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Abstract
The future success of ML4Nets—defined as the application of
machine learning (ML) techniques to address real-world net-
work security and performance problems—relies critically on
convincing network operators to deploy ML-based solutions
in their production networks. However, the black-box nature
of many of these solutions has been a major impediment to
both gaining the operators’ trust in the underlying trained
models and providing effective safety guarantees. Explain-
able AI (XAI) represents a recent approach to dealing with
this problem and provides operators with global and local
explainability techniques that enable them to reason about
the decisions made by trained ML models. Unfortunately, in
their current form, these solutions are lacking in simultane-
ously engendering the kind of trust and ensuring the type of
safety guarantees that operators require for using ML-based
solutions in practice.
This work proposes a novel hybrid explainability tech-

nique that combines global and local explainability methods
to address network operators’ dual requirements for pro-
posed ML-based solutions. In particular, the proposed hybrid
technique leverages global explainability methods to make a
majority of a black model’s decisions or predictions under-
standable and transparent and relies on local explainability
methods to deal with the remaining “corner cases”. While the
practical application of this hybrid technique requires deal-
ing with a delicate efficiency-accuracy tradeoff (i.e., weighing
network operators’ desire for trusting proposed ML-based
solutions against their need to inspect the solutions’ safety),
its theoretical implication suggests examining an intrigu-
ing analog of the well-known CAP theorem for distributed
systems. We present an illustrative use case to demonstrate
the feasibility and potential of the proposed hyrid technique
and sketch a proposed version of a CAP theorem analog for
explainability of ML4Nets solutions.

1 Introduction and Overview
Ensuring the success of ML4Nets in practice hinges on con-
vincing network operators to deploy ML4Nets solutions in
their production networks. This, in turn, requires that net-
work operators can trust these solutions and have means to
assess their safety. Here, following [15], we say “a network
operator has trust in a ML model” iff “the operator is com-
fortable with relinquishing control to the model.” Moreover,
referring to [6], by “assessing the safety of ML solutions”,

we mean “studying the problem of accidents, defined as un-
intended and harmful behavior that may emerge from poor
design of real-world ML solutions.” Unfortunately, due to
the black-box nature of many of the currently considered
ML models, today’s network operators lack the means to
reason about the decisions and predictions made by these
models. These models’ inability to provide explanations for
their decision-making engenders distrust, prevents network
operators from understanding the models’ safety, and ex-
plains the operators’ overall reluctance to using ML4Nets
solutions in practice [13].

To address these issues, Explainable AI (XAI) has emerged
as a field of study aimed at enhancing the comprehensibility
of learning models and their decision-making processes (e.g.,
see the surveys [4, 7, 9]). At a high level, XAI encompasses
two categories of techniques. The first category consists of
global explainability techniques that leverage approxima-
tions in the form of explainable models to provide an overall
explanation of a given black-box model and typically entail
a tradeoff between the complexity (e.g., size) of the explain-
able model, its accuracy (e.g., number of input instances
it explains), and the computational effort its generation re-
quires. In theory, using such explainable approximation mod-
els, operators can reason about a given black-box model’s
decision-making (i.e., how and why the model arrives at a
specific decision and not at some other decision) and gain
confidence in the overall reliability of its decisions and pre-
dictions (i.e., when the model works or when and why the
model does not work).
The second category is composed of local explainability

techniques that are typically designed to provide explana-
tions for individual instances that a trained model is given
as input. Local techniques employ concepts such as feature
importance scores, attention mechanisms, and rule-based ex-
planations, and applying them at scale (number of instances)
requires being aware of their per-instance computational
complexity. These local techniques are useful vehicles for
operators to reason about a given model’s specific decisions
or predictions and to assess the safety of a given ML4Nets
solution in corner case scenarios (i.e., understanding the
potential consequences of certain incorrect decisions for a
given input instance).

While these techniques have been successfully applied in
a number of different application domains (e.g., computer
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vision [10] and autonomous vehicles [1, 3]), their suitabil-
ity and effectiveness in the networking domain to address
network performance and security problems of practical in-
terest have attracted little to no attention to date, mainly
because of data-related issues that are specific to network-
ing [11, 13, 14]. Most critical among these issues are a general
paucity of (labeled) data, the high volume and velocity of net-
work data collected from real-world production networks,
the one-off nature of existing data collection efforts, and
important privacy and security concerns associated with
collecting network data from operational networks.
Furthermore, faced with a growing number available ex-

plainability techniques, network researchers and operators
alike are largely left in the dark about how to apply the
latest techniques so as to simultaneously satisfy the dual re-
quirements of network operators—gaining trust in ML4Nets
solutions (by means of having a broad understanding of the
solution’s global behavior) and being able to assess the solu-
tions’ safety (by means of providing specific, case-by-case,
local explanations that can be scrutinized with respect to the
impact of the associated decisions and predictions). Finally,
meeting both of these requirements concurrently also ne-
cessitates systems innovations that are aimed at striking a
balance between the indiscriminate use of resource-intensive
local explainability techniques and the selective application
of efficient but inaccurate approximation models supplied
by global explainability techniques.
In this work, we propose and present in Section 3 an ini-

tial evaluation of a novel hybrid explainability tool aimed
at gaining network operators’ trust in ML4Nets solutions.
This tool entails three key steps. Step 1 involves improving
the accuracy of explainable decision trees resulting from
post-hoc applications of global explainability techniques.
This step primarily involves integrating accurate local ex-
plainability methods opportunistically. We also use a simple
majority voting mechanism to correct potential errors in
the original decision tree, thus enhancing the trees accuracy
and avoiding excessive computational overhead. Step 2 ad-
dresses situations where the global techniques fail to explain
input instancess. For these “corner cases", we apply a major-
ity voting mechanism with local explainability techniques
to identify new branches of the decision tree generated in
Step 1, thus enhancing that tree’s utility. In Step 3, the new
branches corresponding to these corner cases are integrated
into the a final decision tree. This final step ensures compat-
ibility with already existing nodes and branches, maintains
traversal order along individual branches, and harmonizes in-
terpretations to enhance trust in the model, assess its safety,
and demonstrate its computational efficiency.

In addition to highlighting in Section 4 new research and
systems-related challenges, this work is also a reminder that
in application domains such as networking where ML-based
solutions are touted for high-stakes decision making (i.e.,
dropping critical traffic if it is deemed malicious), the use

of “responsible AI” to engender trust in the developed ML-
models and assess their safety is still in its infancy. At the
same time, there is, however, a great urgency for rapid ad-
vances in this area, especially in view of the current general
excitement about large language models (LLMs) where, de-
pending on the application domain, the need for trust and
safety is magnified by the potential harm that erroneous or
wrong decisions or predictions made by these latest genera-
tion of black-box models could cause [5, 20].

2 Hybrid Explainability
In this work, we present a novel hybrid explainability tech-
nique that is specifically designed to simultaneously sat-
isfy network operators’ dual requirements for deploying
ML4Nets solutions—being able to trust these solutions and
to assess their safety. At the core of this novel technique is
the following three-step approach:
Step 1: Enhancing Explainable Model Accuracy.

This step focuses on addressing accuracy issues that stem
from using post-hoc global explainability techniques. These
techniques include recently developed methods such as
Trustee [12] or ARISE [13] and typically generate explain-
able models in the form of decision trees that approximate a
given black-boxmodels. Because of their approximate nature,
the generation of such decision trees entails a complexity-
accuracy tradeoff whereby high-accuracy decision trees ne-
cessitate large-sized (i.e., high-complexity) tree structures. To
navigate this tradeoff, we incorporate computationally inten-
sive yet highly accurate local explainability techniques in an
opportunistic manner. Specifically, we enhance the explain-
ability of certain branches of the approximate decision-tree
model only if it results in improved accuracy. We determine
this improvement through a straightforward majority vot-
ing mechanism that is aimed at resolving uncertainties or
inconsistencies stemming from the fusion of global and lo-
cal explainability techniques. This step essentially acts as a
“model distillation" process, simplifying complex interpre-
tations generated by various techniques and consolidating
them into a more concise explanation. Moreover, the em-
ployed voting mechanism prevents unnecessary computa-
tional overhead when multiple techniques are in agreement.
Step 2: Handling Exceptional Cases. In this step, we

address situations where global techniques fail to provide
an explanations or don’t produce a meaningful explanation.
Such situations are common for training data collected from
operational networks [13, 14], but network operators nev-
ertheless want to be able to reason about a black-box mod-
els’ decision-making process when faced with such "corner
cases." For each data point in the training data that cannot be
explained by any of the branches of the decision tree gener-
ated in Step 1, we apply the samemajority voting mechanism
used earlier, but this time exclusively with findings derived
from applying local explainability techniques [16, 17]. This
approach saves computational resources by applying local
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techniques to a subset of the training data (i.e., corner cases).
It also avoids unnecessary resource overhead when there is
consensus among the employed local techniques. At the end
of this step, we compile a comprehensive list of corner cases,
complete with rule-based explanations, potentially adding
new branches to the decision tree generated in Step 1.

Step 3: Expanding the Global Decision Tree. The final
step involves integrating the new branches that emerge from
the corner cases considered in Step 2 into the global decision
tree constructed in Step 1. The goal is to expand this tree
while ensuring that both the existing and new branches are
integrated cohesively. In effect, this step serves as an “expla-
nation summarization" process, where interpretations are
harmonized to facilitate engendering trust, assessing safety,
and guaranteeing computational efficiency. To determine
the proper placement of each of the corner cases into the
already existing decision tree, we start by examining the
nodes of the decision tree where the conditions of the new
branches (i.e., corner cases) align with the those in the exist-
ing decision tree. We then check if any existing nodes can
accommodate the new branches with some modifications. If
so, we update the nodes of the decision tree to incorporate
the rules from the corner cases. Otherwise, we create new
nodes in the decision tree. These new nodes are added as
child nodes to existing parent nodes in the decision tree, en-
suring that the conditions of the new nodes are compatible
with the rules of their parent nodes and that they lead to the
intended outcomes. After applying this process to each con-
sidered corner case, we review the entire new set of branches
to maintain the order of traversal. In operational networks,
these trees have to be updated on an ongoing basis by means
of real-world feedback and new training data to enhance
their accuracy.

3 Preliminary Results
To illustrate the practicality of our proposed hybrid explain-
ability technique, we evaluate in the following the effective-
ness of the above-described Step 1 in the context of ARISE,
a previously-published weak-supervision-based framework
for labeling different network datasets in an automated fash-
ion and at scale [13]. In short, ARISE leverages network
operators’ domain knowledge in the form of labeling func-
tions to programmatically label network datasets and uses
multi-task learning to enable concurrent learning of network
classification tasks (e.g., congestion vs. non-congestion). Its
workflow (see Appendix C in [13] for details) requires to
first create a noisy generative model and then train a pre-
dictive LSTM model. We choose ARISE because of its ability
to produce a decision tree that enables operators to reason
about the labeling decisions made by ARISE. Here we show
how to embellish this decision tree by applying Step 1 of our
proposed hybrid explainability technique.

Preliminary results. For our evaluation, we use CAIDA’s
Ark dataset, which comprises over 1.2 million round-trip

time (RTT) measurements between 28 source-destination
pairs collected over the course of a day [2]. Using this dataset,
we trained a predictive LSTM model by utilizing the labeling
function that classifies a data point as “experiencing conges-
tion" if the RTT value falls within the range of [1.2 times 𝛽 ,
1.5 times 𝛼], where 𝛼 and 𝛽 represent the RTT values corre-
sponding to the 75th and 25th percentiles, respectively. Our
data partitioning scheme allocates 80% of the data for train-
ing, 10% for validation, and 10% for testing for each link. Ad-
ditionally, we randomly selected 1,000 measurements from
a single source-destination pair and manually labeled them
with many false negatives to create a dataset for evaluating
the decision tree generated by ARISE.
Figure 1 shows three key outcomes, along with the per-

centage of times the data points were labeled as congested
(“VOTE") or not (“NORMAL"). On the left, we show the
LSTM model created by ARISE. In the center, we shown the
decision tree generated through ARISE’s task-specific ex-
plainability capability. On the right, we show the explainable
model with our integrated majority voting mechanism. Ta-
ble 1 complements Figure 1 and lists the model evaluation
metrics. In particular, the LSTM model achieves a good bal-
ance between precision (0.816) and recall (0.964), with an
F1 score of 0.884 and an accuracy of 0.881. This indicates
that the LSTM model performs well in labeling data points
as congested or not while minimizing false positives. The
task-specific explainable model achieves perfect precision
(1.000) but has a lower recall (0.645), resulting in an F1 score
of 0.784 and an accuracy of 0.833. However, combining this
explainable model with our majority voting mechanisms
yields predictions with improved recall (0.998) and adequate
precision (0.826), resulting in both a high F1 score of 0.904
and high accuracy of 0.900. These preliminary findings in-
dicate that including a simple majority voting mechanism
can produce a more balanced and accurate classification,
addressing the accuracy issues of post-hoc global explain-
ability techniques. Furthermore, given that the task-specific
decision tree model’s accuracy of 83% and our sample size
of 1,000 for model evaluation, the voting scheme effectively
diminishes the number of “corner cases" from 17% (i.e., 170
corner cases) to 10% (i.e., 100 corner cases). Applying steps
2-3 results in a perfect precision (1.000) and a high recall
(0.989), resulting in an improved F1 score of 0.994 and a high
accuracy of 0.995. Considering the 10% corner cases after the
application of majority voting, applying the rest of the steps
further diminishes the number of corner cases from 100 to 4.

4 Future Work
In the short term, we plan to extend the described new tool
as follows. In the fusion process (Step 1), we plan to optimize
the resource allocation further by selecting the most relevant
features from both global and local techniques, ensuring that
only essential information is used. For Step 2, akin to the
feedback loop in ARISE [13], we plan to use feedback from
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Precision Recall Accuracy F1 score
LSTM model 0.816216 0.963830 0.881000 0.883902
Task-specific

explainable model 1.000000 0.644681 0.833000 0.783959

After majority
voting 0.825704 0.997872 0.900000 0.903661

Other steps 1.000000 0.989362 0.995000 0.994652
Table 1. Evaluation metrics for the three models depicted in Figure 1.

Figure 1. Initial LSTM model for congestion detection on a link (first), decision-tree-based explainable model derived using
ARISE [13] (second), and the explainable model corrected using majority voting (third) and other steps (fourth).

operators to fine-tune the majority voting process, adjusting
the weight of individual interpretations based on their accu-
racy and relevance. As part of the feedback loop, we intend
to provide operators with the ability to choose the level of
explainability they desire (also known as, selective explain-
ability), allowing them to allocate resources according to the
specific context and importance of the decision. In addition,
we intend to explore the scalability of hybrid explainability
tool in terms of handling large-scale network datasets and
complex ML models.
A CAP Theorem Analog for Explainability of

ML4Nets solutions. In the long term, similar to the CAP
theorem in distributed systems [19], which notes that only
two out of three characteristics can be achieved in distributed
systems, our work suggests an intriguing analog in the con-
text of explainability in ML4Nets. In particular, consider
the following three dimensions: (1) Complexity of explain-
able approximation model (e.g., size of generated decision
tree given by the number of nodes); this metric reflects the
operators’ perspective and measures how big a tree oper-
ators are comfortable scrutinizing to satisfy their need for
model explainability. (2) Accuracy of explainable approxima-
tion model (e.g., fidelity of constructed decision tree); this
metric measures how faithful the decision tree is in terms
of explaining how the original black-box model makes its
decisions and determines the pool of “corner cases” that re-
quires further investigations to ensure the model’s safety.
(3) Computation efficiency of explainable approximation
model; this metric quantifies how many resources to ex-
pend on achieving the operators’ required level of model
explainability and accounts for the use of global techniques
(i.e., generation of the initial approximation model in the
form of a decision tree) and the use of local techniques (i.e.,

for improving the accuracy of the tree and augmenting via
examinations of the identified corner cases).

For example, when an operator seeks to improve accuracy,
it necessitates increased computational resources, which, in
turn, inevitably leads to a higher level of complexity (i.e.,
less manageable for operators as humans are inherently lim-
ited in effectively processing large-sized trees). Conversely,
reducing computational overhead results in an improved
operator experience that is based on having to inspect only
smaller-sized trees (i.e., low complexity), but this benefit
comes at the cost of reduced accuracy. In fact, leveraging
examples considered in [12], violations of the suggested CAP
theorem analog for explainability of ML4Nets solutions can
be readily associated with certain underspecification issues
in currently used ML pipelines [8]. For example, shortcut
learning is a case where a given model satisfies all three
characteristics (i.e., low complexity, high accuracy, high com-
putational efficiency). In contrast, models that are vulnerable
to out-of-distribution input samples satisfy none of the three
characteristics. In our future work, we plan to more formally
and empirically investigate this analog by carefully consid-
ering several such illustrative examples.
Post-hoc vs. Ante-hoc Explainability Methods.

While [18] argues against trying to create a second (post-
hoc) model to explain an originally-trained black-box model
and instead advocates using inherently interpretable mod-
els such as decision trees in the first place (i.e., ante-hoc
or ex-ante), [21] takes a more nuanced view with respect
to post-hoc explainability methods and sees potential ben-
efits of their use in ML4Nets. However, in both cases, an
open problem of significant importance is understanding the
extent to which the almost exclusive current focus on deci-
sison trees limits the explorations of ante-hoc or post-hoc
explainability efforts.
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