What time is it? Managing Time in the Internet

Sathiya Kumaran ManiT, Paul Barford", Ramakrishnan Durairajan®, Joel Sommers
TUniversity of Wisconsin - Madison *University of Oregon Colgate University

ABSTRACT

In this paper, we report on our investigation of how cur-
rent local time is reported accurately by devices connected
to the internet. We describe the basic mechanisms for time
management and focus on a critical but unstudied aspect of
managing time on connected devices: the time zone database
(TZDB). Our longitudinal analysis of the TZDB highlights
how internet time has been managed by a loose confedera-
tion of contributors over the past 25 years. We drill down on
details of the update process, update types and frequency,
and anomalies related to TZDB updates. We find that 76% of
TZDB updates include changes to the Daylight Saving Time
(DST) rules, indicating that DST has a significant influence
on internet-based time keeping. We also find that about 20%
of updates were published within 15 days or less from the
date of effect, indicating the potential for instability in the
system. We also consider the security aspects of time man-
agement and identify potential vulnerabilities. We conclude
with a set of proposals for enhancing TZDB management
and reducing vulnerabilities in the system.

CCS CONCEPTS

« Networks — Time synchronization protocols;

KEYWORDS
DST; Local Time; Time Zone Database; TZ; TZDB;

1 INTRODUCTION

The modern world is intrinsically tied to the concept of time.
Day-to-day activities in virtually all aspects of life have some
notion of a start time, a duration and an end time, each of
which are essential for scheduling and most importantly for
coordination between participating entities. As such, time
sources that are accurate, consistent and reliable are essential
in our society.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ANRW 19, July 22, 2019, Montreal, QC, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6848-3/19/07...$15.00
https://doi.org/10.1145/3340301.3341125

The importance of time has led most governments around
the world to set up centralized entities (e.g., the National
Institute of Standards and Technology in the US [16]) to
specify time standards and to maintain highly precise clocks
that serve as reference sources. A natural question to ask
is, how do I ensure that my personal clock is coordinated,
in a reasonable way, with the time specified on a national
reference server? In an age when most people get their time
from electronic devices such as computers, smartphones,
smartwatches, etc., the answer lies in a set of processes that
have been in place and largely unchanged for many years.

In this paper, we investigate how time is coordinated and
reported by devices connected to the internet. Our study
considers the basic components and processes for time man-
agement and focuses specifically on the issue of reporting
current local time. One manifestation of the importance of
current local time is coordinating appointments for people
in different locations. How does one know what time it is
in a location that is half way around the world? and how
are users assured that connected devices, applications run-
ning on those devices or cloud services report current local
time accurately? To answer those questions, we drill down
on a critical, but relatively unstudied aspect of managing
time in the internet: the time zone database (TZDB) [14].
The TZDB, operated under the aegis of IANA, is a historical
repository that reflects time zones established by govern-
ments around the world, Coordinated Universal Time (UTC)
offsets for each time zone, and daylight saving time rules.
In short, the TZDB is one of the primary mechanisms for
connected devices world-wide to report current local time.

The processes that have evolved for maintaining the TZDB
consist largely of periodic updates made by a loose confeder-
ation of contributors to reflect a new time policy in a local ju-
risdiction. Our understanding of these processes is enhanced
by analysis of the mailing list archive that is specified as a
primary mechanism for maintenance and management of
the TZDB [31].

Our analysis of the TZDB itself is focused on assessing its
stability, integrity, and security. We begin by analyzing how
time zone details in the TZDB have changed over the past
26 years. During that period 2,283 updates have been made
to the repository, including updates that reflect historical
changes in time zones. We find that updates are bursty, but
are distributed in a relatively uniform fashion over the years
and across the various time zones. While the reasons for

https://doi.org/10.1145/3340301.3341125

changes vary, the majority of updates reflect changes in day-
light saving time (DST) policies. Reasons for DST changes
include political elections, local events and religious events.
We also find that approximately 20% of updates are modi-
fied within 15 days from their date of effect, indicating the
potential for societal disruption. One potential catastrophic
failure of the TZDB would be either a malicious entity mak-
ing a change or an unintended update being used by one of
the major operating systems. We find several problems re-
lated to TZDB updates resulting in errors and software bugs.
Some of the problems are caused by uncertain information
released by administrative entities and delays in distributing
the updates to end users. Finally, we consider the processes
for maintaining the TZDB from an adversarial perspective
and show that several aspects of update and maintenance
are vulnerable to attack.

Our analysis of the TZDB leads us to propose a number
of updates to the current system and process that we argue
will enhance its integrity and security. First, we recommend
a formalization of the process for maintaining the TZDB to
ensure that it is sound and secure. Second, we recommend
that all updates and the TZDB itself are cryptographically
signed to ensure authenticity. Third, we recommend the
implementation of an audit process to assure the integrity
of the TZDB.

2 BACKGROUND

Time zones originated largely due to the need to standard-
ize current local time in order to facilitate coordination
of transportation (railway) and communication (telegraph)
networks that became commonplace in the late 19" cen-
tury [19, 27, 43]. Multiple clocks often had to be installed in
stations—each calibrated to a given rail company’s notion
of current local time—in order for customers to be able to
make sense of different timetables. The threat of the United
States Government intervening to simplify the situation led
the rail industry to create standard rail time in 1883, a precur-
sor to the time zones in the United States today [19]. Time
zones (both industry and government-established) became
common within Europe and North America by the end of
the 19" century [43]. The arrival of World War I caused the
United States to seek to conserve energy through creation of
daylight saving time (DST) in 1918, an idea first proposed by
New Zealander George Hudson in 1895 and which was being
adopted in other parts of the world [19, 43]. A side-effect of
establishing DST was that the United States established offi-
cial time zones within its borders, superseding the railroad
industry time zones.

2.1 The Timezone Database

The time zone database (TZDB) project was created by
Arthur David Olson in the early 1980s to facilitate timekeep-
ing on computer systems and to provide standard program-
ming APIs to deal with time zones [17, 31]. The database

consists of text files (generally one for each continent) with
zone definitions and rules. Zone definitions indicate names of
time zones, their offset from the Greenwich Prime Meridian
reference, and an indication of a date and time at which the
zone ceased to be valid (if applicable)[47]. Current names
of time zones typically include the name of a region and
the largest city (by population) within the time zone refer-
enced [44]. For example, the following is a historical zone
record indicating that local mean time in New York City
was offset from Greenwich Mean Time (GMT) by -4:56:02
up until November, 1883

Zone America/New_York -4:56:02 - LMT 1883 Nov 18 12:03:58

The most recent release of the TZDB (2019a) specifies 348
time zones in the world.

Rules within the TZDB indicate when the offset for a time
zone may change depending on daylight saving time [44, 47].
For example, the current daylight saving rules in effect in
the United States are shown below. They indicate when time
zones in the US change and by how much, among other
details:

Rule US 2007 max - Mar Sun>=8 2:00 1:00 D
Rule US 2007 max - Nov Sun>=1 2:00 @ s

Moreover, the TZDB contains C sourcecode for compil-
ing the database into binary datafiles, as well as reference
implementations of C API functions and utility programs
that can be used to access information within the TZDB,
e.g., the zdump tool, which accepts a time zone name and
prints the current local time for that zone. On modern
UNIX-based systems, database files are typically installed in
/usr/share/zoneinfo for use by API functions and utilities.

The TZDB was placed explicitly in the public domain by
Arthur David Olson in 2009; it is not “owned” by any internet-
related authority. However, the process by which the TZDB is
updated has been specified in RFC 6557 (BCP 175) [31], with
current releases of the database being hosted by IANA [14].
RFC 6557 makes explicit that the primary maintainer of the
database (currently Paul Eggert of UCLA) is empowered to
make any appropriate changes to the database and should
consider the views expressed on the TZ mailing list [18]. In
practice, it is up to the primary maintainer to reach consensus
with mailing list participants about any changes.

When a new release of the database is created, notification
is made on the TZ mailing list and files are updated at a canon-
ical location [14]. It is then up to any consumers of the TZDB
(e.g., hardware and OS manufacturers, programming library
maintainers, etc.) to incorporate the latest versions in their
software. The timing of updates is thus critical, since there
may be substantial delay between discussion of potential
changes to the database to actual incorporation of changes

IThe dash after the offset indicates that New York City did not observe
daylight saving time.

into an OS or software library [30, 31]. For example, in 2015
the Turkish Government did not officially decide to delay
an impending daylight saving time change to allow more
daylight hours for polls during an election until about three
weeks before the change. Although the TZDB was modified
soon after the change became official, it took additional time
for OS manufacturers to release software updates to account
for these changes, e.g., an updated version of Apple’s iOS was
not released until three days before the election. The result
was mass confusion over what time it was [30]. While the
relatively new time zone distribution service protocol [23]
is designed to help reduce update latency between software
manufacturers and the installed client base, the extent of its
current deployment (if any) is unclear, and it only addresses
one aspect of update delay, thus it is not clear how much the
distribution protocol would have helped in this instance.

Zone rules Both

Both Future

51.8%

DST rules

Past
Figure 1: Distribution of updates affecting DST and
zone rules (left) and past & future timestamps (right).

It is important to note that the maintainers of the database
make no claims regarding accuracy, especially for historical
zones and rules [17, 31] before 1970. Correctly handling
dates and times in software is notoriously difficult [28], and
historical time zone information is included (and continues
to be updated) in order to help software developers correctly
deal with dates and times in the past. The maintainers of the
database also do not make any claim for the database being
authoritative, since they rely on some awareness (mediated
through the TZ mailing list) of potential adjustments to time
zones in the world in order to incorporate any changes. For
any changes made to database, comments typically appear
in the source files with hyperlinks or other references to
justify the changes. A number of other historical notes are
also included, making each database file a rich source of
information about the evolution of time zones throughout
the world [51]. Indeed, the majority of lines of each database
source file is made up of comments (e.g., 2331/3487, or 67%
of the lines of the northamerica source file are exclusively
comments in the most recent release of the database, 2019a).

2.2 Data Used for Analysis
We used two primary data sources for the analyses in this
paper. First, we used the TZ database source files from the

available 240 releases? of the database for analysis [14]. Sec-
ond, we downloaded the entire TZ mailing list archive for
our analysis [18]. The mailing list archives span a time pe-
riod of 33 years (Nov 1986—-May 2019) while the database
releases span a time period of 26 years (1993-2019). Each
release is named after the year of its release and an alpha-
betic character serially assigned to releases in that year (e.g.,
1995a). The most recent version of the database contains 348
time zone records.

3 TZDB ANALYSIS

3.1 A Maintenance Perspective

To understand the evolution of the TZDB and, specifically,
time zones and DST rules around the world, we analyze
all releases of the TZDB. Since the mailing list is also the
primary source for distributing TZDB releases, we use the
email archives to identify the announcement corresponding
to each release and extract the release timestamps.

We built a Python-based TZDB parser tool to process
the zone and DST rules associated with each time zone. The
parser is also capable of detecting the changes in the effective
zone and DST rules between consecutive releases. We call
such changes updates to the TZDB. Using the parser, we
identify 2,283 updates to the zone and DST rules across all of
240 TZDB releases over the past 26 years. Our tool also labels
427 updates as “correction updates", which are amendments
to previous updates. We discuss correction updates in §3.4.

Categorizing database updates. We take two ap-
proaches to characterize the TZDB updates identified by
our parser. We begin by identifying updates that change
zone rules or DST rules or both. Figure 1 (left) shows that
about 76% of TZDB updates make changes to the DST rules
highlighting the influence of DST on managing current local
time on connected devices.

Next, using the release dates extracted from the announce-
ment emails in the email archive, we identify updates that
affect timestamps in the past, the future, or both. For each
zone update, we calculate the time ranges the updates af-
fect. Given this time range and the release timestamp, we
identify whether the update affects past timestamps, future
timestamps, or both i.e., time ranges that straddle the release
timestamp. This distribution is shown in Figure 1 (right).
The figure shows that a majority of the release updates af-
fect timestamps in the past, indicating the efforts that go into
maintaining the historical accuracy of the database.

Assessing update timeliness. Since we are able to iden-
tify the updates from each release that affect future times-
tamps, we can calculate the number of days between the
date of the release and the affected time range in the future.
This helps to characterize the timeliness of the releases and

2In this study we consider only releases that contain time zone data (tzdata)
and exclude missing and time zone code-only releases.

w 0.6 w 0.6
a a
Ooa Ooa
0.2- 0.2
00- ! ‘ ‘ ‘ ‘ ‘ ‘ 0.0- ! ‘ ‘
0 200 400 600 800 1000 1200 0 50 100

No. of days

150

No. of days

1.0-
0.8- :
w 0.6- f
[a)]
O 0.4-

0.2- — E-mails from all contributors

- -« E-mails from frequent contributors

0.0-
350 0 500 1000 1500 2000 2500 3000 3500
No. of e-mails

200 250 300

Figure 2: CDF of the no. of days between release dates and affected future timestamps (left) and affected past
timestamps (middle) and CDF of the no. of emails sent by each contributor (right).

Figure 2 (left) shows the CDF of this distribution. From the
figure, we observe that ~80% of the updates are announced
within 100 days from their date of effect. Moreover, about
20% of the updates are announced within 15 days or less from
their time of effect, highlighting the potential for societal dis-
ruption due to time lag for incorporation in connected devices.
Similarly, since we see affected time ranges that straddle the
release date, we examine those updates to see how far in the
past the corrections are made. We remove updates that make
corrections beyond a year in the past to eliminate updates
that make historic changes. The CDF of the remaining up-
dates shown in Figure 2 (middle) indicates that only 40% of
the updates make changes to timestamps within 50 days in
the past.

3.2 A Community Perspective

Since the TZDB spans the history of the commercial internet
and beyond, obtaining a perspective of the maintenance and
administrative activities is crucial for understanding how
the loosely-organized group of contributors have maintained
this critical asset. Since the mailing list is the primary means
of communication among the contributors (§2), we begin
by examining the email archives published by IANA [18]
to assess behaviors within the community. From the email
archives, we calculate the number of unique contributors?
and the number of emails exchanged by the TZDB commu-
nity. We find 1,891 unique contributors sent 19,367 emails
over the span of 33 years, with an average of 56 messages
every month. The relatively large number of contributors is a
potential concern from a management perspective.

Figure 3 shows the number of unique contributors ac-
tively communicating through the mailing list every month.
The increasing trend, particularly after the 2012 adoption of
TZDB hosting by IANA, suggests a growth of interest and
visibility for the database. Similarly, an increasing trend is
seen in the number of monthly email messages as shown in
Figure 3. We posit that the increasing trends are correlated
with the increasing usage of the database, particularly due

3 Our manual inspections of the archives reveal that the mailing list is mostly
used to discuss updates or modifications to time zone and DST rules, instead of
queries about using the system. Hence the number of unique email addresses
is a reliable estimate of the number of unique contributors participating in
maintenance activities.

700 -
----- Monthly emails

6997 __ Monthly unique contributors
500 -

400 -
300 -
200 -

Count

100 -

-3

0- &

1989 1993 1997

2001
Time (year)
Figure 3: Number of monthly unique contributors and

emails sent over the span of 33 years (1986-2019).

2005 2009 2013 2017

to the widespread adoption of mobile/smart devices around
the same period [9].

To gain an insight into the effort required to maintain the
TZDB, we calculate the CDF of the number of email messages
sent by each contributor (Figure 2 - right). Not surprisingly,
the top two contributors are the current TZ Coordinator
(Eggert) and the founder of the database (Olson). We observe
that ~90% of the contributors have sent less than 50 mes-
sages (each) throughout the history of TZDB, indicating that
though a large number of contributors participate in reporting
errors, making administrative changes to DST and time zone
rules from around the world, the database is maintained only
by a small clique of contributors. Figure 2 (right) also shows
the CDF only for contributors who have sent more than the
average number of messages. We see that even in this subset,
about 90% of contributors have sent less than 100 messages.

3.3 A Geo-Political Perspective
While the community and maintenance perspectives pro-
vide a baseline for understanding the practical aspects of
the TZDB update process, we posit that the reasons for DST
rule changes are often administrative due to governments
changing time zone rules for reasons including elections [30]
or large local events such as games [13] or religious rea-
sons [10]. To evaluate this hypothesis, we analyzed rule
change frequency. For this analysis, we count the number
of rule changes each year for every time zone, the results of
which reveal several interesting geo-political events in his-
tory, thus providing supporting evidence for our hypothesis.
To perform the rule change frequency analysis, we use
the most recent release of the database (i.e., 2019a) and built
a parser to count the number of rule changes (both zone
and DST rules) each year for every time zone. When we

generate a histogram, the years with large number of rule
changes appear as spikes in the plot. Since we count the rule
changes for every time zone, national and regional events
that affect multiple time zones are more prominent and easily
identifiable. To eliminate noise, we use a simple filtering
technique where we use one standard deviation from the
mean value as a threshold and consider only spikes that
are larger than the threshold value. Moreover, to identify
potential historical events that correspond to the spikes in
the histogram, we group the contributing time zones by
country and look at the history of countries with the highest
number of contributions for the year in question.

No. of rule changes ® World War Il

Energy Policy *
"~ --- Threshold (Mean + 1 STD) Act

-
o
S

©
S

World War | ®

Federal Fire
World War 11® || Oil Embargo ~ Prevention Act
(Energy Crisis) o *

o
o

IS
S

Uniform Time
Act

No. of rules going into effect

ol
1860 1880 1900 1920 1940 1960 1980 2000 2020
Years

Figure 4: Histogram of rule changes in North America
labeled with major geo-political events.

From the plots for North America (Figure 4) and other con-
tinents (not shown due to space constraints), we observe time
zone updates flagged in our analysis coincident with wars, fi-
nancial crises, sporting events, etc. In this way, the time zone
database provides a unique perspective on historical events.
Combining the results from our rule change frequency anal-
ysis with information in the database comments to identify
interesting world events is part of our ongoing work.

3.4 Problems related to TZDB updates
We describe several anecdotes to illustrate the anomalies
and problems related to TZDB updates. To identify such
anomalies, we use a combination of techniques involving the
use of our parser to label updates that make corrections to
previous updates, filtering email archives using key words,
and manual inspection of the filtered emails and correspond-
ing comments in the database files. Automating this process
using natural language processing algorithms to identify all
issues across the data corpus is part of our ongoing efforts.
Correction updates. We find that about 19% of the up-
dates include changes to previous updates, with 26% of such
correction updates affecting timestamps before 1970 and the
rest of the updates affecting timestamps after 1970. Pre-1970
correction updates highlight the efforts involved in maintain-
ing the historical correctness of the database. While some of
the post-1970 correction updates are issued to fix incorrect
information as explained below, we find that most correction
updates arise largely from uncertainties. For example, the
government of Bangladesh announced the adoption of DST

without mentioning the end date, prompting the use of a
nominal end date in the 20090 release of the database [5].
This information was later changed using a correction update
when the end date was officially announced. Such examples
highlight the problems that arise due to incomplete informa-
tion released by administrative entities.

Errors. We find instances of updates that fix incorrect
information in the database that were identified and re-
ported by contributors. One example is the instance when
a proposed US presidential election year DST policy helped
cause a time zone error [1] in 1992. The proposed policy
(not yet signed into law) was included in the TZDB with
a non-descriptive name (‘US/Pacific-New’) and resulted in
several Unix systems on the US west coast failing to switch
out of DST as expected. Similarly in recent years, we see
several errors in time zone information for countries such
as Chile [2], Pakistan [4], Syria [6] and Jordan [3] that were
later fixed by the contributors. These errors highlight the
problems with the informal update process.

Software bugs. We also find instances of time zone up-
dates resulting in software bugs in several popular software
packages and distributions. For example, an update to in-
troduce negative DST offsets for the time zone ‘Europe/-
Dublin’ in 2018, ended up breaking several packages such
as OpenJDK, Joda-Time and ICU (International Components
for Unicode) [15]. Similarly, we see updates causing errors in
packages such as Qt [12] and user bugs in OS distributions
such as Ubuntu [7]. These examples underscore the impact
of the TZDB and the errors that might be caused due to
incorrect or erroneous updates.

Delayed updates. Another class of problems arise due to
delays in distributing TZDB updates to user devices. As men-
tioned in §2, delays in pushing the updates to end users have
resulted in several issues such as the issues with Android and
iOS users in Israel [8] and Turkey [30] and has also resulted
in incorrect time display in Google search results [11].

4 RECOMMENDATIONS

In this section, we discuss the implications of our analysis
of the TZDB in Section 3 and make a number of recommen-
dations for TZDB management and maintenance that are
focused on assuring accuracy and enhancing the integrity of
the system. It is important to be clear that the intention of
this discussion is not to impugn the individuals who have
contributed significant time, energy and expertise to the
maintenance and upkeep of the TZDB. Rather, we hope to
expand the perspective on this very important task in a way
that will ultimately improve the system.

We do not provide an implementation since many of our
recommendations could be followed using standard open-
source tools such as Bugzilla. We also do not discuss methods

for distributing timezone information. A variety of distribu-
tion methods are possible and RFC 7808 describes a timezone
data distribution service while explicitly noting that it does
not address how contributions are made to the TZDB. Hence
our recommendations are complementary to RFC 7808. Our
recommendations are also intentionally high level—details
would need to be fleshed out within the TZDB community.

While it can be argued that the current process for main-
taining the TZDB as described in RFC 6557 [31] has “worked",
we posit that technology trends such as cloud services, self-
driving vehicles, Internet of Things and mobile-edge com-
puting expand the scope of risks of errors or uncertainty in
the TZDB. Furthermore, the lack of explicit security mea-
sures exposes vulnerabilities in the TZDB to malicious actors
seeking to disrupt or deny service. To address these risks,
we recommend the following enhancements.

Codification of TZDB update process. As described
in RFC 6557, the current process for updates to the TZDB
relies entirely on the TZ Coordinator and the TZ mailing
list. We believe it is critical to maintain a community-based
support and release process that is managed by a Coordinator.
This approach has been effective for other large software
systems such as Linux kernel development, and is also a good
model for the TZDB. We recommend a formalization of the
process for maintaining the TZDB to ensure that it is sound,
that updates are available when required, that updates are
appropriately tested, and that consistent documentation is
provided. Key aspects of the proposed formalization would
include a standard release cycle, standardized documentation
of changes, a ticketing system for each step in the process,
and results from tests of the TZDB standard codebases.

Secure the TZDB update process. Our examinations of
RFC 6557, the TZDB and the TZ mailing list indicate that
there is little in terms of formal security measures. Indeed,
the entire process relies on the integrity of the contributors,
the TZ Coordinator and the repository for the TZDB, as-
sociated code and documentation. The implication is that
a motivated attacker or e.g., a government entity intent on
disenfranchising certain groups may find specific vulnerabil-
ities or utilize the current processes to facilitate malicious or
unwarranted updates to be inserted in the TZDB. We posit
that there are three general types of threats: (i) imperson-
ation of a TZDB contributor or local authority, or the TZ
Coordinator; (ii) compromise of the TZDB update process;
and (iii) compromise of the TZDB itself.

Asnoted above, RFC 6557 states that “Moving forward, the
TZ database, supporting code, and any appropriate support-
ing information SHOULD be cryptographically signed prior
to release using well known public keys" [31]. Minimally,
we recommend that the update process be enhanced so that
only authorized and properly credentialed contributors are
allowed to make updates, and that all TZDB updates, the

database itself, supporting code and documentation MUST
be cryptographically signed. Again, we appeal to the Linux
release process in which all releases are signed using Open
PGP-compliant signatures which are easily tested by third
parties. Recommendations for more comprehensive security
measures will be considered in future work.

Audit TZDB updates. To ensure the integrity of the
TZDB releases, we recommend the implementation of a stan-
dard audit process. This audit would be conducted by a third
party separate from the update contributors but in coordina-
tion with the TZ Coordinator. The audit would be conducted
from the perspective of users in all time zones to ensure that
current local time is consistent with the current standard for
that area. The results of the audit would be documented and
included along with the other documents maintain in the
TZDB repository.

5 RELATED WORK

The evolution of clock synchronization fueled the develop-
ment of protocols for internet-connected devices such as
Network Time Protocol (NTP) [38-40, 42, 46] and its vari-
ants (e.g., Simple NTP (SNTP) [41], MNTP [36], Precision
Time Protocol (PTP) [29], RADClock [52], etc.) as well as
protocols for non-traditional networks [20, 22, 32, 33, 37, 50].
Studies have also examined the security implication of pro-
tocols [21, 24, 34, 35, 45], their usage [26, 48], and their ap-
plication to other areas such as latency estimation [25] and
event detection [49]. Our work is complementary: while all
these aspects of clock synchronization are important and are
the focus of prior efforts, to the best of our knowledge, ours
is the first study of current local time and the TZDB.

6 SUMMARY

In this paper, we examine the process that enables current
local time reporting on internet-connected devices. The focal
point for this process is the TZDB repository that codifies
regulations for time zones around the world and is used
in all major computing operating systems. We analyze the
longitudinal aspects of the TZDB and find that updates are
bursty and that the number of updates per month is generally
increasing. We find that updates are spread widely over time
zones and that most reflect changes to daylight saving time
and that many of these are revised relatively soon after they
are made. Our detailed analysis of the TZ mailing list and
TZDB releases reveals several problems related to corrections
and delays in publishing updates, resulting in errors and
software bugs.* Based on our findings and consideration of
RFC 6557 we make three recommendations for enhancing
the TZDB maintenance process that are intended to ensure
it’s accuracy, integrity and security.

4 We have setup a public repository with all the data used in our analyses and

the code used to generate the figures and results discussed in the paper at:
https:// github.com/ satkum/tzdb_analysis

https://github.com/satkum/tzdb_analysis

ACKNOWLEDGEMENTS

We thank Paul Eggert for his helpful comments and feedback.
This work is supported by NSF CNS-1703592, DHS BAA
11-01, AFRL FA8750-12-2-0328. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of NSF, DHS,
AFRL or the U.S. Government.

REFERENCES

[1] 1992. US presidential election year politics help cause time zone bugs.
https://mm.icann.org/pipermail/tz/1992-October/009164.html. (1992).
1995. Chile’s time zone data wrong. https://mm.icann.org/pipermail/
t2/1995-October/009422.html. (1995).
[3] 2009. Jordan DST out by a day since 2002. https://mm.icann.org/
pipermail/tz/2009- April/015519.html. (2009).
[4] 2009. Pakistan data incorrect? https://mm.icann.org/pipermail/tz/
2009-October/015845.html. (2009).
[5] 2009. proposed time zone package change for Bangladesh. https:
//mm.icann.org/pipermail/tz/2009- April/015519.html. (2009).
[6] 2009. Syria end of DST error in tz. https://mm.icann.org/pipermail/tz/
2009-October/015900.html. (2009).
[7] 2011. Is this a bug in the upstream or just Ubuntu (10.04LTS). https:
//mm.icann.org/pipermail/tz/2011-February/016697.html. (2011).
[8] 2013. Cellphone tz updates often not happening in Israel. https:
//mm.icann.org/pipermail/tz/2013-September/020361.html. (2013).
[9] 2013. How widely used is the tz database? https://mm.icann.org/
pipermail/tz/2013-March/018846.html. (2013).

[10] 2014. Morocco DST Interruption during Ramadan 2014. https://mm.
icann.org/pipermail/tz/2014-June/020971.html. (2014).

[11] 2016. Google search results displaying wrong time for Egypt. https:
//mm.icann.org/pipermail/tz/2016-September/024074.html. (2016).

[12] 2016. QTimeZone mishandles tzdata 2016b and later in Russia, Kaza-
khstan. https://bugreports.qt.io/browse/QTBUG-53071. (2016).

[13] 2018. Australian Time Zone changes for Olympics. https://github.com/
eggert/tz/blob/master/australasia#L.1351. (2018).

[14] 2018. IANA - Time Zone Database. https://www.iana.org/time-zones.
(2018).

[15] 2018. Irish Standard Time vs Irish Summer Time. https://mm.icann.
org/pipermail/tz/2018-January/025854.html. (2018).

[16] 2018. National Institute of Standards and Technology. https://www.
nist.gov/. (2018).

[17] 2018. Time zone database and code. https://github.com/eggert/tz.
(2018).

[18] 2018. tz — Time Zone Database discussion. https://mm.icann.org/
mailman/listinfo/tz/. (2018).

[19] LR. Bartky. 2015. Selling the True Time: Nineteenth-Century Timekeep-
ing in America. Stanford University Press.

[20] N. Chirdchoo, W. Soh, and K.C. Chua. 2008. MU-Sync: A Time Syn-
chronization Protocol for Underwater Mobile Networks. In WuWNeT.

[21] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey, and
M. Karir. 2014. Taming the 800 pound gorilla: The rise and decline of
NTP DDoS attacks. In Proceedings of ACM IMC.

[22] H. Dai and R. Han. 2004. TSync: A Lightweight Bidirectional Time
Synchronization Service for Wireless Sensor Networks. SIGMOBILE
CCR (2004).

[23] M. Douglass and C. Daboo. 2016. Time Zone Data Distribution Service.
https://tools.ietf.org/html/rfc7808. (March 2016).

[24] B. Dowling and D. Stebila. 2016. Authenticated Network Time Syn-
chronization.. In Usenix Security.

[2

—

[25] R. Durairajan, S.K. Mani, P. Barford, R. Nowak, and J. Sommers. 2018.
TimeWeaver: Opportunistic One Way Delay Measurement via NTP.
In ITC - Teletraffic in a Smart World.

[26] R.Durairajan, S.K. Mani, J. Sommers, and P. Barford. 2015. Time’s For-
gotten: Using NTP to Understand Internet Latency. In ACM HotNets.

[27] P. Glennie and N. Thrift. 2011. Shaping the Day: A History of Time-
keeping in England and Wales 1300-1800. Oxford Scholarship Online.

[28] Z. Holman. 2018. UTC is Enough for Everyone, Right? https://
zachholman.com/talk/utc-is-enough-for-everyone-right. (May 2018).

[29] IEEE. 2008. IEEE 1588 Precision Time Protocol (PTP), Version 2 Speci-
fication. (March 2008).

[30] M. Johnson. 2016. On the Timing of Time Zone Changes. https:
//codeofmatt.com/2016/04/23/on-the-timing-of-time-zone-changes/.
(April 2016).

[31] E.Lear and P. Eggert. 2012. Procedures for Maintaining the Time Zone
Database. https://tools.ietf.org/html/rfc6557. (February 2012).

[32] J.Liu, Z. Zhou, Z. Peng, J. Cui, M. Zuba, and L. Fiondella. 2013. Mobi-
Sync: Efficient Time Synchronization for Mobile Underwater Sensor
Networks. IEEE TPDS (2013).

[33] F. Lu, D. Mirza, and C. Schurgers. 2010. D-sync: Doppler-based
Time Synchronization for Mobile Underwater Sensor Networks. In
WuWNet.

[34] A.Malhotra, LE. Cohen, E. Brakke, and S. Goldberg. 2016. Attacking
the Network Time Protocol.. In NDSS.

[35] A. Malhotra, M. Van Gundy, M. Varia, H. Kennedy, J. Gardner, and
S. Goldberg. 2017. The security of NTPAAZs datagram protocol. In
International Conference on Financial Cryptography and Data Security.
Springer, 405-423.

[36] S.K. Mani, R. Durairajan, P. Barford, and J. Sommers. 2016. Mntp:
Enhancing time synchronization for mobile devices. In Proceedings of
ACM IMC.

[37] S.K. Mani, R. Durairajan, P. Barford, and J. Sommers. 2018. An Ar-
chitecture for IoT Clock Synchronization. In Proceedings of the 8th
International Conference on the Internet of Things.

[38] D.L. Mills. [n. d.]. Network Time Protocol. https://www.ietf.org/rfc/
rfc958.txt. ([n. d.]).

[39] D.L. Mills. [n. d.]. Network Time Protocol (Version 3): Specification,
Implementation and Analysis. https://www.ietf.org/rfc/rfc1305.txt. ([n.
d.]).

[40] D.L. Mills. 1991. Internet time synchronization: the network time
protocol. IEEE Transactions on communications 39, 10 (1991), 1482—
1493.

[41] D.L. Mills. 1995. Simple Network Time Protocol (SNTP). https://tools.
ietf.org/html/rfc1769. (March 1995).

[42] D. Mills, J. Martin, J. Burbank, and W. Kasch. 2010. Network Time
Protocol Version 4: Protocol and Algorithms Specification. https:
//tools.ietf.org/html/rfc5905. (June 2010).

[43] V. Ogle. 2015. The Global Transformation of Time: 1870-1950. Harvard
University Press.

[44] A.D. Olson. 2009. Theory and pragmatics of the tz code and data.
https://data.iana.org/time-zones/theory.html. (May 2009).

[45] S. Park, A. Shaik, R. Borgaonkar, and J. Seifert. 2016. White rabbit in
mobile: Effect of unsecured clock source in smartphones. In Proceedings
of the 6th Workshop on Security and Privacy in Smartphones and Mobile
Devices. ACM.

[46] J. Postel and K. Harrenstien. 1983. Time Protocol. https://tools.ietf.
org/html/rfc868. (May 1983).

[47] B. Seymour. 2015. How to Read the tz Database Source Files. https:
//data.iana.org/time-zones/tz-how-to.html. (October 2015).

[48] J.A. Sherman and J. Levine. 2016. Usage analysis of the NIST internet
time service. Journal of Research of the National Institute of Standards
and Technology 121 (2016), 33.

https://mm.icann.org/pipermail/tz/1992-October/009164.html
https://mm.icann.org/pipermail/tz/1995-October/009422.html
https://mm.icann.org/pipermail/tz/1995-October/009422.html
https://mm.icann.org/pipermail/tz/2009-April/015519.html
https://mm.icann.org/pipermail/tz/2009-April/015519.html
https://mm.icann.org/pipermail/tz/2009-October/015845.html
https://mm.icann.org/pipermail/tz/2009-October/015845.html
https://mm.icann.org/pipermail/tz/2009-April/015519.html
https://mm.icann.org/pipermail/tz/2009-April/015519.html
https://mm.icann.org/pipermail/tz/2009-October/015900.html
https://mm.icann.org/pipermail/tz/2009-October/015900.html
https://mm.icann.org/pipermail/tz/2011-February/016697.html
https://mm.icann.org/pipermail/tz/2011-February/016697.html
https://mm.icann.org/pipermail/tz/2013-September/020361.html
https://mm.icann.org/pipermail/tz/2013-September/020361.html
https://mm.icann.org/pipermail/tz/2013-March/018846.html
https://mm.icann.org/pipermail/tz/2013-March/018846.html
https://mm.icann.org/pipermail/tz/2014-June/020971.html
https://mm.icann.org/pipermail/tz/2014-June/020971.html
https://mm.icann.org/pipermail/tz/2016-September/024074.html
https://mm.icann.org/pipermail/tz/2016-September/024074.html
https://bugreports.qt.io/browse/QTBUG-53071
https://github.com/eggert/tz/blob/master/australasia#L1351
https://github.com/eggert/tz/blob/master/australasia#L1351
https://mm.icann.org/pipermail/tz/2018-January/025854.html
https://mm.icann.org/pipermail/tz/2018-January/025854.html
https://www.nist.gov/
https://www.nist.gov/
https://github.com/eggert/tz
https://mm.icann.org/mailman/listinfo/tz/
https://mm.icann.org/mailman/listinfo/tz/
https://tools.ietf.org/html/rfc7808
https://zachholman.com/talk/utc-is-enough-for-everyone-right
https://zachholman.com/talk/utc-is-enough-for-everyone-right
https://codeofmatt.com/2016/04/23/on-the-timing-of-time-zone-changes/
https://codeofmatt.com/2016/04/23/on-the-timing-of-time-zone-changes/
https://tools.ietf.org/html/rfc6557
https://www.ietf.org/rfc/rfc958.txt
https://www.ietf.org/rfc/rfc958.txt
https://www.ietf.org/rfc/rfc1305.txt
https://tools.ietf.org/html/rfc1769
https://tools.ietf.org/html/rfc1769
https://tools.ietf.org/html/rfc5905
https://tools.ietf.org/html/rfc5905
https://data.iana.org/time-zones/theory.html
https://tools.ietf.org/html/rfc868
https://tools.ietf.org/html/rfc868
https://data.iana.org/time-zones/tz-how-to.html
https://data.iana.org/time-zones/tz-how-to.html

[49] M. Syamkumar, S.K. Mani, R. Durairajan, P. Barford, and J. Sommers.

2018. Wrinkles in Time: Detecting Internet-wide Events via NTP. In
IFIP Networking.

[50] A.A.Syed,].S. Heidemann, et al. 2006. Time Synchronization for High
Latency Acoustic Networks.. In IEEE Infocom.

[51] J. Udell. 2009. A literary appreciation of the Olson/-
Zoneinfo/tz database. https://blog.jonudell.net/2009/10/23/

a-literary-appreciation-of-the-olsonzoneinfotz-database/. (Oc-
tober 2009).

[52] D. Veitch, S. Babu, and A. Pasztor. 2004. Robust Synchronization of
Software Clocks across the Internet. In ACM IMC.

https://blog.jonudell.net/2009/10/23/a-literary-appreciation-of-the-olsonzoneinfotz-database/
https://blog.jonudell.net/2009/10/23/a-literary-appreciation-of-the-olsonzoneinfotz-database/

	Abstract
	1 Introduction
	2 Background
	2.1 The Timezone Database
	2.2 Data Used for Analysis

	3 TZDB Analysis
	3.1 A Maintenance Perspective
	3.2 A Community Perspective
	3.3 A Geo-Political Perspective
	3.4 Problems related to TZDB updates

	4 Recommendations
	5 Related work
	6 Summary
	References

