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Abstract—To understand the delay characteristics of the Inter-
net, a myriad of measurement tools and techniques are proposed
by the researchers in academia and industry. Datasets from such
measurement tools are curated to facilitate analyses at a later
time. Despite the benefits of these tools and datasets, the system-
atic interpretation of measurements in the face of measurement
noise. Unfortunately, state-of-the-art denoising techniques are
labor-intensive and ineffective. To tackle this problem, we develop
NoMoNoise, an open-source framework for denoising latency
measurements by leveraging the recent advancements in weak-
supervised learning. NoMoNoise can generate measurement noise
labels that could be integrated into the inference and control logic
to remove and/or repair noisy measurements in an automated
and rapid fashion. We evaluate the efficacy of NoMoNoise in
a lab-based setting and a real-world setting by applying it on
a CAIDA’s Ark dataset and show that NoMoNoise can remove
noisy measurements effectively with high accuracy.

Index Terms—Internet measurements, weak supervision, mea-
surement noise.

I. INTRODUCTION

Understanding the delay characteristics of the Internet is one
of the key goals of Internet measurement researchers, service
providers, and content delivery networks. To this end, a myriad
of measurement tools and techniques were proposed by the
researchers in academia and industry to measure delay-related
properties such as loss, latency, etc. [1]–[10]. These tools
play a critical role in traffic engineering decisions [11] and
how content is delivered in today’s Internet [12]. Furthermore,
datasets from such measurement tools are curated to facilitate
analyses at a later time [1], [3], [13]–[15].

Despite the benefits of the proposed tools to measure the
delay characteristics of the Internet, what is critically lacking
is a systematic framework to interpret the measurements in the
face of measurement noise.We define noise as the presence of
non-representative values that confounds sound interpretation of
measurements as it is hard to discern from the actual behavior
(e.g., is noise an artifact of the network [16] or the measurement
tool [17]?). Said differently, noise is a set of erroneous values
that do not exhibit the true characteristics of the network. For
example, the presence of a series of hop latency spikes in ping,
or traceroute measurements could either be classified as the
representative behavior of the measured path or could simply
be marked as noise due to the presence of background traffic.
The notion of noise was first introduced by Paxson in earlier
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studies [18], [19] and by Willinger in [20]; otherwise, it has
not received much attention [21].

While noise confounds all types of measurements, in this
paper, we focus only on latency measurements due to its
importance to the Internet. To underscore the importance of
noise, consider a scenario where erroneous values span orders
of magnitude higher latency values (e.g., instead of a typical
10 ms delay, we might observe close to 1 s delay—is this
noise or is it buffering?). In case of a representative behavior
(i.e., buffering), naïvely inferring the measurements as noise
might result in sub-optimal control e.g., due to re-routing in a
sub-optimal path [12]. On the contrary, in case of an actual
noise, inferring the measurements as a representative behavior,
due to buffering, might again lead to unnecessary operational
decisions (e.g., examining packet traces further to identify the
problem). In short, noise (1) leads to potentially bad operational
changes and (2) confounds the true behavior of the network.

Faced with the uncertainty described above is the fact that
denoising (i.e., the process of removing measurement noise) is
not done systematically today: it is either done manually due
to the lack of hand-labeled ground truth or in a one-off fashion
with simple filters (e.g., mean plus two-sigma deviation) [10],
[22], [23]. These result in decreased research productivity and
increased person-hours (e.g., typically 60% of the time is spent
on denoising and organizing the data [24]). Current denoising
techniques are either too naïve and/or labor-intensive.

In this paper, our main goal is to design and develop
a framework for denoising latency measurements based on
recent advancements in machine learning. Our high-level
objectives are to make the denoising process easy, automatic,
and rapid. We start by building a novel machine learning-based
framework—called NoMoNoise—that will consume latency
measurements (from an existing capability e.g., ping) as input
and classify noise from actual behaviors of the network. The
key challenge is the lack of training data to classify and
discern noise from true behavior. To tackle this challenge, we
leverage recent advances in weak supervision: our insight is to
create low-quality training data using the data programming
paradigm proposed by Ratner et al. [25] and then use generated
generative models to increase the accuracy of the training data;
the generative model will have noise labels with probabilities
to indicate accuracies. This will result in more accurate noise
labels (i.e., training data), where the labels are generated
automatically.



Next, we use noise labels to create and train predictive
models (e.g., deep learning models using TensorFlow [26]).
The predictive models could then be used to remove and/or
repair the noise. We evaluate the efficacy of the framework in
two generic settings: (a) a lab-based setting by adding synthetic
noise to the outputs of ping tool, and (b) a real-world setting by
applying it on the publicly available CAIDA’s Ark [1] datasets
that are created using traceroute tool. Our evaluations show
that NoMoNoise can identify and capture noisy measurements
as well as improve accuracies up to 2x in comparison with
naïve unsupervised techniques.

II. BACKGROUND AND RELATED WORK

Applying machine learning to solve networking problems is
of interest to the community for more than a decade. A survey
of such efforts is presented here [27] and a comparative study
on the performances of various supervised learning techniques
is here [28]. These approaches are later improved using
statistical techniques such as expectation maximization [29],
[30]. Complementary to the supervised learning techniques,
several efforts used unsupervised learning techniques such as
clustering and Principal Component Analysis (PCA) to detect
anomalies in BGP [31] and network traffic [32]–[34], network
diagnosis [35], and event detection [23].

Weak supervision is the third learning technique that attempts
to combine and learn noisy labels from many weak sources
to build a predictive model. The most popular form of weak
supervision is distant supervision [36], [37]. The next popular
form of weak supervision is crowdsourcing with unreliable non-
expert annotators [38], [39]. These efforts offer less accuracy
and less coverage on a training set—a problem tackled by
the Snorkel project [40], [41]. Snorkel combines labels from
different weak supervision sources to increase the accuracy and
coverage of training sets using data programming paradigm
where users can programmatically create lower-quality training
data [25]. Unfortunately, there is a huge scientific gap between
Internet measurement and machine learning communities,
underscoring the critical need for operational frameworks to
denoise delay measurements.

III. METHODOLOGY

A. Problem Statement

Given a set of latency (e.g., RTT) measurements, our goal
is to design a framework to classify and label them either
as good or noisy measurements with a certain amount of
confidence. More formally, our goal is to create a machine-
learning classifier, f : X →Y . X is a set of (RTT) measurements
(i.e., {xo,x1, ...,xn} | xi ∈ [0,∞)). Similarly, Y = (X ,L,C) is
the set of RTT measurements with the classified labels (i.e.,
{lo, l1, ..., ln} | li ∈ [0,1]) and inferred confidence values (i.e.,
{co,c1, ...,cn} | ci ∈ [0,100]).

B. Challenges in using Machine Learning to Denoise Mea-
surements

As described above, the natural way to discern noise from the
actual behavior is to take a machine learning-based approach.

This has been the research theme of many prior efforts (see
§II). However, to make machine learning a viable option,
one has to tackle the problem of unavailable training data—
a key hindrance to using machine learning techniques in
the networking and security domains [42], [43]. Specifically,
supervised learning techniques construct predictive models by
learning from a large number of training examples with labels
indicating the ground truth. Most successful techniques, such
as deep learning, require strong supervision in the form of
ground truth labels, which is impossible to obtain for large
amounts of training data in the Internet. Moreover, creating
hand-labeled training data manually is a formidable task, to
say the least.

The problem with unsupervised learning methods is that not
all types of clustering are suitable for analyzing RTT values.
This is because there is no rigid mathematical definition for
outliers (measurement noise in our case) [16], [17]. Moreover,
issues with PCA-based methods are pointed out by [44],
[45]. Similarly, the sensitivity of PCA to calibration and
its corresponding implications are discussed by Ringberg et
al. [46]. Due to these challenges, prior efforts often follow
a one-off approach to denoise measurements. For example,
prior efforts use simple filters (e.g., mean plus one-sigma
deviation) or heuristics or thresholds, which are ineffective
(as shown below), to remove the noise values or erroneous
measurements [10], [22], [23].

C. Datasets Used

CAIDA’s Ark project [1] consists of a globally distributed
active measurement infrastructure serving the network research
community with datasets for more than a decade. From the
Ark project, we collected one day’s worth of traceroute
data for 6 different vantage points in the US, which forms
the basis of the first dataset in our analysis (see §IV-A). We
use sc_warts2json tool [47] to process the dataset. The dataset
includes 3,214,134 traceroute measurements and 6,960,105
RTT measurements. In addition, we also use 10k ping
measurements collected in a lab-based setting (see §IV-B).

D. NoMoNoise Approach

Inspired by Snorkel [40], we propose that the most promising
approach to denoise delay measurements is to use the labels
produced by an unsupervised technique as weak supervisions
to train a predictive (deep learning) model. Based on this, we
develop NoMoNoise: a novel framework that will consume
latency measurements as input, apply an unsupervised technique
to generate weak labels (step 1), use the generated weak labels
to produce more accurate training data and confidence values
(step 2), and use the training data and train a predictive model
to denoise the measurements (step 3). We explain each one of
the steps below.

Step 1: Establishing a baseline for noise. In this step, we
leverage the recent trend in machine learning—specifically, in
weak supervision—which shows how users (e.g., researchers)
can programmatically create lower-quality training data using
data programming paradigm [25], [41] to establish a baseline



Clients Q3 + 1.5 x IQR KMeans LOF µ µ+σ µ+2σ µ+3σ EE ORCE IF
A 1.576 1.534 1.836 0.622 1.001 1.338 1.459 0.557 0.634 0.558
B 0.335 0.304 0.307 0.295 0.302 0.302 0.302 0.302 0.303 0.302
C 0.325 0.303 0.304 0.294 0.302 0.302 0.302 0.303 0.304 0.303
D 0.462 0.479 0.512 0.415 0.439 0.455 0.469 0.415 0.414 0.415
E 0.470 0.489 0.530 0.424 0.454 0.470 0.482 0.423 0.423 0.423
F 0.480 0.484 0.528 0.425 0.452 0.464 0.475 0.425 0.424 0.425
G 0.470 0.482 0.520 0.424 0.448 0.460 0.471 0.423 0.423 0.424
H 1.200 1.004 1.010 0.924 0.977 0.987 0.991 0.948 0.945 0.956
I 4.177 1.042 4.627 1.056 1.632 1.745 1.775 1.770 1.623 1.770

TABLE I
WEAK LABELS GENERATED BY DIFFERENT TECHNIQUES FOR RANDOMLY-SAMPLED CLIENTS FROM ARK’S EUGENE VANTAGE POINT. CLIENTS ARE

ANONYMIZED WITH ALPHABETS. Naïve application of classifiers results in widely varying noise thresholds.

for what qualifies as noise. However, the availability of a wide
range of techniques to establish a noise baseline poses the
most important challenge: which technique to use? With this
question in mind, we build a label generator component in
NoMoNoise to generate low-quality (weak) labels using user-
written labeling functions (e.g., select RTT values > 100 ms
between endpoints A and B, select a value if the historical RTT
values are an order of magnitude lesser, etc.). The component
will be able to generate weak labels (i.e., threshold values to
separate good vs. noisy measurements) using a host of labeling
functions ranging from simple thresholds (e.g., Q3 + 1.5 x
IQR) to mean (µ) plus one/two/three sigma deviation (σ ) filters
to unsupervised methods such as KMeans and hierarchical
clustering techniques to anomaly detection techniques such as
local outlier factor (LOF) to outlier detection techniques such
as elliptic envelope (EE), overly robust covariance estimation
(ORCE), and isolation forest (IF).

Table I shows the weak labels generated by different
techniques based on per-hop RTT measurements from 10
sample clients (IP addresses) as seen in Ark’s Eugene vantage
point. If the RTT value for a client is less than the generated
weak label for a particular labeling technique, then that
value is labeled good according to that labeling technique;
otherwise, it is classified as noise. From this table, we make
two key observations. (a) Less surprisingly, for every client,
the thresholds generated by these labeling techniques differ
significantly from each other. (b) Naïve application of these
(differing) labels to denoise measurements will lead to sub-
optimal and error-prone inferences.

Step 2: Weak supervised learning. The above step creates
training data using user programs or labeling functions that will
result in low-quality training data with inaccuracies. In this step,
we use generative models to learn and improve the accuracy
of the training data using Snorkel1; similar to Ratner et al., we
assume very limited availability of hand-labeled ground truth
data whose creation is economical as well as feasible [25], [41].
Given a dataset with delay values X , let us assume that we
want to predict the unknown labels L. In traditional machine
learning where we take a predictive approach, we will model

1One of the main challenges in using Snorkel in NoMoNoise is that Snorkel
was originally meant to handle textual data which is in contrast with our
case where we deal with delay measurements. We overcame this challenge by
re-writing the data processing pipeline in Snorkel to accommodate numerical
values.

P(l|x). On the contrary, in a generative approach, we will model
P(x, l) = P(x|l)P(l), where we are learning the accuracies of
the labeling functions, without access to true labels. Learning
happens from the (dis)agreements between different labeling
functions and the limited hand-labeled ground truth data, which
is the key insight in this step. This step is instantiated in
NoMoNoise via the generative modeler component, which
takes the weak labels generated in step 1 and connects to the
Snorkel library to emit generative models with accuracies in
the form of probabilities/confidence values. More concretely,
Snorkel scales the labels from the labeling functions to assign
probabilities to each RTT value.

Step 3: Denoising RTT measurements. The final step is
to automatically denoise the erroneous values using generative
models created in step 2. The user of the NoMoNoise
framework (e.g., measurement researcher) can either choose
to remove the noise. For the option of removing noise, a
user can use the generative model with probabilities from the
previous step to create and train a predictive model such as
Long Short Term Memory (LSTM) e.g., using TensorFlow [26],
PyTorch [48], etc.

IV. EVALUATION OF NOMONOISE

We evaluate the efficacy of NoMoNoise framework in two
different settings: (a) a real-world setting by applying it on the
publicly available datasets that are created using traceroute
tool and that is part of CAIDA’s Ark [1] project, and (b) a
controlled lab-based setting by generating datasets using ping
tool. All the datasets used in this study are divided into three
sets: a development set (100 RTTs from a random client),
a testing set (100 RTTs from another random client), and a
training set (RTTs from the remaining clients in a dataset).
The training set is unlabeled and contains weak-labeled noisy
data based on the labeling functions in Table I. We manually
annotate the 200 RTT values by assigning labels (i.e., with 0
(noise) or 1 (good)) and split them into a development set and
a (blind) testing set. Based on the training/development data
and the (dis)agreements between them, a probabilistic model
is generated by Snorkel (in step 2). Once trained, the accuracy
of the model is checked by allowing it to predict the labels for
the held-out testing set.

In our evaluations, we use LSTM to train our predictive
model (based on the probabilistic model) to ensure that (a) the



long-term dependencies are well captured and (b) prior noisy
measurements are remembered. We train the model for 20
epochs with a learning rate of 0.001.2 Due to space constraints,
we only report F1 score, which is the weighted ratio of precision
and recall.3 Reported F1 scores are based on the held-out testing
set. High F1 scores indicate perfect precision and recall, which
is also the rationale behind presenting this metric in the paper.

A. Using community datasets

We use the traceroute-based RTT measurements from the
CAIDA’s Ark [1] project to evaluate the efficacy of NoMoNoise.
We format the data into <source, destination, rtt1, rtt2, ..., rttn>
tuples. We select RTT measurements per source-destination
(SD) pair as features and divide the data into three sets
(explained above). We wrote different labeling functions
including KMeans (shown in Figure 1), µ plus one/two/three
σ , LOF, EE, etc. to assign weak labels (either 0 (bad) or 1
(good)) to the RTT measurements to the training data. Original
weak labels assigned by KMeans labeling function are shown
in Figure 2-(left) for a sample SD pair. Generated probabilities
(i.e., noise labels) capturing inaccuracies in the assigned labels
(across all labeling functions) using Snorkel library [40] are
shown in Figure 2-(right). Note that the changes in output
probabilities values are indicative of more accurate training
data [41]. Based on the resulting generative models (with
probabilities) from the corresponding labeling functions per
SD pair, we then trained LSTM predictive models (per source-
destination pair). We tested the trained LSTM models on the
held-out test data.

Fig. 1. A sample KMeans labeling function.

Figures 3-(left) and -(right) depict the average of F1 metrics
before (naïve) and after noise removal (NoMoNoise) for the
test data from 6 different Ark vantage points in the US. From
these figures, we note the following. First, in a majority of
the cases, NoMoNoise performs well when compared to the
naïve counterparts with F1 score improvements up to 2x (e.g.,
observe the improvement for µ-based classifier for eug clients
before and after removing noise) with high precision (0.89
to 0.98) and high recall (0.93 to 0.99) (results not shown).
This improvement is due to NoMoNoise minimizing the noise
based on the disagreements between RTT measurements. Next,

2These values are not prescriptive. They emerged through multiple runs of
NoMoNoise, the results of which are not shown here due to space constraints.

3We define precision as the ratio of correctly predicted good measurements
(true positive) to the total number of predicted good measurements (true and
false positives). The recall is the ratio of correctly predicted good measurements
(true positive) to all the actually good measurements (true positives and
false negatives). In the results, high precision means low false-positive rate
(i.e., correct classification) and high recall means getting the noisy/good
measurements rather than getting all of them correct. Finally, F1 Score =
2*(Recall*Precision)/(Recall+Precision).

LOF, even though it fails to capture the RTT distribution and
inherent density in certain cases, performs well compared to the
remaining techniques. This is because LOF is very selective:
(a) it does not predict many measurements to be good in
comparison with the naïve predictions and (b) while all noisy
measurements predicted are indeed noisy, some are missed in
the predictions. Next, IF, ORCE and EE perform extremely well
for all cases in comparison with naïve unsupervised techniques
(see Figure 3-(left)).

Fig. 2. Original weak labels assigned by KMeans are shown on the left.
Generated probabilities (i.e., noise labels) by learning inaccuracies in different
weak labels are shown on the right. Note the changes in output probabilities
values that are adjusted by learning the inaccuracies in the training data and
are indicative of better training data.

B. Using controlled lab-based datasets

Next, we evaluate NoMoNoise using RTT measurements
from ping data obtained in a controlled, lab-based setting. This
experiment consists of 10,000 RTT measurements obtained by
pinging an internal server from a host in the same network,
following the same training-development-testing split. Figure 4
shows the F1 scores of different techniques on this dataset.
From this figure, we note that the LOF, once again, is selective
when compared to other techniques with high recall and high
precision values. Overall, we observe a 1.4x improvement in
the average F1 score.

C. Limitations of NoMoNoise

Though the results above show that NoMoNoise performs
well (i.e., high F1 scores due to high precision and recall values),
there are cases where NoMoNoise resulted in false positives
and false negatives (e.g., better F1 scores for KMeans and LOF
for naïve techniques in Figure 4). We discuss these cases and
describe the limitation of our tool, addressing which is our
ongoing focus. We observed cases where the labels predicted
by NoMoNoise led to false positives. The main reason for
false positives is due to the calculated thresholds from different
techniques (in step 1) that are greater than the maximum of
RTT values observed in the dataset. Figure 5-(left) and -(right)
depicts the CDF of RTT measurements and the corresponding
threshold (Q3 + 1.5 x IQR) calculated for two such cases
from the Ark dataset.4 We note that NoMoNoise is applicable
only if the established threshold is smaller than the maximum

4Other thresholds (e.g., µ + σ ) exhibited similar characteristics and are not
shown here due to space constraints.



Fig. 3. Average of F1 scores for Ark dataset before (left) and after (right) removing noise using NoMoNoise.
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Fig. 4. F1 scores for lab-based ping datasets before and after removing noise
using NoMoNoise framework.

RTT value observed. This is evident from two other sample
clients whose CDF of RTT values and thresholds are depicted
in Figure 6-(left) and -(right).

One way to address this limitation is to leverage mean-shift
clustering [49], which is a centroid-based clustering approach
for locating the maxima of a density function. Specifically,
given a dataset, it partitions the dataset into n different clusters
(where we do not have to define n), and each of these clusters
is formed by the density distribution. That is, the first cluster
will have the highest number of points, the second cluster will
have the second-highest number of points, and so on. This way
one can ensure that the threshold is always maintained within
the maximum observed RTT value.

V. SUMMARY AND FUTURE WORK

Internet measurements community is critically lacking a
systematic framework to interpret measurements. The key
hindrance to creating such a framework is measurement noise,
which we define as the presence of non-representative and
erroneous values in the delay measurements. In this paper,
we develop a systematic weak supervision-based framework
and culminate in NoMoNoise, an open-source implementation
of the framework, for denoising delay measurements in an
automated and rapid fashion. We evaluate the efficacy of
NoMoNoise in a lab-based setting and in a real-world setting

by applying it to a community dataset (i.e., CAIDA’s Ark)
and show that NoMoNoise can remove noisy measurements
effectively with high F1 scores.

In our ongoing work, we are extending NoMoNoise to
repair and replace noise with representative value(s). To this
end, we intend to design and build a matrix completion-
based repair framework that builds upon prior work on
latency estimation using iterative hard-threshold singular value
decomposition [10].
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