner makes it challenging to implement
more complex pattern-based queries (e.g., as proposed in
NetQRE [16]). Finally, similar to sketch-based methods,
each aggregation expressed in these map-reduce languages
must be mapped to a fixed-size hardware table whereas the
actual number of aggregates (i.e., number of observed keys)
changes dynamically at runtime. For works like Newton [19]
which propose using sketches to implement aggregations,
the implications of error propagation through the query’s
pipeline of operators is unclear and potentially renders final
query results useless.

3 Open Research Challenges

Finally, we summarize two key open research challenges im-
plied by the limitations of prior traffic monitoring systems
and the unique requirements of self-driving networks.

3.1 Role of Traffic Monitoring

As traffic monitoring systems develop new capabilities and
complexities, a key question of where to draw the line be-
tween monitoring and control arises. Consider, the use of
machine-learning (ML) models as a means to automatically
make network control decisions [5, 13, 1]. Without a clear
definition of the role of traffic monitoring, self-driving net-
work efforts risk either over-looking key technical challenges
required to collect features for these models efficiently at
scale or risk duplicating efforts from traffic monitoring re-
search.

3.2 Dynamic Resource Management

To satisfy both R1 and R3, self-driving networks require
that traffic monitoring systems produce consistently accu-
rate results as both the metrics monitored as well as the
traffic composition (e.g., number of flows) changes dynami-
cally over time. Although previous works address these re-
quirements in isolation [19, 10, 2], addressing both require-
ments simultaneously for the wide range of metrics required
remains an open challenge.

4 Conclusion

The brief overview presented here illustrates how network
traffic monitoring is a rich field with a variety of challeng-
ing requirements and open problems as well as its essential
role in the design and implementation of self-driving net-
works. Collaboration between traffic monitoring and auto-
mated control systems research will be critical for develop-
ment of useful, practical, and effective self-driving networks
of the future.

5 References

[1] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M.
Ramos, and A. Madeira. Flowlens: Enabling efficient flow
classification for ml-based network security applications. In
NDSS, 2021.

[2] R. Bhatia, A. Gupta, R. Harrison, D. Lokshtanov, and
W. Willinger. Dynamiq: Planning for dynamics in network
streaming analytics systems. arXiv preprint
arXiw:2106.05420, 2021.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,

J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,

G. Varghese, et al. P4: Programming protocol-independent
packet processors. ACM SIGCOMM Computer
Communication Review, 44(3):87-95, 2014.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,

N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN. ACM
SIGCOMM Computer Communication Review,
43(4):99-110, 2013.

[5] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward,

J. Martinez-del Rincon, and D. Siracusa. Lucid: A
practical, lightweight deep learning solution for ddos attack
detection. IEEE Transactions on Network and Service
Management, 17(2):876-889, 2020.

[6] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford,
and W. Willinger. Sonata: Query-driven streaming network

[7]

8

[10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

19]

telemetry. In Proceedings of the 2018 conference of the
ACM special interest group on data communication, pages
357-371, 2018.

Q. Huang, P. P. Lee, and Y. Bao. Sketchlearn: Relieving
user burdens in approximate measurement with automated
statistical inference. In Proceedings of the conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM), pages 576-590, 2018.

Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and

V. Braverman. One sketch to rule them all: Rethinking
network flow monitoring with univmon. In Proceedings of
the 2016 ACM SIGCOMM Conference, pages 101-114.
ACM, 2016.

Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin,
V. Braverman, M. Yu, and V. Sekar. Jagen: A
high-performance switch-native approach for detecting and
mitigating volumetric ddos attacks with programmable
switches. In 30th USENIX Security Symposium (USENIX
Security 21), 2021.

C. Misa, W. O’Connor, R. Durairajan, R. Rejaie, and

W. Willinger. Dynamic scheduling of approximate
telemetry queries. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 701-717, 2022.

S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,
M. Alizadeh, V. Jeyakumar, and C. Kim.
Language-directed hardware design for network
performance monitoring. In Proceedings of the conference
of the ACM Special Interest Group on Data
Communication (SIGCOMM), pages 85-98, 2017.

B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,

J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,

et al. The design and implementation of open vSwitch. In
12th USENIX symposium on networked systems design and
implementation (NSDI 15), pages 117-130, 2015.

T. Swamy, A. Zulfigar, L. Nardi, M. Shahbaz, and

K. Olukotun. Homunculus: Auto-generating efficient
data-plane ml pipelines for datacenter networks. In
Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, Volume 3, pages 329-342, 2023.

Y. Wang, D. Li, Y. Lu, J. Wu, H. Shao, and Y. Wang.
Elixir: A high-performance and low-cost approach to
managing Hardware/Software hybrid flow tables
considering flow burstiness. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI
22), pages 535-550, 2022.

M. Yu, L. Jose, and R. Miao. Software defined traffic
measurement with OpenSketch. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 29-42, 2013.

Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and

B. T. Loo. Quantitative network monitoring with netqre. In
Proceedings of the conference of the ACM special interest
group on data communication, pages 99-112, 2017.

Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Miao, P. Liu,
R. Zhang, and J. Jiang. Cocosketch: High-performance
sketch-based measurement over arbitrary partial key query.
In Proceedings of the 2021 ACM SIGCOMM 2021
Conference, pages 207-222, 2021.

H. Zheng, C. Tian, T. Yang, H. Lin, C. Liu, Z. Zhang,

W. Dou, and G. Chen. Flymon: enabling on-the-fly task
reconfiguration for network measurement. In Proceedings of
the ACM SIGCOMM 2022 Conference, pages 486—502,
2022.

Y. Zhou, D. Zhang, K. Gao, C. Sun, J. Cao, Y. Wang,

M. Xu, and J. Wu. Newton: Intent-driven network traffic
monitoring. In Proceedings of the ACM Conference on
emerging Networking EXperiments and Technologies
(CoNEXT), pages 295-308, 2020.

Making Decisions at Data Plane Speeds

Srinivas Narayana
Rutgers University, New Brunswick, NJ, USA

ABSTRACT

Feedback control loops to implement self-driving networks
constitute data collection to sense the network, and control
algorithms to make decisions driving the network. High-
quality data is necessary for smart decisions. Yet, high-
quality data is hard to obtain from the network data plane,
due to insufficient visibility and large data volumes stem-
ming from high packet rates. This paper distills principles
to collect high-quality data arising from our own research ex-
perience: (i) filter and aggregate data as close to the source
as possible; (ii) identify broad families of statistics that are
measurable with bounded inaccuracy; (iii) don’t assume low-
level data plane software is easy to instrument, but instead
(iv) apportion software flexibility by the time scales of the
computation; and (v) prefer in-band approaches where pos-
sible for timely and efficient reactivity. We call the com-
munity to act upon these principles to leverage emerging
opportunities using safely-extensible network stacks.

1. INTRODUCTION

Feedback control is an integral part of self-driving sys-
tems. Networks have conventionally incorporated feedback
control at several layers of the stack to drive themselves.
Classic examples include congestion control, medium ac-
cess control, and IP traffic engineering. Feedback control
includes two components: data collection to sense the net-
work in the data plane, and control algorithms either in the
data or the control plane, to drive the network based on the
data that was collected.

Regardless of the smartness of decision-making algorithms,
bad data can lead to poor decisions. Hence, it is paramount
to have access to high-quality data from the data plane.
However, there are several reasons why obtaining good data
is challenging. To make our discussion concrete, we focus on
scenarios in data center networks for the rest of this paper.

Why is it hard to collect high-quality data?

(1) Insufficient visibility: Designing feedback control to re-
spond to anomalies in performance requires access to fine-
grained, low-level network performance data directly mea-
sured at the bottlenecks. Examples include determining the
queue lengths at routers and servers and the contributions
of individual connections to those hotspots. However, such
raw performance signals are often hard to measure in the
data plane, because deployed hardware and software are

Self-Driving Networks Workshop 2023 Orlando, Florida
Copyright is held by author/owner(s).

simply incapable of the introspection required for such ob-
servations. The emergence of In-Band Network Telemetry
on programmable dataplanes alleviates these problems to
some extent, but it does not solve the visibility problem,
especially for application-level metrics (§2.1)).

(2) Large data volumes. When raw signals (e.g., queue sizes)
are indeed available on a packet by packet basis, the speed
at which such signals are generated poses a significant chal-
lenge. Naive attempts to collect such signals “out of band”
using storage systems could double the number of packets
processed by the network. Instead, either the per-packet
signals must be sampled or aggregated to reduce the packet
rate of outgoing signals, or bandwidth that could otherwise
be used for actual network traffic must be repurposed to
carry signals in-band, typically requiring server changes and
new infrastructure. A related difficulty is the design of al-
gorithms that can aggregate per-packet signals into useful
“buckets” cutting across protocol layers, for example, or-
ganizing connections into a histogram of application-level
response latencies. However, network data planes are tra-
ditionally only capable of simple stateful aggregations at a
low protocol level.

2. LESSONS FROM THREE STORIES

Given the difficulties of obtaining high-quality data, how
should one go about designing algorithms to collect network
data for self driving? In this section, we distill some princi-
ples from our own prior research efforts.

2.1 Network Performance Diagnosis

In the Marple system [3], our goal was to diagnose anoma-
lies in network performance. An example of such an anomaly
is microbursts: short-time-scale bursts of packets arising
from traffic sources that display an ON/OFF transmission
pattern, increasing the queueing delays transiently but re-
currently for other latency-sensitive traffic sharing the net-
work. Identifying the perpetrators of such microbursts is
challenging, since they are not major contributors to traffic
on the network and it is unclear which switch and queue in
the network is the site of the microburst. At the time, the
Tofino programmable switches had just introduced the ca-
pability to observe queue sizes as metadata on a per-packet
basis on the switch pipeline. However, this raw data is ar-
riving at the same high speed as the packets on the switch.
Principle 1 [Pushdown]. Filter and aggregate data as
close to the source of the data as possible.

This principle is well known in database systems where the
cost of moving data, say between machines or shuffling rows

2 — 2 70

. ‘ Satt e
el

% 10 20 30 40 50 60 70 80 90 % 10 20 30 40 50 60 70 80 90
Time (s) Time (s)

(a) HTTP latency. (b) Queue sizes.

Figure 1: Microbursts: (a) A victim HTTP flow
experiencing frequent spikes in response latency. (b)
The time evolution of queueing delays experienced
by packets traversing a queue with a microburst-
perpetrating traffic source.

for database joins, is significant. Reordering database oper-
ations to eliminate irrelevant data earlier in the processing
(e.g., matching on predicates or projecting specific columns)
can significantly improve efficiency. Inspired by this prin-
ciple, we designed primitives that operate directly in the
switch data plane, at line rate, to implement filtering and
aggregation through user-defined keys. For the microburst
scenario, this enables the ability to (i) identify switch queues
and packets which experience large queueing delays at those
queues; and (ii) identify traffic sources (say, aggregated at
the level of transport 5-tuples) that contribute ON/OFF
traffic, by counting the number of bursts of packets sepa-
rated in time by a user-defined threshold. This enables not
only determining where the microburst-perpetrating sources
are active, but also the sources themselves.

Principle 2 [Identify accurate families]. Identify fam-
ilies of statistics measurable with bounded (or zero) inaccu-
racy, and design algorithms customized to those.

The extensive literature on sketching algorithms adheres
to this principle. However, it is much more generally ap-
plicable to data collection even for statistics not typically
captured with sketches, for example, the number of packets
considered out-of-order in a TCP connection. Concurrently
with the Marple work, there existed hardware switching
chips collecting aggregated network performance metrics, for
example average packet latency per 5-tuple flow. However,
when the switch experiences an uptick in the number of
flows (e.g., under a flash crowd or a TCP SYN flood), mem-
ory size limitations would force the switch to evict existing
flows from its memory. The policies used for eviction from
the switch made it unclear how the data that is retained on
the switch compares in accuracy to an ideal lossless measure-
ment. However, the problem goes beyond the shortcomings
of one platform: there was a fundamental lack of under-
standing of how a switch should collect measurements not
easily summarized with limited memory.

In the Marple work, we identified a class of statistics for
which it is possible to obtain accurate data despite the evic-
tion of data from a switch under high memory pressure. The
trick is that we use a slower, but larger and more persistent
memory than a switch, to merge any partial measurements
evicted from a switch with an authoritative measurement
residing in the larger memory. A multi-tier memory archi-
tecture for measurement dovetails well with the existence of
plentiful memory on servers outside of switches. We iden-
tified that statistics s whose per-packet update takes the
functional form s £ «(p) - s + B(p), where a and 3 can be

any switch-implementable functions over a recent bounded
history of packets p, can be merged with 100% accurate
results. This seemingly simple functional form captures di-
verse statistics, for example the number of out-of-order pack-
ets in each TCP connection.

2.2 Programming Congestion Control

Congestion control is a classic example of self-driving,
with a rich research literature. In our work on the Con-
gestion Control Plane (CCP [2]), we were inspired by the
need to prototype and evaluate a complex congestion control
protocol |[1|—one that involves signal processing algorithms
such as Discrete Fourier Transforms—in realistic settings.
Principle 3 [Low-level software changes slowly]. Soft-
ware is not arbitrarily fungible. In particular, data plane
software is not easily changed, for reasons surrounding sta-
bility and performance.

Traditionally, TCP congestion control is implemented us-
ing Linux kernel modules, which limit what developers are
allowed to do. For example, floating point computations are
challenging inside the kernel. Invoking some unsafe numeri-
cal operations could easily crash the kernel (e.g., division by
zero). Further, the emergence of many kernel-bypass soft-
ware platforms necessitated the implementation of the same
protocol logic on diverse software platforms such as Intel’s
Data Plane Development Kit (DPDK) and Google’s QUIC,
each with their own relatively-static programming APIs.

In addition to asking if it is possible to ease development
and experimentation for congestion control within Linux, we
also wondered if it is possible to develop such logic once and
have it run everywhere.

Principle 4 [Flexibility OC Available Compute Time].
The flexibility accorded to a software layer should be propor-
tional to the time available to compute at that layer.

It was tempting to introduce a highly-flexible program-
ming API to help develop complex functionality directly
within the Linux kernel and emerging kernel-bypass frame-
works. Specifically, the API could allow the maintenance
of arbitrary state over which arbitrary computation could
occur. However, high-speed packet processing is highly sen-
sitive to the performance of the memory subsystem. For
context, with 100Gbit Ethernet, it is necessary to admit a
new minimum-sized Ethernet packet approximately every 6
nanoseconds to keep up with the packet arrival rate. In such
contexts, the hit rates at the fastest cache layers are critical
to performance—a single L2 cache miss could consume the
entire time budget available to process a packet and slow
the entire system down. Hence, the size of the memory
maintained across packets must be limited, as should the
compute over that memory. Not all complex functionality
can or should go into the data plane.

In the CCP system, we observed that the nature of con-
gestion control makes it neither necessary nor useful to im-
plement complex congestion control computation for each
packet in the data plane. Instead, the natural computa-
tional time scale for congestion control is the round-trip
time (RTT) of the connection, which is much longer than
the time to admit a new packet. Our design choice was to
enable developers to write flexible yet simple fold functions
in the data plane to maintain only the summaries of per-
packet signals for each connection. These summaries would
be relayed once every RTT to a much more flexible control
plane component running in user space. The data plane

and the control plane components have asymmetric flexibil-
ity that is proportional to the natural time scales over which
computations occur in those components.

2.3 Server Load Balancing

In large-scale Internet services, it is standard practice to
implement a layer of server load balancing to distribute the
incoming workload of client requests across a pool of servers
offering the service. The oft-stated goal of load balancing is
to spread load, preventing hotspots or failures on any one
server from impacting client requests. In our ongoing work
on server load balancing [4], we ask whether load balancing
could be used proactively to improve service performance, by
redirecting more requests to the better-performing servers
in the pool. Existing solutions that use server performance
implement an agent-based model, where a software agent on
the server (running either as a daemon or as a part of a li-
brary incorporated into the application) relays feedback on
load and queue occupancies to the load balancer. Such ex-
plicit feedback is crucial since, in many deployments, the
responses to clients from the servers skip the load balancer
on the return path. This idea, known as direct server re-
turn (DSR), significantly reduces the workload on the load
balancer relative to processing both requests and responses.

With the advent of microservices, serverless, and nanoscale
computing, there is now a move towards increasingly-finer
granularity of computing per request. Shrinking compute
times significantly hurt the usability of agent-based feed-
back. First, request processing becomes highly vulnerable
to variability within the system, for example due to process
scheduling. Second, server agents completely miss network
delays. As the per-request compute time approaches the
client connection’s RTT, the network delay contributes half
of the total client-visible response latency.

Principle 5 [In-Band Feedback Control]. To design
highly-reactive systems, avoid staleness and big data prob-
lems through in-band feedback control.

Relevant data must be

N A Client LB Server
made available as quickly ﬁ é ﬁ
and as accurately as possi- <> " <
ble at the point where self- : request Y F—
driving decisions are made. 8response
In performance-aware server ’”ggered nf :_‘é's'ble
Dacket a

load balancing, one relevant
piece of data is an estimate of the up-to-date response la-
tency offered by each server. Rather than siphoning data
from server agents to load balancers through an out-of-band
stream, or through a centralized data collection system, it
is appealing if load balancers can measure the response la-
tencies directly. However, the load balancer’s visibility into
client traffic is asymmetric: with DSR, the load balancer
only sees the requests and not the responses, making it chal-
lenging to measure response latencies by correlating them
with the requests.

Our key insight is that it is possible to substitute the
measurement of the delay between request and response by
the delay between the request and a packet that a client
transmits due to the response—a packet we call a causally-
triggered transmission. There are many examples of causally-
triggered transmissions, most commonly TCP acknowledg-
ments. We show that such transmissions can be detected
while only observing requests but not responses [4].

3. A CALL TO ACTION

We believe there are significant opportunities ahead to
design novel self-driving networked systems, by leveraging
emerging safely-extensible data plane software in the net-
work stack. Concretely:

1. Verified kernel extensions (eBPF) allow user-developed
code to be attached with safety guarantees to specific
“hooks” (function calls or execution sites) in the Linux
kernel. Examples of hooks include the net device driver,
packet scheduler, congestion control, and system calls.
Safety in the eBPF context means that programs have
a bounded running time, contain only instructions that
do not crash (e.g., no division by zero), and all memory
accesses are within safe bounds permitted by the kernel.

2. Service prozies (e.g., Envoy, Linkerd) are a new soft-
ware layer in the container networking stack, refactor-
ing common communication-related capabilities needed
in containerized applications into a reusable component.
For example, service proxies implement load balancing
policy and failure detection and recovery logic common
to multiple applications. Some service proxies such as
Envoy are safely extensible at run time, including We-
bAssembly (WASM) sandboxes.

These extensible software layers enable the design of novel
algorithms for data collection and feedback control oper-
ating directly in the packet-processing software path, with
well-designed channels to communicate out-of-band with a
flexible control plane. For example, one could incorporate
application-specific customizations for congestion control,
packet scheduling, or high-speed packet forwarding. Exten-
sible data plane software is naturally amenable to applying
principled data collection and feedback control techniques

. that overcome the fundamental challenges of data col-

lection (‘ We believe that the prospects of designing self-

driving networks have never before been as bright.

However, to make those prospects viable, the community

must address wide-ranging challenges to enable the effective
use of these emerging extensible network layers.
(1) Designing algorithms under safety constraints: Any pro-
gram run within an extensible network layer must be ‘safe’—
a term whose definition depends on the context (e.g., which
kernel version and which hook are we extending?), and is
evolving. This brings up questions like: What is the scope
of algorithms that can be implemented safely within extensi-
ble network layers? What programming abstractions could
make it easy to design such algorithms?
(2) Performance: Achieving high performance within exten-
sible software layers is crucial since these are on the critical
path of packet processing. How should the performance of
an algorithm be optimized while retaining its safety guaran-
tees? How should we design optimizing compilers? Is there
scope for workload-driven optimizations?

We call upon the community to act on these challenges to
help realize novel self-driving networked systems.

4 REFERENCES

Prateesh Goyal et al. Elasticity detection: A building block
for internet congestion control. In SIGCOMM, 2022.

[2] Akshay Narayan et al. Restructuring endpoint congestion
control. In SIGCOMM, 2018.

[3] Srinivas Narayana et al. Language-directed hardware design
for network performance monitoring. In SIGCOMM, 2017.

[4] Bhavana Vannarth Shobhana et al. Load balancers need
in-band feedback control. In ACM HotNets, 2022.

Toward Fast Query Serving in Key-Value Store Migration
with Approximate Telemetry

Alexander Braverman
Seven Lakes High School
Katy, Texas

ABSTRACT

Distributed key-value stores scale data analytical process-
ing by spreading data across nodes. Frequent migration of
key-value shards between online nodes is a key technique
to react to dynamic workload changes for load balancing
and service elasticity. During migration, the data is split
between a source and a destination, making it difficult to
query the exact location. Existing solutions aiming to pro-
vide real-time read and write query capabilities during mi-
gration may require querying both source and destination
servers, doubling the compute/network resources. In this
paper, we explore a simple yet effective measurement ap-
proach to track the key-value migration status, in order to
improve the query-serving performance under migration. In
our preliminary prototype, we use a Bloom filter on the des-
tination server to keep track of individual key-value pairs
that have been successfully migrated. For key-value pairs
that have yet migrated, the information stored in the Bloom
filter enables fast forwarding to the source server without the
need to check the database. We prototype this design on a
local cluster with Redis deployments. Our preliminary re-
sults show that this approximate measurement-based design
minimizes query losses during migration.

1 Introduction

Modern cloud services (e.g., e-commerce, mobile gaming,
and social networking) depend on large-scale key-value stores
as the backend to perform various kinds of jobs (e.g., con-
tent caching, real time analytics and machine learning) [16}
3]. These services often require backend databases to pro-
cess requests over ever-growing data volumes and dynamic
workload distributions. However, static sharding limits the
ability of such systems to adapt to rapidly changing work-
loads. This can result in degraded performance and Service
Level Agreement (SLA) violations due to load imbalance
and insufficient provisioning of cloud resources [8, 9].

To tackle the problem of imbalance of load and resources,
a variety of key-value migration techniques are adopted [8} |9}
12| to efficiently migrate data between nodes (i.e., the source
and destination servers). However, the migration process it-
self is often time-consuming, and the actual query serving
performance varies depending on the workload distribution
and the migration progress. During migration, the client
is unknown about which keys have reached their destina-
tion (migrated) at any given time without actually accessing

Copyright is held by author/owner(s).

Zaoxing Liu
University of Maryland
College Park, Maryland

them on the relevant databases. Therefore, it is difficult for
the client to always query certain keys at the right location
because the client is unsure of the current location of the
queried key. To ensure query serviceability, a straightfor-
ward solution is to query both the source and destination
servers, incurring doubled overheads for the client. Alter-
natively, the client needs to access a database that records
the migrated keys, but such maintaining such a database is
resource-heavy (e.g., network, compute, and storage), since
the number of keys can be prohibitively large. Ideally, the
client should know where to access the queried key in the
right location without expensive bookkeeping and without
actually reaching the key-value store hosted on the servers
during the migration process.

To this end, we explore and leverage approximate teleme-
try approaches to track the status (e.g., “not started”, “in
transmission”, or “completed”) of the key-value pairs dur-
ing migration, allowing client requests to be served at the
right location as soon as possible. Approximate measure-
ment design brings a major benefit to serving client queries
in key-value store migration: the underlying data structures
used in the design are often probabilistic and require only
sublinear resources, such as sketches |7, [14] and Bloom fil-
ters. Such resource savings enables wider adoption of ap-
proximate telemetry on resource-constrained devices. Using
these devices to track migration status, including Smart-
NICs |1] and programmable switches [5|, can direct client
requests to the appropriate location as early as possible.
Thus, in this preliminary work, we deploy a Bloom filter on
the Redis server to track migration progress and evaluate
potential query-serving performance improvements.

We implement a key-value migration protocol with a Bloom
filter deployed on the destination server. We deploy a large
Redis key-value store [2] (100GB) to migrate from one com-
modity server to another. We evaluate several experimen-
tal scenarios with client workloads following Zipf distribu-
tions [13] with varied write ratios in client requests. Our
preliminary results demonstrate that using the Bloom filter
to track key-value migration status can significantly reduce
query mishits (defined as query loss rate).

2 Preliminary Design and Prototype

Our workflow to perform key-value migration consists of
four main components: (1) the migration process of Re-
dis key/value pairs from a source server to a destination
server, (2) a Bloom filter that identifies whether a key-value
pair has migrated successfully and if a query is missed in
the local database, the filter tells the client where to for-

ward the missed requests, (3) a client that sends read and
write requests to the destination server, and (4) a forward-
ing mechanism which allows requests to be served before
the respective key reaches the destination server. Below, we
provide the details of each component using Redis as an
example.

e Migration: The migration process Eﬂ consists of ex-
tracting all the key/value pairs from a Redis instance
of the source server and sending them to the destina-
tion server and storing them in its Redis store. To
allow integration of Bloom filters, we reimplement a
UDP-based migration protocol to extract Redis key
value pairs from source to destination by extending
the implementation of DistCache .

e Bloom filter: During the migration process, when
an individual key-value pair reaches the destination
server and is updated in the Redis store, this key will
be added to a Bloom filter on the destination side
to keep track of which key-value pairs have already
successfully migrated. Employing a simple Bloom fil-
ter at the destination has two benefits: (1) It does not
have false positives and can be adjusted to achieve rel-
atively low false negative rates as shown in Figure
No false positives ensure that queries to the migrated
keys will never go back to the source server. (2) The
memory efficiency of the Bloom filter makes it possible
to serve as a “cache”. This additional saving of space
comes from the fact that we only store keys and not
values in the bloom filter.

e Serving client requests: When the client queries
certain key/value pairs currently in the destination,
the destination server will first check whether this key
has reached the server by probing the Bloom filter.
The advantage of using a probabilistic filter over di-
rectly accessing Redis to see if a key-value pair has
already migrated is that the Bloom filter is small in
space and allows for faster (parallel) memory accesses.
If the key has migrated, we know for sure that it is
in the filter, and we can access the Redis store locally
and directly respond to the client.

e Request forwarding: If a key is queried by the client,
which is not already in the Bloom filter, we know it
still has not reached the destination server. Therefore,
the destination server can simply forward @ the client
request to the original sending server, who will be able
to serve the request on its own local Redis instance
and respond directly to the client.

3 Experiments

In our evaluation, every experiment conducted consisted of
using 50 million Redis key-value pairs for migration, which
held 100 GB of data. Our experiments run on a testbed
consisting of 3 servers, each of which has two Intel Xeon
Gold 5317s, 512GB DRAM, and a 10G NIC. Specifically,
each key-value pair held 2000 bytes, the keys ranging from
1 — 50,000,000, and the values being a randomly generated
string with 1992 bytes to 1999 bytes of data depending on
the length of its respective key. Every experiment we run
generates 750,000 queries from the client. Furthermore, we
use different Zipfian distributions for our experiments, such

Il Bloom Filter B Without Redirecting

=
N
T

Loss Rate (%)
=
o

O N b O

0.01 0.02 0.03 0.04 0.05
Write Ratio

Figure 1: Query loss rates with varying write ratios.

Il Bloom Filter B Without Redirecting

St
© 10 |

te

Loss R
[o¢]

o N B~ O

0.90 0.95 0.99
Zipf

Figure 2: Query loss rates with varying Zipf distri-
butions.

as .9, .95, and .99. Second, we also use different write ratios,
such as .01 to .05. We evaluate the loss rates when the
queries go to the wrong locations without being forwarded
to the right places for Bloom filter-based vs. no filter-based.

To evenly split the migration data and serve client re-
quests in parallel, we used 10 threads for both the source and
destination servers. Moreover, the data on the destination
server is randomly split amongst 5 Redis servers, to mitigate
the loss due to the large volume of migrated data. On the
destination server, the Bloom filter implementation we
used has 125 MB of data stored overall in the data structure.

3.1 Effect of Query Distribution

Our first experiment revolves around the effect of the write
ratio of queries to the loss rate. This experiment on average
takes 14 minutes and 39 seconds across all write ratios. The
client issues key read/write queries following a Zipfian dis-
tribution of 0.9 skewness with write ratios of 0.01 to 0.05 as
shown in Figure[]] The inclusion of Bloom filter and request
forwarding demonstrates a 3.5 X improvement in mitigating
query loss on average (from 3.162 to 3.870).

3.2 Effect of Write Ratio

Our second experiment measures the effect of how the skew-
ness in Zipf distribution affects the loss rate. This experi-
ment on average takes 14 minutes and 38 seconds across

all Zipf distributions tested (0.9, 0.95, 0.99) and we use the
write ratio of 0.05. As shown in Figure 2, the inclusion of
the forwarding of requests results in a 3.837 x improvement
in mitigating query loss on average (from 3.367 to 4.367).

3.3 False Negatives in Bloom Filter

One of the main concerns of using bloom filters is the false
negatives. In our key-value migration case, false negatives
occur when the key is shown to be in the Bloom filter, but
in reality it has yet been migrated to the destination. In
each experiment, we calculate the number of false negatives
by checking when the Redis server returned null. In our
experiments, the number of such false negatives is always
less than 0.043 percent of all queries. Thus we can conclude
that with a relatively large filter (e.g., 150MB), false nega-
tives have negligible impacts on the average query-serving
performance.

3.4 Evaluation Summary

Overall, these experimental results demonstrate the need for
designing a proper measurement approach to using forward-
ing, as without the bloom filter, there is a notable drop in
performance that could prove costly in a real setting. Fur-
thermore, as the results demonstrated the positive effect of
forwarding, using higher power devices such as SmartNICs
[1} 15] could prove to be even more beneficial [10] in serving
client queries during migration.

4 Discussion

We conclude by highlighting a subset of new opportunities
for further research in this space.

Approximate telemetry for key-value migration on
near-user programmable devices. Our prototype demon-
strates the benefits of tracking the detailed migration status
with a Bloom filter-based design. However, for simplicity,
the filter for tracking the migration progress is deployed on
the server side. Every client request needs to pay the cost
of reaching the server first before it can be directed to the
right location. We posit that, with emerging flexibility and
programmability in the network devices (e.g., SmartNICs
and programmable switches), we can find a vantage point in
the network to easily measure how key-value pairs are being
migrated while not being far from the client.

Adaptive filters for improving the false negative rates.

The current prototype is limited to the standard Bloom fil-
ter with fixed false negatives. While our experiments show
small performance degradation on average, the false posi-
tives can incur performance problems at the tail (e.g., tail
query latency for some keys). Recent advances in adaptive
filters [11] have shown some practical designs to dynamically
tune the filters to reduce and control the error rates if we
have seen such false negatives so far.

5 References

[1] Bluefield data processing units.
https://www.nvidia.com/en-us/networking/
products/data-processing-unit/.

[2] Redis. https://redis.io/.

[3] Redis use cases. https://redis.com/blog/
5-industry-use-cases-for-redis-developers/.

[4] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422-426,

(14]

(15]

[16]

(17]

jul 1970.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,

N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn. ACM
SIGCOMM Computer Communication Review,
43(4):99-110, 2013.

J. Chen, P. Druschel, and D. Subramanian. An
efficient multipath forwarding method. In Proceedings.
IEEE INFOCOM ’98, pages 1418-1425, 1998.

G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58-75, 2005.
J. Kang, L. Cai, F. Li, X. Zhou, W. Cao, S. Cai, and
D. Shao. Remus: Efficient live migration for
distributed databases with snapshot isolation. In
Proceedings of the 2022 International Conference on
Management of Data, pages 2232-2245, 2022.

C. Kulkarni, A. Kesavan, T. Zhang, R. Ricci, and

R. Stutsman. Rocksteady: Fast migration for
low-latency in-memory storage. In Proceedings of the
26th Symposium on Operating Systems Principles,
pages 390-405, 2017.

Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella,
M. M. Swift, and T. V. Lakshman. Uno: Uniflying
host and smart nic offload for flexible packet
processing. In Proceedings of the 2017 Symposium on
Cloud Computing, SoCC 17, page 506-519, New York,
NY, USA, 2017. Association for Computing
Machinery.

D. J. Lee, S. McCauley, S. Singh, and M. Stein.
Telescoping filter: A practical adaptive filter. arXiv
preprint arXiv:2107.02866, 2021.

Y .-S. Lin, S.-K. Pi, M.-K. Liao, C. Tsai, A. Elmore,
and S.-H. Wu. Mgcrab: transaction crabbing for live
migration in deterministic database systems.
Proceedings of the VLDB Endowment, 12(5):597-610,
2019.

Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman,
X. Jin, and I. Stoica. Distcache: Provable load
balancing for large-scale storage systems with
distributed caching. In 17th USENIX Conference on
File and Storage Technologies (FAST 19), pages
143-157, 2019.

Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and

V. Braverman. One sketch to rule them all:
Rethinking network flow monitoring with univmon. In
Proceedings of the 2016 ACM SIGCOMM Conference,
pages 101-114, 2016.

H. Seyedroudbari, S. Vanavasam, and A. Daglis.
Turbo: Smartnic-enabled dynamic load balancing of
ps-scale rpcs. In 2028 IEEFE International Symposium
on High-Performance Computer Architecture (HPCA),
pages 1045-1058, 2023.

R. K. Singh and H. K. Verma. Redis-based messaging
queue and cache-enabled parallel processing social
media analytics framework. The Computer Journal,
65(4):843-857, 2022.

T. Wang. Integer hash function.
https://gist.github.com/badboy/6267743, 2007.

https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://redis.io/
https://redis.com/blog/5-industry-use-cases-for-redis-developers/
https://redis.com/blog/5-industry-use-cases-for-redis-developers/
https://gist.github.com/badboy/6267743

Tackling Deployability Challenges in ML-Powered Networks

Noga H. Rotman
The Hebrew University of Jerusalem

1 Introduction

Following the success of Machine Learning (ML) in various
fields such as natural language processing, computer vision
and computational biology, there has been a growing interest
in incorporating ML into the networking domain [5, 6, 14, 4,
9]. Today, ML-based algorithms for prominent networking
problems such as congestion control, resource management
and routing, perform very well when their training envi-
ronment is faithful to the operational environment, achiev-
ing state-of-the-art results when compared to traditional al-
gorithms. However, the adaptation of these algorithms to
function in production environments has not been straight-
forward, as real-world networks may differ greatly from the
data used for training, leading to a drop in performance
when unleashed into the wild.

This paper provides an overview of the problems impeding
the successful deployment of ML-powered networks. It cat-
egorizes proposed solutions into three types, based on the
main concern they address. Notably, each category takes
place at different stage of the lifecycle of an ML-powered
network: in-training, pre-deployment, and online, allowing
to employ all three in tandem. We propose a holistic ap-
proach to tackling the challenges facing a successful deploy-
ment, by intervening at all three stages, and integrating the
observations obtained at each stage to improve the others.

1.1 Example: ML-based algorithm in the wild

ML-based networking protocols have been very successful

when their training environment and test environment match.

What happens when this is not the case?

To demonstrate the impact to performance that may oc-
cur when the training environment of an ML-powered al-
gorithm differs from the deployed environment, we consider
a deep learning solution to the timely problem of adaptive
video streaming (ABR) in HTTP-based video streaming.

chunk 1 chunk 2
1080P

Video Client Request:

next video chunk at
bitrate r

r

Response: Video Server

video content

Figure 1: ABR problem overview

Copyright is held by author/owner(s).

In ABR (see Figure 1), a client interacts with a video
server. Videos are stored on the server as chunks of (roughly)
the same length, each chunk available in different bitrates,
corresponding to its quality. When the client is watching
a video, they need to request the next chunk at a specific
bitrate r. The ABR algorithm, running at the client, is re-
sponsible for choosing which bitrate r» should be requested
from the server. The algorithm must walk a thin line be-
tween selecting a lower resolution that may not be satisfac-
tory to the client, and choosing a higher one that may force
the client to wait for content while streaming (an event also
known as rebuffering), as both effects are known to play an
instrumental role in user engagement [1].

0 — —

-2000 I

4000

-6000

-8000
-10000

== BB

-12000 Random

mmm Pensieve

Average Reward

14000

Norway Exp(1) Gamma(1,2) Gamma(2,2) Log(4,0.5)

Figure 2: Average reward of an ML-based algo-
rithm, Pensieve, trained on a dataset collected in
Belgium, compared to that of BB, a non-learning
algorithm, and a random algorithm. When tested
on a dataset collected in Norway and two synthetic
datasets, the Pensieve agent performs worse than
the random algorithm. Figure 2a from [10].

Pensieve [6] applies Reinforcement Learning (RL) [11] to
ABR. In [10], we trained Pensieve agents on different datasets,
both real-world and synthetic. These agents performed well
when the test and training environments were drawn from
the same distribution. We then tested their performance
when the training and test environments differs. Figure 2
contrasts the performance of a Pensieve agent trained on a
dataset collected in Belgium, against two algorithms: Buffer-
Based (BB) [3], a manually-crafted and widely deployed pro-
tocol, and an algorithm which chooses the next bitrate ran-
domly. In all cases, the performance of BB is better than
the one of exhibited by the Pensieve agent. Furthermore,
in some cases, such as a test set collected in Norway, the
Pensieve agent performed worse than the random algorithm.
These results raise concerns when considering deploying ML-
powered networks.

1.2 The causes for the impact to performance
in the real world

There are multiple factors contributing to the drop in perfor-
mance of an ML-based algorithm in a networking production
environment.

First, bad generalization is a known trait of several ML
methodologies prevalent in networking, such as RL.

Second, one must consider the usage and evaluation of
these algorithms. Typically, when a non-learning algorithm
fails, the cause is traceable, as the algorithm’s logic is clear.
It is then possible to adjust it to better handle the net-
working conditions causing the failure. On the other hand,
when an ML-based algorithm breaks down, the reason is ob-
scured, as neural networks are painfully difficult for humans
to understand. Because of this, not only are we unable to
effectively investigate the cause of failures, but we are also
unable to modify the algorithm to address them.

Third, modern communication systems are architecturally
complex and extremely dynamic. Encompassing all possible
scenarios in a training set is simply not possible, as deploy-
ment environments are too diverse.

2 Tackling deployability challenges

In this section we classify proposed solutions for mitigating
the performance degradation caused by bad generalization
into three categories, based on the main concern they tar-
get (see Section 1.2), and provides a short overview of each.
Further discussion of these categories can be found in Sec-
tion 3.

In-training enhancements target the components respon-
sible for the initial creation of an ML-based algorithm: the
data used for training, the actual training process, or both.
Successfully adapting ML methodologies to the networking
domain is an arduous task, as the problems these techniques
were originally created for and tested on differ greatly from
networking problems.

Pre-deployment analysis aims to eliminate potential prob-
lems prior to deployment by providing insights as to the ac-
tions taken by a trained ML-based networking protocol, and
the reasons leading to them.

Online assurances attempts to intervene during deploy-
ment, in order to avoid a sudden drop in performance when
network conditions change.

2.1 In-training enhancements

Puffer [13] is an online service streaming live U.S. TV sta-
tions. Born as a research project, it serves as a playground
for evaluating and comparing various ABR protocols. The
authors proposed a new ML-based algorithm to the ABR
problem, where the learning agent is trained daily in-situ,
using data obtained from its deployment environment during
the last fourteen days. Puffer won the NSDI’20 community
award, as the data collected is made available online.
Another notable example is Genet [12], which targets the
generalization problem in RL-based networking protocols by
focusing the training procedure on the most challenging en-
vironments, instead of choosing them uniformly at random.
To do so, the authors use Curriculum Learning [8]. While
this methodology has proved useful in other domains, apply-

ing it in a networking context is nontrivial, as it is unclear
how to measure the “difficulty “ of a network environment.

2.2 Pre-deployment analysis

In [7], the authors introduce two categories of ML-powered
networking systems: local and global. Their framework,
Metis, translates the trained neural network employed by
a local or global system into either a decision tree or hyper-
graphs. Both of these representations are much easier for
humans to understand and evaluate. Interestingly, this ap-
proach advocates for the deployment of the representation
in place of the original ML-based algorithm, thus allowing
to modify the algorithm running in production directly. It
is worth noting that there are ML-powered networking sys-
tems that cannot be addressed using this formalism.

Formal Verification is a mathematical approach for rea-
soning about a neural network’s behavior. It provides prov-
able guarantees of specified requirements; for example, for
ABR, one can ascertain that when the conditions of the
network do not allow for high average quality, the algorithm
opts for a lower resolution over constantly rebuffering. This
approach is used in [2] to evaluate three proposed ML-based
networking protocols. A known disadvantage of this ap-
proach is that it is hard to scale to larger neural networks.
In networking, however, most ML-based algorithms involve
relatively small neural networks, making this approach fea-
sible for various ML-based networking algorithms.

2.3 Online assurances

The last technique aims to rein in the possible costs of
bad generalization in a production environment by replac-
ing the ML-based algorithm with a “safer“ option, when
the decisions of the former are incoherent/uncertain. The
motivation for this methodology is simple: in communica-
tion networks, there are many hand-crafted protocols that
have been deployed in various networks for years, some for
decades. While these algorithms may not enjoy the high per-
formance achieved by ML-based algorithms, they were de-
signed to withstand disastrous circumstances, and are thor-
oughly tested “in battle“. Therefore, if we were able to
successfully identify online when an ML-based algorithm is
making incoherent decisions, we would be able to provide a
kind of a “safety net“, by enabling to switch to a “safer*
option once such a need arises. Further incentive can be
found in Figure 2, demonstrating that on test sets in which
the Pensieve agent fails to generalize, BB could potentially
be used to improve the overall performance.

Realizing this technique requires addressing several major
challenges. First, although the detection of uncertainty in
the behavior of an ML-based algorithm has been explored in
different contexts, no standard method has yet to emerge.
Second, translating an uncertainty signal into a measur-
able amount that can be calculated online. Third, forming
heuristics by which to set thresholds on the calculated value,
in order to determine whether the system should switch to
a “safe algorithm.

We presented this concept in [10]. We investigated three
possible signals: uncertainty in the algorithm’s input, un-
certainty in the actions selected, and uncertainty in the al-
gorithm’s evaluation of its future benefit from the chosen
actions. We tested these signals and compared their impact
on Pensieve agents. We have found that two of the tested
signals show promise.

3 Discussion and conclusions

Despite encouraging advances, realizing the promise of ML-
powered networks is still elusive. This paper discussed the
challenges encountered during deployment of these systems,
summarized current techniques, and offered a fresh perspec-
tive of these practices.

Pre-Deployment
Analysis

Step #2

Incorporate failure scenario
into the training procedure

In-Training | «-----------2-0-oa-a- Online
Enhancements Assurances
Step #1 Step #3
Figure 3: Each category takes place at a differ-

ent phase, allowing not only to utlize all three, but
continuously enhancing the algorithm based on its
observable behavior at each step.

A key insight of this paper is that the categories presented
in Section 2 are complimentary, as each occurs at a differ-
ent stage of the ML-powered network pipeline: during the
initial training of the algorithm, pre-deployment, and on-
line. We claim that in order to enable the successful deploy-
ment of ML-powered networks, we must address the prob-
lems at all three stages (see Figure 3). First, in-training
enhancements should be applied, creating a more resilient
algorithm. Then, pre-deployment analysis of the resulting
algorithm should be performed, which may lead to further
enhancements of the training procedure and data. Finally,
the system should be adjusted to provide online assurances,
so that when the algorithm eventually fails in production,
the reasons can be investigated and resolved while avoiding
a critical hit to performance.

This approach essentially calls for a paradigm shift when
considering these algorithms, from a “one shot“ scenario to
an iterative process, in which the algorithm is re-examined,
re-adjusted and re-tested prior to and during deployment.

4 Acknowledgments

Many thanks to the organizers of the ACM SIGMETRICS
’23 Workshop on Measurements for Self-Driving Networks
at Orlando, Florida, on June of 2023, for their invitation,
and to the participants of the workshop, for the engaging
discussion. Special thanks to Dr. Yotam Feldman.

5 References

[1] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica,
Dilip Joseph, Aditya Ganjam, Jibin Zhan, and Hui
Zhang. Understanding the impact of video quality on
user engagement. ACM SIGCOMM computer
communication review, 41(4):362-373, 2011.

[2] Tomer Eliyahu, Yafim Kazak, Guy Katz, and Michael
Schapira. Verifying learning-augmented systems. In

(13]

(14]

Proceedings of the 2021 ACM SIGCOMM 2021
Conference, pages 305—-318, 2021.

Te-Yuan Huang, Ramesh Johari, Nick McKeown,
Matthew Trunnell, and Mark Watson. A buffer-based
approach to rate adaptation: Evidence from a large
video streaming service. In Proceedings of the 201}
ACM conference on SIGCOMM, pages 187-198, 2014.
Nathan Jay, Noga H. Rotman, Brighten Godfrey,
Michael Schapira, and Aviv Tamar. A deep
reinforcement learning perspective on internet
congestion control. In International Conference on
Machine Learning, pages 3050-3059. PMLR, 2019.
Hongzi Mao, Mohammad Alizadeh, Ishai Menache,
and Srikanth Kandula. Resource management with
deep reinforcement learning. In Proceedings of the 15th
ACM workshop on hot topics in networks, pages
50-56, 2016.

Hongzi Mao, Ravi Netravali, and Mohammad
Alizadeh. Neural adaptive video streaming with
pensieve. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages
197-210, 2017.

Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu,
Hongzi Mao, and Hongxin Hu. Interpreting deep
learning-based networking systems. In Proceedings of
the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, pages 154-171, 2020.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko
Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning
domains: A framework and survey. The Journal of
Machine Learning Research, 21(1):7382-7431, 2020.
Yarin Perry, Felipe Vieira Frujeri, Chaim Hoch,
Srikanth Kandula, Ishai Menache, Michael Schapira,
and Aviv Tamar. DOTE: Rethinking (predictive)

W AN traffic engineering. In 20th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1557-1581, 2023.
Noga H Rotman, Michael Schapira, and Aviv Tamar.
Online safety assurance for learning-augmented
systems. In Proceedings of the 19th ACM Workshop
on Hot Topics in Networks, pages 8895, 2020.
Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

Zhengxu Xia, Yajie Zhou, Francis Y Yan, and
Junchen Jiang. Genet: automatic curriculum
generation for learning adaptation in networking. In
Proceedings of the ACM SIGCOMM 2022 Conference,
pages 397-413, 2022.

Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and
Keith Winstein. Learning in situ: a randomized
experiment in video streaming. In 17th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 20), pages 495-511, 2020.
Francis Y Yan, Jestin Ma, Greg Hill, Deepti
Raghavan, Riad S Wahby, Philip Levis, and Keith
Winstein. Pantheon: the training ground for internet
congestion-control research. Measurement at
http://pantheon. stanford. edu/result/1622, 2018.

Engineering Autonomous Self-Driving Networks

Mariam Kiran
Oak Ridge National Laboratory
1 Bethel Valley Rd
Oak Ridge, TN, USA

kiranm@ornl.gov

ABSTRACT

Networking infrastructure, e.g. wide area networks (WAN)
connecting data centers worldwide, or wireless 5G and be-
yond, are all witnessing unprecedented traffic demand, due
to massive data-explosion in software applications involving
text, image and video transfers and demand for high qual-
ity connectivity. The infrastructure itself is often limited by
budget; and providing optimum performance with limited
resources such as high bandwidth or low latency for user
quality experience, is a challenge. Continually upgrading
to expensive high-end switches and optical fibers is not a
long-term feasible solution.

Artificial intelligence (AI) approaches are quickly gaining
popularity as a means to build self-driving networks. In-
corporating Al into the network middleware can help man-
age itself, making intelligent decisions based on current de-
mands, resource availability and handle multiple distributed
network devices efficiently. In early 2000s, IBM introduced
the autonomic design with self-x properties for any system
to become ‘smart’. In this article, we discuss Al being lever-
aged to develop the four self-x properties for networks.

Keywords

Autonomous, self-driving network, machine/deep learning

1. INTRODUCTION

Science innovation and discovery is using high performance
computing, heterogeneous hardware, high-speed and low la-
tency connections like 5G and the advent of quantum com-
puting are massively impacting the experiment and their
data production rates. Particularly for distributed exper-
iments, data movement requires high-speed and optimum
network connections that can present experiments with their
data needs - large or small transfers, high-speed connec-
tions and minimum loss, in data intensive experiments from
high energy physics, climate sciences, biomedical research,
the Large Hadron Collider (LHC) [2], to name a few. This
presents unprecedented challenges, like global data move-
ment, optimizing compute and storage resources and much
needed network innovation. As a means, machine learning
have proven successful in networks such as network traffic
prediction [8], optimizing routing calculations [6] and finding
security anomalies in flow traffic. Similarly, software defined
networking (SDN) and virtualization (NFV) have rapidly

Copyright is held by author/owner(s).

evolved network research towards programmatic control and
automated configuration concepts and technologies. This is
a large deviation from previously labor-intensive network
deployments.

Acting as essential middleware to advanced computing fa-
cilities, networks need to cater to software application com-
plexities and sometimes move petabytes of data at high-
speeds for fast processing and storage systems. With in-
creasing infrastructure complexity, real-time processing de-
mand and fast bulk data transfers, current networking hard-
ware is finding it hard to cope with the need to satisfy users
and industry alike. One way of upgrading the communicat-
ing links and middleware involves adding advanced switches
or routers that perform fast processing and trace packets as
flows move across the network processing massive amounts
of data [1]. However, this comes with drawbacks, for exam-
ple, SDN has demonstrated traffic optimization over physi-
cal links based on demand, but is slow with processing over-
head and too much data being analyzed into one central
decision-making module [4]. Additionally, most devices are
not SDN-enabled and can only configure specific devices [9].

Upgrading to high-end switches and redesigning network
ecosystems, decoupling network control from devices, can
be expensive and introduces new problems of vendor lock-in,
high maintenance and management problems across globally
distributed sites.

Machine learning algorithms can be used to predict net-
work behavior such as ‘which path selection, capacity or QoS
change will cause what result or event X with what prob-
ability P’. Detecting anomalies will cut down costs and
time spent finding impaired segments or misbehaving de-
vices in network infrastructures. Actively forecasting traffic
demands can allow engineers to anticipate congestion, and
proactively perform better capacity planning for continued
reliable connectivity for critical experiments. Making these
decisions in near real-time requires sufficient data process-
ing power to rapidly digest relevant traffic datasets as time
series, factors that affect the application performance and
build algorithms that can improve and optimize network
behavior. The ML/AI methods that can be used in net-
work research include supervised and unsupervised classifi-
cation, regression and reinforcement learning. However, in
networking, it is often difficult to find labeled data sets, as
performance logs are rarely labeled except in major event
scenarios. As an example, unsupervised classification can
recognize good flow performance or security anomalies [3].
Reinforcement Learning (RL) is a type of machine learning
that allows an agent to interact in an environment by trial

and error, and use feedback on its actions and experiences
to learn optimal behavior. Allowing agents to learn under
real conditions in a network is tricky, and the lack of demo
platforms has limited progress in this area.

With AT advances, there are innovative ideas to combine
network logs, SDN and current network configuration, to
make networks smart and self-managed ecosystems. This Al
phenomenon can vastly improve and solve traffic optimiza-
tion problems by predicting anomalies in real-time, forecast
utilization and eventually repair itself, when faults such as
when hosts fail or packet loss occurs. However, this idea
of smart network is not new. In early 2000s, IBM outlined
the autonomic computing middleware [5] concepts, which
allowed computing middleware components such as virtual
machine manager, job scheduler and clusters to become au-
tonomic or have the self-z properties.

2. AUTONOMIC ARCHITECTURE

Autonomic describes self-management. This is not au-
tonomous or automatic, where devices behave on their own
or follow a predefined script. Autonomic devices follow
human-directed goals, but interpret them locally depend-
ing on their own capability and environment. Human ad-
ministrators have little direct influence and the devices can
self-regulate themselves using high-level policies. IBM in-
troduced the autonomic computing initiative [5] which ar-
gued to use autonomy principles focused on developing con-
cepts that allow systems to self-correct and operate indepen-
dently. These systems are built to follow adaptive behavior,
perceive changes from the environment, reason and correct
themselves automatically.

Autonomic networking follows the same concepts of auto-
nomic computing, that can handle increasing complexity by
self-regulating its components using high-level policies. Also
called the self-x properties, these are (1) Self-configuration:
Automatic configuration of components. (2) Self-healing:
Automatic discovery of anomalies and fault correction. (3)
Self-optimization: Automatic monitoring and resource op-
timization to ensure optimal functions of resources, given
high-level requirements are met. And (4) Self-protection:
Proactive identification and protection from attacks. Tech-
nically, self-x behavior can be achieved by any device by
monitoring (observe its own state and behavior), reason-
ing (analyze and decide changes) and controlling (perform
changes) itself. IBM’s MAPE architecture (monitor, ana-
lyze, plan and execute) as a knowledge engine, which the
device uses to make intelligent decisions).

Table 1 shows how the critical components of self-x be-
haviors. Using multiple Al techniques for individual network
elements provide a novel approach to manage a distributed
and large system, which is different from traditional bespoke
vendor design specifications. Figure 1 shows a network ele-
ment, such as router learning from the network environment
and using a reward function to optimize its behavior.

3. AIIN NETWORK RESEARCH

Typically, operators monitor link traffic quantitatively,
measuring data moving across the router interfaces and us-
ing their experience to estimate traffic volumes and surges.
If congestion is anticipated, operators reroute traffic through
alternate network links by reprogramming routers (or traf-
fic reengineering) which usually takes between 8-24 hours to
program, compile, and deploy. However, accurately predict-

Reward T°¢

Agent Take action (it

Network Element
(Device)

Stochastic Policy: g (als)
Deterministic Policy: a & mg(s)

Environment

Network State

Transition Dynamics
Pserals ar)

Observe state St

Goal: maximize the cumulative reward Z Tt
t

Figure 1: A network agent using reinforcement
learning to observe, plan and execute actions.

ing traffic congestion time is a complicated task for two main
reasons: (1) Network traffic displays very random behavior
and does not show any seasonal patterns (2) Monitoring all
links in large WAN architecture (typically greater than 100)
is not a feasible solution. Statistical prediction methods
such as ARIMA and Holt-Winters have been successful in
network traffic prediction. Additionally, deep learning so-
lutions, like LSTM-based neural network architectures, can
learn features during the training phase.

Novel techniques from deep learning [8] have shown to
use graph neural networks, transformers and advanced ML
methods to provide a active prediction system, that predict
network congestion with recent data, providing high accura-
cies to make real-time decisions. However, changing routing
based on congestion prediction and how this impacts net-
works is yet to be seen in practice.

Similarly, self-learning controllers have used deep rein-
forcement learning to learn and optimize network routes [6].
These are innovative new techniques using real-time stream-
ing monitoring data to make just-in-time decisions on how
to move large or small flows on the network. However, we
find that even though AI provides many innovation, there is
a lack of hardware (e.g. controllers) that can input these Al
decisions to realize the change on the network. These war-
rant new areas of research to develop self-driving networks.

4. FURTHER WORK

AT can optimize the network at various levels, however,
there are some general research areas still open.

Scattered Network Logs: Network engineering collects mul-
tiple various data sets scattered with multiple network statis-
tics. Merging these to build knowledge graphs to under-
stand general application-network relationships is a chal-
lenging task. Recent work [10] uses multiple network mon-
itoring tools and big data models to find relationships be-
tween multiple diverse variable sets, and merge them into
one dashboard. Such systems could be key to generate train-
ing data sets, useful for feeding the learning model with sub-
tasks. Adding techniques such as clustering, unlabeled pat-
tern recognition and dimension reduction will be integrated
to reduce the problem domain of Big Data processing com-
putationally, and not compromising on the deduced train-
ing sets created. This includes pioneering and sustaining
architectures to optimize infrastructure for end-to-end data
movements, network providers deal with multiple users (on-
site users, remote users), collects monitoring data on uti-
lization, energy consumption, bulk data transfer, routing,

Autonomic networking

Al-enabled opportunities

Using high-level policies or intent,
components can be configured to
achieve the system goal and dy-
namically adapt to changes.

Understanding high-level intent
via knowledge representation and
natural language processing can
help elements understand the
goals of the autonomic element.

Continuously monitoring and ad-
justing resource to improve perfor-
mance and QoS can help optimize
how resources are being utilized.
Such as underutilized links.

Using unsupervised / supervised
machine learning methods to ex-
tract feature and behavior pat-
terns can help autonomic elements
understand performance.

Networks can monitor systems logs
and identify abnormal behavior
and initiate fault management and
repairing strategies for countering
failing nodes.

Time-series analysis.

Self-X Ca- | Current networking capabilities

pability

Self- Networks are labor intensive and

configuration statically configured. It is impossi-
ble to respond to dynamic changes
in traffic and network changes.

Self- Current usage of resources is stat-

optimization ically set with tuning parameters.
For example usage of links is de-
cided by the OSPF protocols.

Self- Diagnosing faults and failing links

healing can take hours and involves network
operators pouring over several sys-
tems logs to find the problem.

Self- Detecting and recovering from po-

protection | tential attacks can take hours or
weeks. Certain alarm systems can
be set to alert engineers about po-
tential problems on the network
currently happening.

Networks can detect malicious at-
tacks by analyzing time-series data
sets, to find anomalous behaviors
and automatically initiate repair
and fault management systems.

Time series analysis

Table 1: Comparison of autonomic and Al-enabled capabilities

flow dynamics and performs monitoring. For example traf-
fic Data with SNMP counters based on tagged interfaces,
monthly ingress traffic per router, flow data such as Net-
Flow for IPv4 or IPv6, topology data for link metrics, secu-
rity logs or even perfSONAR for network diagnostics, packet
loss, host-level and service level checks, I/O speed can also
be used to make decisions.

Computational Processing of Big Data: Studying the right
features and grouping can help determine parameters that
best support network traffic patterns and infer behavior.
Prior work [7] minimized computational cost by porting
SNMP data processing onto cloud clusters using Hadoop
and real-time processing. With each feature, measurable
objectives can help quantify them (e.g. uptime expressed as
percentage, or requests per application, system throughput
and operational cost). This also helps identify groups to
summarize features for application needs to create applica-
tion profiles and QoS demands.

Building the Right Objective Functions: There are two
range of objective functions - Short-term and long-term anal-
ysis objective functions. For example, optimizing current
traffic patterns based on different times of the day, or opti-
mizing loads, loss and time schedules are short-term goals.
But where regression techniques can learn traffic demands
over larger time periods to build a network model, isolate re-
peated failing paths with performance declines are good for
long-term network analysis. In order to optimize both, fo-
cusing on optimizing SDN with path-based reasoning along
with improving QoS and application intents can be key.

We argue that autonomic and self-driving are interchange-
able terms when building a autonomic network. This term
is also not the same as autonomous systems which are com-
pletely independent systems. This achievement has a po-
tential to enable a new research domain and a collection of
various ranges of autonomic networks that can work together
with other networks for user and application objectives.

5u) MEEERENGES, ¢. cibb, M. 12zard,
N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker. P4:
Programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., 44(3):87-95,
July 2014.

[2] L. R. Evans. The Large Hadron Collider: a marvel of
technology. EPF L Press: Fundamental Sciences, 2009.

[3] S. Hao, A. Kantchelian, B. Miller, V. Paxson, and
N. Feamster. Predator: Proactive recognition and
elimination of domain abuse at time-of-registration. In
ACM SIGSAC, CCS ’16, page 1568-1579, 2016.

[4] X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li,

W. Xu, and J. Rexford. Optimizing bulk transfers with
software-defined optical wan. SIGCOMM ’16, 2016.

[5] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1), Jan 2003.

[6] M. Kiran, S. Campbell, and N. Buraglio. Hecate:
Ai-driven wan traffic engineering for science. In SC
INDIS Workshop, pages 41-49, 2022.

[7] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S.
Baveja. Lambda architecture for cost-effective batch
and speed big data processing. pages 27852792, 2015.

[8] T. Mallick, M. Kiran, B. Mohammed, and
P. Balaprakash. Dynamic graph neural network for
traffic forecasting in wide area networks. In IEEE Big
Data, pages 1-10, 2020.

[9] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: Enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rewv.,
38(2):69-74, Mar. 2008.

[10] B. Mohammed, M. Kiran, and B. Enders. Netgraf: An
end-to-end learning network monitoring service. In SC
INDIS Workshop, pages 12-22, 2021.

Towards Future-Based Explanations for
Deep RL Network Controllers

Sagar Patel!, Sangeetha Abdu Jyothi’?, and Nina Narodytska?

'University of Califoria, Irvine

ABSTRACT

Lack of explainability is hindering the practical adoption of
high-performance Deep Reinforcement Learning (DRL) con-
trollers. Prior work focused on explaining the controller by
identifying salient features of the controller’s input. How-
ever, these feature-based methods focus solely on inputs and
do not fully explain the controller’s policy. In this paper, we
put forward future-based explainers as an essential tool for
providing insights into the controller’s decision-making pro-
cess and, thereby, facilitating the practical deployment of
DRL controllers. We highlight two applications of future-
based explainers in the networking domain: online safety
assurance and guided controller design. Finally, we provide
a roadmap for the practical development and deployment of
future-based explainers for DRL network controllers.

1. INTRODUCTION

Deep Reinforcement Learning (DRL), in lab settings, of-
fers state-of-the-art performance in increasingly more prob-
lems in the networking domain, such as load balancing, net-
work traffic engineering, congestion control, and adaptive bi-
trate streaming. However, DRL controllers lack real-world
deployment because operators cannot interpret, debug, or
trust them [5].

The domain of eXplainable Reinforcement Learning (XRL)
has emerged to address this lack of trust. At its core, XRL
aims to explain the decision-making process of a learned con-
troller to humans [1]. Prior work has interpreted the con-
troller’s actions by highlighting the important features given
to the controller. Metis [5] applies the concepts of decision
tree distillation and critical path identification to generate
interpretations. Trustee [3] further builds on the process of
distillation by introducing ways to improve fidelity and gen-
erating an associated trust report. We broadly categorize
these works as feature-based.

Feature-based explainers have proven their effectiveness
in a number of applications. They can identify issues with
the feature set [3], dataset [3], and model architecture [5].
However, they do not capture the forward-looking objective
of the controller’s decision-making process and thus cannot
provide a comprehensive understanding of the controller.

In this work, we present a new perspective on explainabil-
ity that we define as future-based. This approach focuses on
presenting a future-oriented perspective of the controller by

Copyright is held by author/owner(s).

2V Mware Research

capturing goals or rewards. In networking applications, fu-
ture rewards, in particular, are human-designed and repre-
sent the key performance metrics of the network application.
In this case, future-based explanations based on reward com-
ponents can provide meaningful insights into future perfor-
mance metrics, which are meaningful to network operators.
For instance, by analyzing future rewards in congestion con-
trol, we can obtain insights into the upcoming performance
of the controller in terms of throughput, latency, and loss.

We highlight two key benefits of gaining a future-based
understanding of DRL network controller behavior. First,
it can provide insights for fine-tuning the algorithm param-
eters and the reward function during DRL controller design,
which is a tedious and resource-inefficient process. Second,
during the practical deployment of DRL controllers, future-
based explainers can enable online safety assurance [6] by
supporting network observability and preemptively trigger-
ing alerts for upcoming performance declines.

Recent work has introduced future-based explainers for
gaming and robotic environments [4, 2]. However, these
solutions are not adopted in practice since they either re-
quire accurately modeling the environment or require sig-
nificant changes to the controller, which is often not feasible
or detrimental to controller’s performance. We outline the
key research challenges towards developing practical future-
based explainability frameworks in the networking domain.
First, the forward-looking view of the controller contains a
vast amount of information; capturing it succinctly and pre-
cisely is crucial for practical adoption. Second, future-based
explainers must have low-latency explanations to spot safety
violations before they happen, which is critical for tasks like
online safety assurance. Third, they must function sepa-
rately from the controller. This ensures they can be broadly
applied without making extensive changes to the controller
that could negatively affect the performance. Fourth, the
explainers should be robust to malicious attacks, noise, and
distribution shifts, thereby avoiding a false sense of security.

2. BACKGROUND

In this section, we provide a background of Reinforcement
Learning and Adaptive Bitrate Streaming.

Reinforcement Learning. In Reinforcement Learning, an
agent interacts with an environment. It is given a state s,
and takes an action a; according to its policy m(Als¢). The
environment reacts to the agent’s action and gives back to
it the reward 7, along with the next state s:+1. The goal
of the agent is to change its policy such as to maximize the
reward over time, defined as the return G = Y52 v'r.

State: H%Or?(())f):E
~~r Throughput U
== Buffer __,| Future-Based VS.
Explainer
Actions to Explain: 480p:
1080p, 480p Medium QOE

State: 1089p:
Stalling
W Throughput
=— Buffer __,| Future-Based VS.
- Explainer
Actions to Explain: 480p:
1080p, 480p Medium QoE

(a) A contrastive future-based explanation for actions
within state S1

(b) The contrastive explanation for actions within state Sz

Figure 1: We illustrate how future-based explainers can provide insights across states and actions. We consider two seemingly
similar states, S1 and Sz, and seek to understand why the controller prefers different actions in them. We query the explainers

with two actions: 1080p and 480p under both state S1 (a) and Sz (b).

We can then peek into the future impact of these

actions under both states and understand that 1080p is preferred in S because it leads to high QoE, but it is not preferred

in S2 because it causes stalling.

State:
Vap Throughput
== Buffer N Future-Based | | Future Safety
Explainer Violation Alert
Actions to Explain: i
Controller’s action

Fallback to Safe
Baseline

Figure 2: Online Safety Assurance: With the ability to capture the
future performance of the controller, future-based explainers can
be used to raise alerts about safety violations before they occur,
falling back to a safe baseline and guaranteeing tail-ended perfor-
mance.

Adaptive Bitrate Streaming. Adaptive Bitrate Stream-
ing (ABR) works by dividing the video into chunks and en-
coding them at various discrete bit rates. During streaming,
the most suitable bit rate for each chunk is chosen based on
network conditions. The client also has a short buffer that
can hold chunks yet to be seen. The ABR controller sequen-
tially selects the bitrate to maximize the client’s Quality of
Experience (QoE), a numerical measure that awards high
quality, and penalizes both changes in quality and stalling.

3. FUTURE-BASED EXPLAINERS

In this section, we first provide an overview of future-
based explainers and how they can concretely enhance ex-
plainability. Next, we highlight two key applications of
future-based explainers in the networking domain towards
facilitating practical deployment of DRL controllers.

3.1 Overview

Future-based explainers shed light on the future goals or
performance of the DRL controller. To train a future-based
explainer, we take three inputs: the DRL controller, the sim-
ulation environment, and the training traces. We then roll
out the controller, collecting the states, actions, and rewards
the controller gets while interacting with the simulation en-
vironment. Finally, we use this interaction data to train the
future-based explainer.

During inference, we can query the future-based explainer
with a state and action to obtain a view into the impact of
that action—getting explanations built around future states
or rewards.

Debug via Future-
Based Explanations

State:
Throughput
— Buffer Future-Based Increase weight on
Explainer — > stalling reward
Actions to Explain: l component
Action of controller Long stall is
with high stalling expected

Figure 3: Guided Controller Design: Future-based explanations
can help tune controller design. For a controller acting aggressively
under poor network conditions, these explanations reveal stalling
as an expected outcome. This insight helps the operator see that
the reward function needs greater penalties for stalling.

As a concrete example, let us consider a future-based ex-
plainer of an ABR controller that captures future perfor-
mance through rewards and a scenario where the operator
is looking to understand why the controller chooses different
actions under seemingly similar network conditions. The
operator selects the states representing this scenario and
queries the explainer for the different actions it takes. In
Figure 1, we visualize this scenario. We want to understand
why the controller prefers to send a 1080p video chunk in S;
while a 480p chunk in S2, despite both of them having un-
stable throughput and similar buffer occupancy. We query
a future-based explainer with both actions in both states.
We can see that in Sz, the 1080p action is likely to lead to
stalling and is thus avoided. Meanwhile, because the same
is not expected in Sp, the 1080p action provides a higher
quality of experience.

Thus, future-based explanations offer a medium to com-
pare the impact of different actions from within and across
multiple states.

3.2 Applications

Next, we discuss how insights offered by future-based ex-
planations can be leveraged in the design and deployment of
DRL controllers. We highlight two key applications: guided
controller design and online safety assurance.

Guided Controller Design. Implementing practical DRL
solutions demands various design choices. These range from
selecting the feature set, picking the DRL algorithm and
its hyperparameters to designing the reward function and
learning parameters. Tuning of these design parameters is

a tedious and resource-inefficient process in practice, even
for DRL experts. Typically, these parameters are tuned
through a trial-and-error process.

Future-based explainers can aid in this design process.
They offer insight into the exact factor the DRL algorithm
optimizes: future performance. To demonstrate their utility
in identifying DRL algorithm issues, we examine an exam-
ple. In Figure 3, we debug an aggressive controller under
poor network conditions. Using a future-based explainer,
we find that the controller, despite anticipating long stalls
due to its actions, still opts for them. This discovery sug-
gests to the operator the need to increase the penalty for
the stalling reward component.

Online Safety Assurance. Online Safety Assurance poses
the challenge of detecting when the learning-based policy is
likely to reach an unsafe state and avoiding it by falling back
to a reliable and extensively tested baseline policy. This
fallback mechanism acts as a “safety net” for learning-based
systems, designed to facilitate high-performance outcomes
under ideal circumstances while also offering minimum per-
formance guarantees under less than perfect conditions [6].
Existing research has suggested that the problem can be ad-
dressed by quantifying uncertainty within the learning pol-
icy [6], where uncertainty serves as an indirect measure of
potential unsafe states. This has been accomplished either
through an ensemble method or novelty detection.

In this context, future-based explainers can be applied di-
rectly to foresee and alert for possible unsafe behavior with-
out the need for a proxy. Figure 2 illustrates how such a sys-
tem would work. The future-based explainer would receive
the current state as input, predict the controller’s future
behavior, and issue warnings for potential safety violations.
In response to these warnings, a fallback to a safe baseline
can be triggered. This ensures the overall system maintains
compliance with safety requirements and performance com-
mitments.

4. KEY CHALLENGES

In this section, we describe the main research challenges
in developing practical future-based explainers.

Concise Explanations. Future-based explainers must cre-
ate their explanations by considering the future: a series of
states, actions, and rewards. The challenge lies in convert-
ing this complex information into a format that humans can
easily understand.

Low-Latency Inference. To support real-time applica-
tions such as online safety assurance, future-based explainers
must provide explanations promptly. Moreover, this process
should not disrupt the primary operations of the controller.
In short, generating explanations must add minimal cost to
the controller’s decision latency. Fortunately, future-based
explainers can offer insights beyond a single step in the fu-
ture. Thus, they can function in parallel without being on
the critical path of the controller.

Separation from the Controller. To ensure broad ap-
plicability, future-based explainers should not require signif-
icant modifications to the controller. Such changes can harm
the controller’s performance, introducing a performance and
explainability trade-off. Instead, explainers should leverage
the controller’s inner workings, such as its learned features,
without altering them.

Robustness of Explanations. The ability to create ex-
planations that are robust to malicious attacks, noise, and
shifts in distribution is a significant, unresolved challenge.
Notably, even several widely-used feature-based explainers
have proven susceptible to these threats [8]. However, build-
ing on early intuitions [7] and addressing this issue is critical
to support trust-sensitive applications such as online safety
assurance.

5. CONCLUSION

In this paper, we present an initial perspective on a new
angle of explainability with future-based or forward-looking
explainers. We highlight their ability to power guided con-
troller design and enable online safety assurance. We then
provided a road map for practically implementing future-
based explainers by detailing key open research challenges.
We envision this work to lay the foundation for a broad ap-
plication of future-based explainers.

6. REFERENCES

[1] Nadia Burkart and Marco F Huber. A survey on the
explainability of supervised machine learning. Journal
of Artificial Intelligence Research, 70:245-317, 2021.

[2] Francisco Cruz, Richard Dazeley, Peter Vamplew, and
Ithan Moreira. Explainable robotic systems:
Understanding goal-driven actions in a reinforcement
learning scenario. Neural Computing and Applications,
pages 1-18, 2021.

[3] Arthur S Jacobs, Roman Beltiukov, Walter Willinger,
Ronaldo A Ferreira, Arpit Gupta, and Lisandro Z
Granville. Ai/ml for network security: The emperor has
no clothes. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications
Security, pages 1537-1551, 2022.

[4] Zoe Juozapaitis, Anurag Koul, Alan Fern, Martin
Erwig, and Finale Doshi-Velez. Explainable
reinforcement learning via reward decomposition. In
IJCAI/ECAI Workshop on explainable artificial
intelligence, 2019.

[5] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu,
Hongzi Mao, and Hongxin Hu. Interpreting deep
learning-based networking systems. In Proceedings of
the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, pages 154-171, 2020.

[6] Noga H Rotman, Michael Schapira, and Aviv Tamar.
Online safety assurance for learning-augmented
systems. In Proceedings of the 19th ACM Workshop on
Hot Topics in Networks, pages 88-95, 2020.

[7] Dylan Slack, Anna Hilgard, Sameer Singh, and
Himabindu Lakkaraju. Reliable post hoc explanations:
Modeling uncertainty in explainability. Advances in
neural information processing systems, 34:9391-9404,
2021.

[8] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh,
and Himabindu Lakkaraju. Fooling lime and shap:
Adversarial attacks on post hoc explanation methods.
In Proceedings of the AAAI/ACM Conference on Al,
Ethics, and Society, pages 180-186, 2020.

Enabling Perception-Driven Optimization in Networking

Yihua Cheng, Xu Zhang, Junchen Jiang (University of Chicago)
{yihua98,zhangxu,junchenj}@uchicago.edu

ABSTRACT

Service providers struggle to catch up with the rapid growth
in bandwidth and latency demand of Internet videos and
other applications. An essential contributor to this resource
contention is the assumption that users are equally sensitive
to service quality everywhere, so any low-quality incidents
must be avoided. However, this assumption is not true. For
example, our work and other parallel efforts have shown that
more video users can be served with better quality of experi-
ence (QoE) if we embrace the fact that the QoE’s sensitivity
to video quality varies greatly with the video content. To un-
leash such benefits, the application systems must be driven
by not only system measurement data but also user feedback
data that capture users’ perceptions of service quality. In
this short paper, I will highlight some of our recent efforts
toward the efficient collection of user feedback and enabling
perception-driven optimization for Internet applications.

1. INTRODUCTION

The landscape of online applications has seen a sea change
over the past few years, with multiple trends driving up the
bandwidth demands for online videos. The rise of ultra high-
definition (4K/8K/VR) videos dramatically increases the
per-video bandwidth demand and is projected to be 22% of
global video traffic in 2022 from 3% in 2017. Video traffic to
mobile devices has also more than tripled in the last 3 years.
The rising bandwidth demands widen the gap between user
expectation and user-perceived quality of experience (QoE)
measured in mean opinion score or user engagement.

Achieving better bandwidth-QoE tradeoffs relies on accu-
rate QoE models. Widely used in modern video delivery sys-
tems, a QoE model takes a streamed video (such as buffering
stalls and visual quality index, etc) as input and returns a
predicted QoE as output. Most adaptive-bitrate (ABR) and
CDN/ISP resource allocation algorithms (e.g., [9, 6]) use
QoE models to predict when increasing video quality has
more QoE improvement. Thus, any errors of a QoE model
can mislead these optimization techniques to pick subop-
timal decisions and miss opportunities to improve QoE or
save bandwidth.

Indeed, recent efforts have shown that the sensitivity of
QoE to these optimizations differs significantly across videos,
web pages, and even across different segments of the same
video (e.g., [11, 2]). Therefore, having more accurate QoE
measurements allows content providers to strategically allo-
cate more compute/bandwidth resources or enhance quality
at points of higher QoE sensitivity (see §2). With these
trends, QoE measurements are increasingly needed.

While there have been many efforts to make QoE mea-
surements faithfully reflect true user experience, relatively
less attention has been given to building a system that ob-

Copyright is held by author/owner(s).

tains QoE measurements fast. Two relevant efforts exist—
one automates QoE measurements by using crowdsourcing
and the other uses collected QoE measurements to dynam-
ically prune videos that no longer need QoE ratings. Un-
fortunately, it is challenging to combine the two ideas, be-
cause with the existing crowdsourcing interface, one must
specify which videos to be rated by how many users before
each crowdsource task begins, making it hard to dynam-
ically prune redundant videos without launching multiple
crowdsourcing campaigns. In short, prior work suffers from
two limitations: (7) The speed to obtain QoE measurements
is still quite slow due to the traditional crowdsourcing inter-
face; and (i) QoE measurements can be obtained for only
on-demand content, not live content.

This short paper introduces two projects' that aim at
addressing these limitations. First, to speed up QoE crowd-
sourcing, we have developed and open-sourced®> VidPlat, the
first re-usable tool for fast and automated QoFE measure-
ments. VidPlat allows dynamic pruning of QoE video sam-
ples in one single crowdsource task. To realize it, Vid-
Plat creates a new shim layer between the researchers and
the crowdsourcing platform, allowing researchers to define a
logic that iteratively creates new videos that need more rat-
ings based on the latest QoE measurements. Compared to
existing QoE measurement methods, VidPlat (1) keeps all
QoE measurements in one crowdsourcing task, thus mini-
mizing the overhead to initialize tasks and re-calibrate/train
raters, (2) dynamically decides when enough ratings are
gathered for each video, thus reducing the total number of
QoE ratings, and (3) is an open-source platform that future
researchers can re-use and customize.

Second, to enable the QoE measurements on live videos,
we present SensitiFlow, an alternative architecture that on-
line profiles and adapts to quality sensitivity by continu-
ously gathering and analyzing QoE-related feedback from
real video sessions watching the same video. Concretely,
SensitiFlow orchestrates the adaptive-bitrate (ABR) logic
of video sessions. SensitiFlow runs an online feedback loop
with two components. At a high level, SensitiFlow main-
tains the quality-sensitivity profile of each video segment
by continuously collecting QoE-related feedback from on-
going video sessions, which can be average user ratings or
whether a higher percentage of users quit/skip watching a
video segment under low quality than under high quality.
Based on the up-to-date quality-sensitivity profiles, Sensiti-
Flow makes ABR decisions to improve QoE for concurrent
and future video sessions watching the same video.

2. WHY IMPROVING EFFICIENCY OF QOE
MEASUREMENTS

Since it is hard to directly ask users to rate their subjective

"https://people.cs.uchicago.edu/~junchenj/
perception_driven_optimization
“https://github.com/orgs/QoEStudies/repositories

experience in real-time, researchers and content providers
run offline user studies to assess QoE under various objective
quality metrics. Participants are asked to watch an applica-
tion demo. In video QoE, a demo can be a video streamed
with a one-second buffering stall deliberately added at a cer-
tain point. In web QoE, a demo can be a web page loaded
with a certain page load time (e.g., a certain above-the-fold
time). Then the participants rate the subjective QoE score
in the range from 1 to 5. Finally, we can calculate the mean
QoE scores of each demo video and model the relationship
between QoE and quality metrics.

Potential of QoE-driven optimization: Traditionally,
QoE models are expected to capture the general relationship
between QoE and a few quality metrics. As a result, once
enough QoE measurements are collected to model QoE on
several representative videos or web pages, the QoE models
will be re-used on other videos or pages. However, many re-
cent efforts have shown that more granular, context-specific
QoE models, which quantify the QoE-quality relationship
of individual video (or even video segments) [11]. The shift
from one-size-fits-all QoE models to context-specific QoE
models quickly increases the frequency and amount of QoE
measurements. For instance, Netflix produces on average
more than 580 minutes worth of new video content every
day. If it builds a separate QoE model for each minute of
video, it will ask 10 raters to watch and rate 100 hours of
videos every day. Similarly, web QoE research also shows a
similar increase in the demand for QoE measurements [2,
3]. These context-specific QoE models can substantially
improve QoE without using more bandwidth or compute
resources. For example, in video streaming, applying per-
video QoE models to adaptive bitrate (ABR) algorithms in
video players can improve 15.4% QoE without using more
network bandwidth [11]; in web services, we can have 40%
QoE improvement by allocating computing resources across
different web requests by their QoE models [3, 12]. More
QoE measurements are also needed when a new optimization
(e.g., a new video bitrate ladder or chunk segmentation [7])
is proposed whose impact on QoE may not be captured by
existing QoE models.

Related work and limitations: As the need for QoE
measurements rises, so does the need to reduce the latency
(to recruit workers and collect QoE ratings) and the cost of
QoE measurements (total compensation given to the work-
ers who provide the QoE ratings).

Two efforts exist to reduce the delay and cost of QoE mea-
surements. First, several efforts (e.g., [5, 10]) have shown the
potential of automating QoE measurements using crowd-
sourcing platforms like Amazon Mechanical Turk (MTurk)
and Prolific. These works have been focused on retaining
reliable crowd workers, calibrating QoE ratings, mitigating
hidden confounders (e.g., order of assignment completion
or different user devices), and reducing cost via dynamic
pricing. Second, depending on the QoE ratings already
collected, many demos would be redundant and can be
pruned to let participants rate fewer demos [8]. For in-
stance, to investigate how video bitrate affects the QoE of a
particular video, if human raters are unable to perceive the
QoE difference between bitrates of 1 Mbps and 10 Mbps,
then no ratings will be needed for the bitrates between 1
Mbps and 10 Mbps on this video.

A natural question then is will QoE measurement be au-
tomated and made much faster as promised by these ap-

proaches? Unfortunately, the answer is no, because to dy-
namically prune demos, researchers have to sequentially launch
a series of crowdsourcing tasks and use the QoE measure-
ments from one task to decide which demo can be pruned
in the next task, causing significant delays.

3. VidPlat: A PLATFORM FOR FASTER

QOE CROWDSOURCING

To fully realize the speed benefit of crowdsourced QoE
measurements, we have developed VidPlat, the first re-usable
open-source tool that enables dynamic demo pruning to speed
up crowdsourced QoE measurements. VidPlat serves as a
shim layer between the researchers and the crowdsourcing
platforms. VidPlat launches one task, but unlike the tra-
ditional crowdsourcing interface that requires researchers to
pre-determine the demos and the number of QoE ratings
per demo upfront, VidPlat offers a more flexible interface to
researchers. Researchers are allowed to define a logic and
a few initial demos, and upon receiving a QoE rating, Vid-
Plat invokes this logic to determine the subsequent demos
based on the logic’s output. Then instead of immediately
showing the next demo to raters, the next demo will be first
put in a queue, and VidPlat will decide which demo in the
queue should be given to the next rater. Using this “indi-
rection” between which demos need more QoE ratings and
which demo to be rated next by a worker, VidPlat retains
the flexibility to randomize the order demos seen by a rater
and avoid asking a worker to rate too many (similar) demos.

In short, with VidPlat, researchers do not need to deter-
mine all the demos or the required number of QoE ratings
before the user study task begins; instead, VidPlat lowers
the development burden while still collecting crowdsourced
QoE measurements with minimum redundancy. As a result,
it greatly reduces the number of demos and QoE ratings
collected, thereby saving both time and cost.

Use cases: VidPlat has already been used in three IRB-
approved QoE-related projects: (i) investigating the rela-
tionship between webpage load time and QoE [12]; (i) ex-
ploring the correlation between video quality and QoE in
on-demand video streaming [11]; and (i4) comparing the
QoE impact of video bitrate and motion-to-photon (MTP)
latency in online video gaming [4]. VidPlat’s dynamic as-
signment determination significantly improved the efficiency
of our user studies. For instance, compared to Sensei [11], a
prior tool employing a traditional interface, VidPlat reduced
both costs and latency by more than 50% in these use cases,
while obtaining QoE models that realize the same QoE im-
provement as Sensei. These empirical results demonstrate
the tangible benefits of our novel approach.

4. SensitiFlow: ENABLING QOE-DRIVEN

OPTIMIZATION IN LIVE VIDEOS

Though VidPlat speeds up QoE measurements, the con-
tent of the video must be known beforehand. How to es-
timate the variability of quality sensitivity in live videos?
One may use heuristics, such as VMAF or the popularity of
a video segment to infer quality sensitivity, but how sensi-
tive users are to quality under different content is often more
complex than what can be captured by these heuristics [11].

So can we use real users to profile quality sen-
sitivity, especially in live videos? Fortunately, this is
feasible since most views of a live video segment occur dur-

o

o

=]

N a N Q9
o
=]

(]
N a N o
(3

3]

Percentage of
arrived sessions

o

o

Percentage of
arrived sessions

0 10 20 30 40 50 60
Elapsed time after the first view (sec)

0 15 20 25 30
Elapsed time after the first view (sec)

(a) A (live-linear) TV show (b) A live-event sports video

Figure 1: Example arrival patterns of views of the same live
video segment: 20% of sessions watch the same content at
least 3 seconds earlier than 60% of sessions.

Online service
Latest quality- @ - | sensitivity modeling
sensitivity profiles ﬁ ’ ;
Measurements (User

-
actions & video quality)

1st session

2nd session

Figure 2: Each session in SensitiFlow uses the latest quality-
sensitivity profile to make ABR decisions and updates the
global coordinator with the latest user actions.

ing a non-trivial time span of 30-40 seconds after it first
being viewed. Figure 1 shows the relative wall-clock time
of sessions watching a chunk of a live-linear video (24/7 live
programs [1] such as talk shows, TV plays) and a live-event
video (e.g., live sports broadcasting). Our conversation with
domain experts has confirmed that such time discrepancies
among live video viewers are commonly accepted in the in-
dustry. Over the last decades, the modest time difference
(10-30 seconds) among viewers has become an accepted fea-
ture (rather than a bug) of live internet videos and efforts to
realize full synchronicity in large-scale live events have been
lukewarm due to the implementation complexity.

Inspired by this observation, SensitiFlow’s global coordi-
nator (depicted in Figure 2) constantly collects online mea-
surements of per-segment quality and QoE-related feedback
(e.g., exit or skip) from video sessions to maintain an up-
to-date view of the quality-sensitivity profile of each video.
A quality-sensitivity profile maps each segment and quality
level to the estimation and variance of quality sensitivity, in
engagement drops and retention drops. It can answer the
“what-if” question: what would the expected drop in engage-
ment/retention for a given quality at each segment? When a
session’s ABR logic decides the bitrate of the next video seg-
ment, it will query the quality-sensitivity profiles and make
ABR decisions using logic such as the one described in [11].

To test the gains of SensitiFlow on user engagement (QoE),
we consider a simple logic that works in two phases. In the
profiling phase, the first N sessions use a default ABR logic,
and their per-segment user engagement and quality metrics
are collected and used to estimate the quality sensitivity of
the segment. After N sessions, it enters the optimization
phase, in which each session runs a variant of the quality-
sensitivity-aware ABR algorithm proposed in [11]. The al-
gorithm takes as input the player’s current state (history
throughput, buffer length, etc) and the quality sensitivity of
the next three segments and returns as output ABR decision
for the next chunk. We evaluated QoE in user engagement
(view time) using real traces of 7.6 million video sessions
from a content provider. Our preliminary results show that

SensitiFlow can realize up-to 80% of the improvement ob-
tained by a hypothetical “oracle” system that knows quality
sensitivity in advance.

5. VISION: USER-CENTRICNETWORKING

SensitiFlow and VidPlat show the early promise of a more
user-centric approach, where measurements on user erperi-
ence and actions are first-class citizens of system monitoring
and optimization. Just like systems metrics indicate current
system states, user actions and engagement reveal individ-
ual user’s experiences, as they watch a video, browse a web
page, or use a mobile app. While we study only video sys-
tems in this paper, we think that the general approach may
be applicable to other network applications such as gaming
and mobile web. For instance, users’ tolerance to web page
loading time is better modeled by directly observing users’
natural actions (e.g., [12, 10]). This user-centric approach
calls for novel system designs to realize the tight control loop
between (near-)real-time user experience measurement and
system adaptation. SensitiFlow and VidPlat take a step in
this direction, and working toward such a perception-driven
system is an active direction of future research.

6. REFERENCES

[1] Linear Live Streaming 101. https:
//antmedia.io/linear-live-streaming-101/.

[2] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha,
and V. Sekar. Klotski: Reprioritizing web content to
improve user experience on mobile devices. In NSDI,
2015.

[3] P. Casas, S. Wassermann, N. Wehner, M. Seufert, and
T. Hossfeld. Not all web pages are born the same
content tailored learning for web qoe inference. In 2022
IEEE International Symposium on Measurements &
Networking (ME&N), pages 1-6. IEEE, 2022.

[4] Y. Cheng, A. Arapin, Z. Zhang, Q. Zhang, H. Li,

N. Feamster, and J. Jiang. Grace++: Loss-resilient
real-time video communication under high network
latency. arXiv preprint arXiv:2305.12333, 2023.

[5] T. HoBfeld, M. Hirth, J. Redi, F. Mazza,

P. Korshunov, B. Naderi, M. Seufert, B. Gardlo,

S. Egger, and C. Keimel. Best practices and
recommendations for crowdsourced qoe-lessons learned
from the qualinet task force” crowdsourcing”. 2014.

[6] J. Jiang, S. Sun, V. Sekar, and H. Zhang. Pytheas:
Enabling data-driven quality of experience
optimization using group-based
exploration-exploitation. In USENIX NSDI, 2017.

[7] M. Licciardello, L. Humbel, F. Rohr, M. Griiner, and
A. Singla. [solution] prepare your video for streaming
with segue. Journal of Systems Research, 2(1), 2022.

[8] X. Liu, W. Song, Q. He, M. Di Mauro, and A. Liotta.
Speeding up subjective video quality assessment via
hybrid active learning. IEEE Transactions on
Broadcasting, 69(1):165-178, 2022.

[9] H. Mao, R. Netravali, and M. Alizadeh. Neural
adaptive video streaming with pensieve. In ACM
SIGCOMM, 2017.

[10] M. Varvello, J. Blackburn, D. Naylor, and
K. Papagiannaki. Eyeorg: A platform for
crowdsourcing web quality of experience
measurements. In CoNEXT, 2016.

[11] X. Zhang, Y. Ou, S. Sen, and J. Jiang. Sensei:
Aligning video streaming quality with dynamic user
sensitivity. In USENIX NSDI, 2021.

[12] X. Zhang, S. Sen, D. Kurniawan, H. Gunawi, and
J. Jiang. E2e: embracing user heterogeneity to
improve quality of experience on the web. In ACM
SIGCOMM. 2019.

A NetAl Manifesto (Part |):
Less Explorimentation, More Science

Ronaldo A. Ferreira
UFMS

Roman Beltiukov
UCSB

Walter Willinger Arpit Gupta Arthur S. Jacobs
NIKSUN, Inc. UCSB UFRGS
Lisandro Granville
UFRGS
ABSTRACT

The application of the latest techniques from artificial
intelligence (AI) and machine learning (ML) to improve
and automate the decision-making required for solving real-
world network security and performance problems (NetAl,
for short) has generated great excitement among networking
researchers. However, network operators have remained
very reluctant when it comes to deploying NetAl-based
solutions in their production networks, mainly because the
black-box nature of the underlying learning models forces
operators to blindly trust these models without having
any understanding of how they work, why they work, or
when they don’t work (and why not). Paraphrasing [1], we
argue that to overcome this roadblock and ensure its future
success in practice, NetAl “has to get past its current stage
of explorimentation, or the practice of poking around to
see what happens, and has to start employing tools of the
scientific method.”

1. INTRODUCTION

Most deployed networking solutions, be they ubiquitous
protocols such as TCP or special-purpose systems such as
load balancers, make decisions based on domain-specific
heuristics that rely on partial network state information
extracted from active or passive network measurements.
For more than two decades, networking researchers have
been exploring how to improve and automate these
heuristics-based decision-making processes with the help of
NetAl In the process, they have enthusiastically embraced
the development of new learning models by applying a
workflow paradigm commonly referred to as the “standard
ML pipeline.” Comprised of (i) a learning task that is char-
acterized by a model specification, (4) a training dataset,
and (i) an independent and identically distributed (iid)
evaluation procedure, this paradigm provides a blueprint for
producing trained models that “work.” Here, the statement
“the model works!” is short for “according to the evaluation
procedure used, the model has excellent expected predictive
performance (e.g., Fl-score close to 1) when used for the
originally posed learning task.”

Like in many other application domains of ML (e.g.,
computer vision, self-driving vehicles), leveraging this
workflow paradigm in the networking domain has also
enabled transformational progress, with MI-based solu-

Copyright is held by author/owner(s).

tions frequently and easily outperforming domain-specific
state-of-the-art heuristics. However, despite this progress
and ensuing promises, NetAl in its current form has largely
failed to gain traction among network operators.

In this paper, we criticize the use of the standard ML
pipeline that is popular with NetAl researchers. In par-
ticular, we show that relying on this widely-adopted ML
workflow is fraught with problems that question the scien-
tific foundations of the artifacts it produces and argue for
abandoning it altogether in favor of a new generation of ML
pipelines. In the process, we elaborate on the urgent need to
be able to develop ML models that are either inherently ex-
plainable or can be explained post-hoc by applying available
global explainability tools. We describe an initial attempt at
designing and implementing such a new ML pipeline that is
capable of accomplishing this feat, comment on its ability to
aid the development of a new generation of learning models
that focus on the generalizability and safety of ML models,
and discuss some exciting new opportunities that arise as a
result of this proposed paradigm shift in ML model devel-
opment and evaluation.

2. THE “DUMBING DOWN”
WORKING RESEARCH

The main reason why ML-based solutions have not been
widely adopted in networking is that the models that the
standard ML pipeline outputs are in general black boxes.
In effect, such an output forces network operators to blindly
trust the resulting learning model, providing them with little
to no understanding of how the model works, why it works,
or when it doesn’t work (and why not).

This dissatisfaction has been compounded by an increas-
ing awareness among researchers that the standard ML
pipeline defines indeed a low bar for claiming that the
trained models it produces as output “work.” In particular,
by relying on an evaluation procedure that assesses an
output model’s expected predictive performance simply
on data drawn from the same distribution as the training
dataset (e.g., a randomly held-out subset of the training
dataset), the standard ML pipeline lacks any means to
quantify the effectiveness of the trained models beyond
what is captured by commonly-used metrics such as the F1-
score. In effect, we argue that NetAl in its current form has
contributed to a “dumbing down” of networking research
as it has promoted a blind belief in the high-performant
black-box models it considers.

We are not alone in criticizing the standard ML pipeline,
its widespread and largely uncontested use across differ-

OF NET-

ent application domains of ML, and its overly pragmatic
approach to evaluating the resulting trained models solely
based on their effect (i.e., “they work!”). For example, there
is a growing body of work in the ML literature that is con-
cerned with the surprisingly poor reported performance of
many of the trained models that result from an application
of the standard ML pipeline as soon as they get deployed
in real-world environments [3, 4]. In fact, many of these
works identify the fact that modern ML workflows such as
the standard ML pipeline tend to be underspecified (i.e.,
return many distinct models with equivalently strong test
performance) as a key reason for why the resulting trained
models do not generalize (i.e., fail to perform as expected
in deployment). Because of an evaluation procedure that
relies on held-out data that have the same distribution as
the training data, the standard ML pipeline has been shown
to be especially prone to this underspecification problem,
resulting in the observed poor model behavior in practice.

3. UNDERSTANDING CAUSE VS. EFFECT

As more of the failures and limitations of modern ML
workflows such as the standard ML pipeline come to light, it
is arguably justified to describe adhering to these workflows
as being akin to “explorimentation” [1]. In fact, in the con-
text of NetAl, we agree with the basic sentiment expressed
in [1] that “while appropriate for the early stages of research
to inform and guide the formulation of a plausible hypothe-
sis, [the standard ML pipeline] does not constitute sufficient
progress to term the effort scientific.” Moreover, as NetAl
is trying to overcome the general reluctance of network op-
erators to deploy its ML-based solutions in their production
networks, the standard ML pipeline’s pragmatic “it works!”
approach, typically quantified in terms of high F1-scores, to
assessing its output by means of an iid evaluation procedure
is no longer sufficient. In fact, to paraphrase [1], to ensure
that network operators can begin to understand cause and
not just effect of proposed ML-based solutions, “it will be
necessary to get past the stage of explorimentation and start
employing tools of the scientific method.”

At the same time, we are not arguing for universally abon-
doning the use of ML workflows such as the standard ML
pipeline and replacing them with “tools of the scientific
method.” For example, when employing ML-based solutions
for low-stakes decision-making (e.g., generic image classifi-
cation, commercial recommendation systems, spam filter-
ing), understanding how and why the underlying learning
models make their decisions or knowing when they work or
when they don’t work is generally unnecessary or overkill —
in such cases, for a black-box model to make a few wrong
decisions is fully expected and tolerated, has little to no
repercussions (e.g., financial or reputation-wise), and can
be fixed in future versions of the trained models. However,
the situation is drastically different in cases where ML mod-
els are used for high-stakes decision-making (e.g., predict-
ing criminal recidivism risk, child welfare screening, medical
treatment recommendation, self-driving vehicles) and where
making a wrong decision or using an underspecified model
can negatively impact the lives of people or the financial
health or public reputation of companies. In such cases, in-
novative approaches that emphasize understanding “cause”
over assuring “effect” which, after all, is the raison d’étre
of science, should be at the forefront of researchers’ minds
so they can successfully explain a trained model’s decision-

making process to end users who look for assurances that
they can trust a proposed trained model.

In the NetAI domain, we say network operators “trust” a
given ML-based solution if they are comfortable with relin-
quishing control to the model (see [4] and references therein).
Given that network operators have remained reluctant to de-
ploy trained models produced by the standard ML pipeline
is evidence that they generally don’t trust Net Al-based solu-
tions. This applies in particular to trained models proposed
for solving network security- or network performance-related
problems where the consequences of a wrong decision can
range from lost revenues, service contract terminations, cus-
tomer dissatisfaction, and shutdown of business-critical ser-
vices. As such, these models are clearly non-starters when
it comes to engender trust in ML-based solutions among
network operators. In contrast, “white-box” models such
as decision trees promise to be ideal vehicles for convincing
network operators that they can trust the models. These
models not only describe in detail how and why every single
decision is made, but domain experts can also examine them
to find out when they work or don’t work (and why not) and
provide a means for scrutinizing the obtained model for in-
dications of potential underspecification issues.

4. THE “OPENING UP” OF NETWORK-
ING RESEARCH

To engender more trust in ML models, recent studies
have argued for developing ML workflows that, instead of
first creating black-box models and then trying to “explain”
them, should generate white-box models such as decision
trees that are inherently interpretable in the first place [2].
An attractive property of such workflows would be that they
eliminate the need for any post-hoc explainability efforts be-
cause the models they output already reveal the underlying
process by which they make their decisions and can therefore
be directly checked and assessed by human domain experts,
at least in theory. They also invite a direct comparison with
the decisions domain experts would make when faced with
the same data. However, as commented in [2], “the belief
that there is always a trade-off between accuracy and inter-
pretability has led many researchers to forgo the attempt to
produce an interpretable model. This problem is compounded
by the fact that researchers are now trained in deep learning,
but not in interpretable machine learning. Worse, toolkits of
machine learning algorithms offer little in the way of useful
interfaces for interpretable machine learning methods.”

Networking researchers contemplating developing ML-
based solutions for their problems are therefore confronted
with a serious dilemma. On the one hand, most modern
ML pipelines, including the standard ML pipeline, focus
almost exclusively on producing black-box models, but
the use of such models in ML-based solutions that involve
making high-stakes decisions is being increasingly criticized
for the potentially tremendous harm they can inflict. The
black-box models’ inability to provide understanding in
how and why they make their decisions also has the largely
unintended consequence of contributing to a continued
“dumbing down” of networking research. On the other
hand, few, if any, ML pipelines exist today that have
been explicitly designed to produce white-box models
such as decision trees, even though their use in ML-based
solutions that involve making high-stakes decisions is not

only preferred but recommended for the full transparency
they provide for potentially life-altering decision-making.
Moreover, the white-box models’ ability to provide under-
standing in how and why they make their decisions makes
them ideally suited for “opening up” networking research;
that is, transforming networking research into a science by
means of both a renewed focus on understanding “cause”
and an intentional effort towards de-emphasizing “effect”.
In an effort to resolve this dilemma, we recently developed
and implemented TRUSTEE [4]. TRUSTEE defines a novel ML
workflow that takes the trained black-box model (i.e., model
specification, training dataset) that results from an applica-
tion of the standard ML pipeline as input and generates a
white-box model in the form of a decision tree and an asso-
ciated trust report as output. In synthesizing this decision
tree, TRUSTEE strikes a balance between model fidelity (i.e.,
accuracy of the decision tree with respect to the black-box
model), model complexity (i.e., the size of the decision tree
and its explicitness and intelligibility), and model stability
(i.e., correctness, coverage, and robustness of the decision
rules or branches of the decision tree). Using the decision
tree that TRUSTEE extracts from the given black-box model,
networking researchers can examine how or why the trained
black-box model makes its decisions for a majority of data
samples and can scrutinize it for indications of potential un-
derspecification issues. Moreover, domain experts can use it
to compare whether or not the black-box model makes the
same decisions they would make when faced with the same
data samples, and network operators can inspect TRUSTEE’s
output to gauge their trust in the given black-box model.

5. 2 STEPS FORWARD, 1 STEP BACK?

Early indications are that TRUSTEE has been a welcome
and much-needed addition to the toolkits that researchers
in the area of NetAl have relied on. As the use of ML in the
networking domain continues to attract large numbers of re-
searchers, TRUSTEE provides a concrete means for question-
ing some of the exhibited hubris and overconfidence by Ne-
tAl researchers, scrutinizing the soundness of NetAl-based
solutions that have been reported in the existing literature,
and performing some much-needed sanity checks on the myr-
iad of proposed black-box models that have been trained
for solving networking-specific problems. For example, by
examining more than half a dozen of frequently cited and
fully reproducible ML models from the existing networking
literature, all of which are the results of using the standard
ML pipeline, we found TRUSTEE to be especially good at
refuting reported claims of “the model works!” and provid-
ing supporting evidence. In refuting these claims, TRUSTEE
identified concrete instances of model underspecification is-
sues, including trained models that leveraged shortcut learn-
ing strategies (akin to “cheating”), showed vulnerabilities to
out-of-distribution samples (akin to “rote learning”), or ex-
ploited spurious correlations in the training data (akin to
“lucky guesses”). The problematic nature of these findings
argues for more caution with respect to the use of black-
box models in the field of networking, suggests looking at
developments in this area with a highly critical eye, and
identifies common pitfalls or “blind spots” of proposed ML-
based solutions that prevent operators from trusting them
and deploying them in their production networks.

At the same time, while we agree with much of the reason-
ing in [2] where the author argues why interpretable black

boxes should be avoided altogether in high-stakes decisions,
our work with TRUSTEE caused us to take a more nuanced
view with respect to explainable black-box models. For one,
using the decision tree that TRUSTEE extracts from a given
black-box model demystifies much of the decision-making
process or “inner workings” of black-box models. In fact,
this extracted decision tree becomes at once the main vehi-
cle for domain experts to check if the given black-box model
makes decisions in accordance with existing domain knowl-
edge. An even more tantalizing application of a TRUSTEE-
extracted decision tree is examining it with respect to the
given black-box model’s ability of teach the domain experts
new decision-making strategies. Here, the term “teach” is
meant in the sense of carefully inspecting the decision tree to
see if it reveals legitimate strategies that the domain experts
have been unaware of but upon painstaking examination rec-
ognize as meaningful and relevant decisions that deserve to
be added to their existing domain knowledge.

6. CONCLUSION

We are presently not aware of any such examples in
the NetAl domain where a given black-box model, via its
TRUSTEE-extracted decision tree, teaches domain experts
novel decision-making strategies. @ However, the likely
existence of such examples suggests a natural “division of
labor” in the NetAl domain between machines and humans
that achieves the best of both worlds; i.e., leverages the raw
computational power and algorithmic capabilities of ML
to let machines do the grunt or “dirty” work (i.e., sifting
through training data, finding potentially useful patterns,
and distilling them in a trained black-box model) and rely
on the intelligence and inherently limited computing capa-
bilities of humans to apply reasoning and logical thinking
(i.e., determining whether or not the detected patterns
are meaningful and relevant for the problem at hand or
point to possible underspecification issues with the trained
black-box model). As this perspective explicitly argues for
the need to keep human domain experts in the loop, it is
counter to widely-held beliefs or common myths about the
impact of increasingly autonomous technologies in general
and NetAl-driven network automation in particular, namely
that their wide-spread adoption will ultimately eliminate
humans from the loop.In Part II of this Net AI Manifesto [5],
we will revisit this perspective and argue why and how
developing NetAl-based automation capabilities that work
in practice will require keeping humans in the loop.

7. REFERENCES

[1] J. Z. Forde and M. Paganini. The Scientific Method in
the Science of Machine Learning. ICLR Debugging
Machine Learning Models Workshop, 2019.

[2] C. Rudin. Stop Explaining Black Box Machine Learning
Models for High Stakes Decisions and Use Interpretable
Models Instead. Nat Mach Intell 1, 206-215, 2019.

[3] A. D’Amor et. al. Underspecification Presents
Challenges for Credibility in Modern Machine Learning.
Journal of Machine Learning Research 23, 1-61, 2022.

[4] A.S. Jacobs et al. AI/ML for network security: The
emperor has no clothes. Proc. ACM CCS’22, 2022.

[5] W. Willinger et al. A NetAI Manifesto (Part II): Less
Hubris, More Humility. Performance Fvaluation
Review, this issue, 2023.

A NetAl Manifesto (Part ll):
Less Hubris, more Humility

Walter Willinger Arpit Gupta
NIKSUN, Inc. UCSB

ABSTRACT

The application of the latest techniques from artificial
intelligence (AI) and machine learning (ML) to improve
and automate the decision-making required for solving
real-world network security and performance problems
(NetAl, for short) has generated great excitement among
networking researchers. However, network operators have
remained very reluctant when it comes to deploying NetAl-
based solutions in their production networks. In Part I
of this manifesto, we argue that to gain the operators’
trust, researchers will have to pursue a more scientific
approach towards NetAl than in the past that endeavors
the development of explainable and generalizable learning
models. In this paper, we go one step further and posit
that this “opening up of NetAl research” will require that
the largely self-assured hubris about NetAl gives way to
a healthy dose humility. Rather than continuing to extol
the virtues and “magic” of black-box models that largely
obfuscate the critical role of the utilized data play in
training these models, concerted research efforts will be
needed to design NetAl-driven agents or systems that can
be expected to perform well when deployed in production
settings and are also required to exhibit strong robustness
properties when faced with ambiguous situations and
real-world uncertainties. We describe one such effort that
is aimed at developing a new ML pipeline for generating
trained models that strive to meet these expectations and
requirements.

1. INTRODUCTION

In Part I of our NetAl manifesto [1], we criticize the use
of the standard ML pipeline that is popular with NetAT re-
searchers and discuss why relying on this widely-adopted
ML workflow is fraught with problems that question the
scientific foundations of the artifacts it produces. We argue
for abandoning it altogether in favor of a new generation
of ML pipelines that are capable of generating explainable
ML models that can effectively be examined with respect to
their generalizability and safety, describe an initial attempt
at designing and implementing such a new ML pipeline, and
comment on some exciting new opportunities that arise as
result of this proposed paradigm shift in ML model devel-
opment and evaluation.

In this Part II of the manifesto, we discuss how these pro-

Copyright is held by author/owner(s).

Roman Beltiukov Wenbo Guo
UCSB Purdue Univ.

posed efforts towards “an opening up of NetAl research” re-
late to ongoing developments in the area of human-centered
computing where the emergence of agents with increasingly
autonomous capabilities are a major concern that dovetails
with our calls for explainability and generalizability in every-
day ML model development. Specifically, instead of fur-
ther promoting the much-touted benefits of increasingly au-
tonomous technologies, we elaborate on the urgent need to
address the new risks and challenges these technologies pose
and relate them to the popular view that the wide-spread
adoption of NetAl-based autonomous capabilities will ulti-
mately eliminate the need for human involvement.

In effect, we posit that responding to the new risks and
challenges in a constructive manner demands a careful reap-
praisal that recognizes the existence of a natural “division
of labor” between autonomous agents and humans that is
counter to widely-held beliefs about the impact of increas-
ingly autonomous technologies in general and NetAl-driven
network automation in particular. To this end, we describe
a novel ML pipeline that demonstrates the type of division
of labor that can ensure a future where we can have the best
of both worlds — the full benefits of autonomous capabil-
ities without their possibly debilitating side effects such as
“future automation surprises” [2].

2. NETWORK AUTOMATION AND AU-
TONOMOUS CAPABILITIES

The growing popularity of networked devices and ap-
plications imposes increasingly stringent security- and
performance-related requirements on the underlying com-
munication infrastructure. Satisfying these ever more
demanding and complex requirements in an efficient and
scalable manner with limited infrastructure resources and
shrinking operational budgets poses significant challenges
for today’s network operators. A promising approach
to address these challenges is to automate some of the
real-time decision-making that satisfying these require-
ments necessitates. To this end, for more than a decade,
networking researchers have been busy demonstrating the
potential of NetAl, have developed NetAl-based solutions
aimed at supporting network automation, and have been
envisioning a future where NetAl will be critical for real-
izing the vision of “self-driving networks.” Many of these
efforts are, however, based on widely-held beliefs about
the impact of increasingly autonomous technologies in gen-
eral and NetAl-driven network automation in particular,
namely that these developments will ensure that human
involvement in the decision-making processes required for

operating and managing future networks can be reduced to
the point where it will eventually become unnecessary.

Tellingly, these beliefs are collectively referred to as the
“seven deadly myths” of autonomous systems in [3] where
the authors systematically bust these “myths” of autonomy
and provide reasons why each of them should be called out
and cast aside. Although the authors of [3] take a broad view
of autonomous systems and autonomous capabilities, their
paper should be required reading for networking researchers,
especially because the authors’ observations and are directly
applicable to and highly relevant for current efforts that fo-
cus on NetAl-driven network automation as a stepping stone
towards realizing the future vision of self-driving networks.
In the NetAI domain, the autonomous capabilities derive
from running trained ML models in the data plane (e.g., on
programmable switches) and relying on them to make real-
time inference decisions. Here, each model can be viewed
as an autonomous agent that has been designed with a spe-
cific networking task in mind (e.g., detecting the onset of an
amplification-type DDoS attack), has been shown to be per-
formant (according to some specified evaluation procedure),
and the human operator feels comfortable relinquishing con-
trol to the model, thus automating a task that previously
was performed by the operator.

In the context of NetAl, of particular interest is the first
myth discussed in [3] that views “autonomy” as a unidimen-
sional concept. Instead, the authors of [3] argue that it is
more useful to describe autonomous agents at least in terms
of the two dimensions referred to as self-directedness and
self-sufficiency. Here, self-directedness is defined as the in-
dependence of an agent from its physical environment and
reflects a notion of autonomy that is synonymous with in-
dependence from outside control. Self-sufficiency, on the
other hand, is meant to capture the idea of self-generation
of goals and reflects a view that equates autonomy with the
capability of an agent to take care of itself. Slightly para-
phrasing [3], a main motivation for autonomous capabilities
is to reduce the burden on humans by increasing an agent’s
self-sufficiency to the point that it can be trusted to operate
in a self-directed manner. However, when the self-sufficiency
of the agent capabilities is seen as inadequate for perform-
ing the task the agent was designed for (e.g., in situations
where the consequences of errors may be disastrous), it is
common to limit the self-directedness of the agent, either
by humans taking control manually or falling back to an au-
tomated control that is known to prevent the system from
doing harm to itself or others through faulty actions (i.e.,
low self-directedness and low self-sufficiency).

When self-directedness is reduced to the point where the
agent is prevented from fully exercising its capabilities (i.e.,
low self-directedness, high self-sufficiency), the result is an
under-reliance on the technology — although the agent may
be sufficiently competent to perform a set of actions in the
current situation, human-imposed manual controls or poli-
cies may prevent it from doing so. The flip side of this
aspect is over-trust (i.e., high self-directedness, low self-
sufficiency) where an agent is allowed to operate too freely
in situations that outstrips its capabilities. The challenge
then faced by designers of autonomous agents or systems
capabilities is striving to maintain an effective balance be-
tween self-directedness and self-sufficiency which in turn im-
poses the additional challenge on the designers to make the
agent or system understandable. In NetAI parlance, these

challenges are all-too-familiar. Making agents understand-
able is synonymous with developing explainable ML models,
and model explainability is paramount for assessing model
generalizability (i.e., assessing when the model works and
doesn’t wok (and why not)) and model safety (i.e., identify
and quantify harmful and unintended model behavior).

3. AUTONOMOUS CAPABILITIES:
RISKS AND CHALLENGES

As discussed in [3], like the mentioned first myth, most of
the seven deadly myths or beliefs exist because they ignore
or downplay in one way or another the new challenges
and risks that materialize with increasingly autonomous
capabilities and often take the form of “surprises” or “un-
intended consequences” that can reduce or even wipe out
apparent benefits that may result from increased autonomy.
The type of new challenges and risks is highlighted in [4]
and has been termed “Doyle’s catch” in [5]. It states that

“Computer-based simulations and rapid prototyping tools
are now broadly available and powerful enough that it is
relatively easy to demonstrate almost anything, provided
that conditions are made sufficiently idealized. However,
the real world is typically far from idealized, and thus a
system must have enough robustness in order to close the
gap between demonstration and the real world.”

Although not expressed in NetAl language, we recognize
Doyle’s catch to be yet another formulation of the general-
izability problem in ML — the failure of black-box models
trained in the confines of an idealized setting (e.g., simple
testbed) to maintain their performance when used in the real
world (e.g., an actual production network). Thus, whether
it is designing autonomous agents that are not prone to
“surprises” or “unintended consequences”, or developing au-
tonomous capabilities without falling into Doyle’s catch, or
generating generalizable ML models, the technical challenge
faced by researchers interested in developing ML-based solu-
tions for networking problems is to define new ML pipelines
that output trained models that are capable of “closing the
gap between the demonstration and the real thing”.

Since a majority of trained models that have been devel-
oped to date in the different application domains of ML are
the result of applications of the standard ML pipeline, they
are neither able to address nor resolve this challenging task.
For one, since the output of the standard ML pipeline are
in general black-box models, they provide little to no in-
sights into the models’ inner workings and instead continue
to bolster the popular view that ML models are able to per-
form some “magic”. Importantly, being black-box in nature,
they are by and large unable to yield useful information for
researchers interested in ascertaining the models’ ability to
generalize and there are currently no readily available ML
pipelines that facilitate both the identification and remedi-
ation of underspecification issues in trained black-box mod-
els, a critical step in assessing the models’ generalizability.
Moreover, using the standard ML pipeline to obtain trained
models has the effect of obfuscating the nature of the train-
ing data; that is, intentionally or unintentionally blurring
critical information about the what, how and who of the
collected data and thus about the data’s quality.

Specifically, this data quality issue can be attributed to

two factors. First, many publicly available datasets are un-
realistic in the sense that they have been collected from en-
vironments that have little to nothing in common with the
“real thing” (i.e., the model’s target environment). Second,
existing data-collection efforts are fragmented; that is, they
only apply to a specific learning problem and/or network en-
vironment. In particular, how to extend them to collect rep-
resentative (labeled) data for a new learning problem and/or
from a different target environment is a largely unresolved
problem. Together, the obfuscating effect that the use of
standard ML pipeline has with respect to the data employed
for model training and the fact that the root causes of most
model underspecification issues can be traced to problems
with the quality of the training data [7] severely limit the
options that researchers have to tackle the generalizability
problem in ML. On the one hand, these issues highlight
how the prolonged and widespread use of the standard ML
pipeline in the different application domains of ML has re-
sulted in a self-assured hubris among researchers in general
and NetAl researchers in particular about the autonomous
capabilities of ML-based agents. On the other hand, they
also argue that in the face of the complexities and uncertain-
ties experienced in the real world, some amount of humility
is required to realize and accept that designing ML-based
agents that are explainable and can be assessed with respect
to their generalizability and safety cannot be accomplished
by means of established methods such as the standard ML
pipeline but demands implementing new ML workflows or
pipelines that are radical departures from how ML models
have been developed to date.

4. TREATING TRAINING DATASETS AS
FIRST-CLASS CITIZENS

In the NetAI domain, the described tension between
hubris and humility when researchers are faced with
designing ML-based solutions for networking problems is
greatly complicated by the fact that, in general, collecting
data from the “real thing” to train ML models is, for
privacy-related or other reasons, often not possible. In fact,
the question of how to develop ML models that maintain
their excellent performance even in the “unseen data”
case (i.e., without an ability to collect data from “the
real thing”) while exhibiting the required balance between
self-directedness (being robust to the uncertainties in the
environment) and self-sufficiency (being able to perform
safely despite the inherent fragilities that the complexity
of autonomous capabilities entails) has largely stymied
researchers in the past but deserves their full attention
going forward.

In an initial attempt to resolving this taunting challenge,
we recently incorporated TRUSTEE [7], our latest ML
pipeline for developing explainable ML models into the
design of a radically new closed-loop ML workflow that
we call NETUNICORN [6]. NETUNICORN highlights two
innovative and original concepts. First, it leverages a novel
data-collection platform that enables the collection of dif-
ferent datasets for any given learning problem from one or
more physical or virtual network infrastructures, accurately
emulating different target environments with high fidelity.
Second, NETUNICORN uses TRUSTEE-generated feedback
about the latest trained model to iteratively collect new
training datasets from some flexibly configurable idealized

environment such that the models trained with these
new datasets exhibit improved generalizability and have a
better chance to maintain their good performance in the
“real thing” (i.e., in the actual production network where
collecting training data is ruled out). The premise is that
the models that NETUNICORN outputs will instill greater
trust among network operators for production deployments,
thereby driving widespread adoption of ML in the field of
networking in the future.

S. CONCLUSION

The novelty of NETUNICORN prevents us from reporting
initial experiences from researchers who recognize the need
for new ML pipelines that strive for outputting generaliz-
able ML models. However, based on our own experience to
date that admittedly encompasses only a small sample of
different learning tasks and different target environments,
the ML artifacts that result from applying our new closed-
loop ML pipeline can be shown to be performant and to
exhibit improved generalizability. However, only time will
tell whether abandoning the standard ML pipeline with its
deliberate tendency to rely on the “magic” of black-box
models and implicit attempts at obfuscating the critical role
of the underlying training data and replacing it with radi-
cally different ML pipelines such as NETUNICORN will have
the intended consequences — the routine development of
ML models that are both explainable and generalizable and
where the role that the utilized data plays with respect to
model training can be assessed explicitly. However, we posit
that it is by developing new ML pipelines such as TRUSTEE
and NETUNICORN that the NetAI domain can pave the way
towards a future where ML models will be both recognized
as a means for scientific discovery and appreciated for being
of inherently practical value for achieving the autonomous
capabilities required by ongoing efforts that see Net Al-based
network automation as a stepping stone towards realizing
the vision of self-driving networks.

6. REFERENCES

[1] W. Willinger et al.A NetAI Manifest (Part I): Less
Explorimentation, More Science. Performonce
Evaluation Review, this issue (2023).

[2] D. D. Woods. Automation Surprises. In: Joint
Cognitive Systems: Patterns in Cognitive Systems
Engineering, 113-142, Taylor & Francis, 2006.

[3] J. M. Bradshaw et al.The Seven Deadly Myths of
’Autonomous Systems’. IEEFE Intelligent Systems
28(3), 2-8, 2013.

[4] D. L. Alderson and J. C. Doyle. Contrasting views of
complexity and their implications for network-centric
infrastructures. IEEE SMC-Part A, 40(4), 839-852
(2010).

[5] D. D. Woods. The Risks of Autonomy: Doyle’s Catch.
Journal of Cognitive Engineering and Decision Making,
10(2), 131-133 (2016).

[6] R. Beltiukov, W. Guo, A. Gupta, and W. Willinger. In
Search of netUnicorn: A Data-Collection Platform to
Develop Generalizable ML Models for Network Security
Problems. https://arziv.org/abs/2306.08853 (2023).

[7] A.S. Jacobs et al. AI/ML for network security: The
emperor has no clothes. Proc. ACM CCS’22 (2022).

