Performance Optimization
Overview

Boyana Norris

NUCLEI Annual Meeting 2019
May 22, 2019

UNIVERSITY OF

0 ‘ OREGON http://bit.ly/NUCLEI-Perf

Jrees
HPCL

i
Structure

. Summary of performance-related activities over the past year
- DFTNESS = HFBTHO + HFODD kernels

o MFDn
o MPI
o NuCCOR

. For each code: Performance goals and hopes

o Please add your input to the letter to the Performance Santa (during or
after the talk is not too late!) http://bit.ly/NUCLEI-Perf

. Analysis and optimization summary

UNIVERSITY OF 2

OREGON http://bit.ly/NUCLEI-Perf

O

=i

HPCL

Architectures:

O Heterogeneous
m multicore CPUs (10s of threads per socket),
m manycore (100s of threads per device)
m several GPUs per node (1000s of threads per device)
m more networking layers (on and off node)
m in memory computing, FPGAs,

o Ubiquitous vectors
o |/O prohibitively expensive
Optimization goals:

o Parallelism: inter-node (multiple networks), intra-node (multicore, manycore,
GPUs), vectors

o Memory: optimizing data structures for specific computations or architectures

UNIVERSITY OFI/O 3
OREGON http://bit.ly/NUCLEI-Perf

O

Many-Fermion Dynamics for nuclear structure (MFDn)

Pieter Maris, James Vary, Esmond Ng, Chao Yang, postdocs...

No-Core Configuration Interaction code

» Platform-independent, hybrid OpenMP/MPI, Fortran 90-2003
» Constructs many-body matrix H; from input TBMEs (plus 3NFs)

» subject to user-defined single-particle and many-body truncation
» determine which matrix elements can be nonzero
» evaluate and store nonzero matrix elements

iIn compressed sparse block format (CSB)

Obtain lowest eigenpairs using LOBPCG or Lanczos algorithm
» typical use: 5 lowest eigenvalues and eigenvectors

» Write eigenvectors (wavefunctions) to disk
» Optional: Calculate selected set of static observables

Ongoing algorithm development and code optimization
aimed at current and next-generation HPC platforms

http://bit.ly/NUCLEI-Perf

P. Maris (ISU) MFDn Performance and Code Development NUCLEI meeting, May 2019, Santa Fe

1

http://bit.ly/NUCLEI-Perf

Intel Xeon Phi 'Knights Landing’

Many-Core architecture

» Multiple levels of parallelism
> 64 to 72 cores per node
» 4 hardware threads per core:
total of 256 to 288 threads per node
> AVX-512 (512-bit vector processing units)
» Memory hierarchy within nodes:
MCDRAM (DDR4) and High-Bandwidth Memory (In-Package)

Specifications for Cori-KNL at NERSC and Theta at ALCF
nodes cores MCDRAM HBW

Cori 9,688 68 at1.4 GHz 96 GB 16 GB | burst buffer
Theta | 4,392 64 at 1.3 GHz 192GB 16 GB | local SSD

P. Maris (ISU) MFDn Performance and Code Development NUCLEI meeting, May 2019, Sama Fe 2

Recent code-optimizations under NESAP for Cori

» MFDn is already hybrid MPI/OMP (since 2014)

» typically 1 to 16 MPI ranks per node
> typically 16 to 256 OMP threads per MPI rank

Switched from Lanczos to LOBPCG as default solver
» straightforward vectorization

Re-arranged loops in matrix construction to improve
cache-performance (also benefits performance on other platforms)

Split loops into subloops of appropriate vector length
Added OMP SIMD directives to further improve vectorization
User-defined MPISUM to utilize all available threads for reduction

Explicit memory management to leverage
combined MCDRAM + HBW bandwidth

» not practical on Cori due to (charged) reboot time http://bit.ly/NUCLEI-Perf
» needs to be explored in more detail for Theta

P. Maris (ISU) MFDn Performance and Code Development NUCLEI meeting, May 2019, Santa Fe 3

http://bit.ly/NUCLEI-Perf

Single-node scaling on KNL (Cori, Theta)

e Total, OMP onh
-8 Towd, | SMPI ramks

¢ Matnx Constructson

* LOBICG Solver
— Obscrvabies

wecal scakng

%
5
b
L
*
2
E;
=
=

16
Theeads

» Good scaling up to number of cores available
on both Cori (open symbols) and Theta (closed symbols)

P. Maris (ISU) MFDn Performance and Code Development NUCLE! meeting, May 2019, Santa Fe 4

| 1 . http://bit.ly/NUCLEI-Perf
Comparison Cori-Haswell vs. KNL vs. Mirg e e

ahane RCkx)
4

(24
-

_\\"&{\'\'-.\\“-'\\' SN NANNNN N NN :

T
R—————s

S
b
»
£
A
Z
-
>
5
4

L7 77
Cont KNL, pre NESAP (X
Cont KNL, 69 sosdes, 276 NPT rands
8 soden. 199 MM rands
modes, I8 MM sl (rete

ALCF Wall ¢clock time (seoon

KNL S sondes
MM rwhs 141
B, 125 snles
- X0 MM r b 64 OMP Dwcads
ZZM Zmm
o N
£ P IE
o Rt
W & A
N oAb S ’.‘-'
N \

o
&~
>

y
3
7
x
Z

S
R

™
kS

%

» Pre-NESAP version performs poorly on KNL
» Post-NESAP-Cori version performs
» similar in terms of resource units’ on Edison, C-Haswell and C-KNL
> better on Theta than Pre-NESAP version on Mira
(Theta node has 13« flops and 12x memory of Mira node)

P. Maris (ISU) MFDOn Performance and Code Development NUCLEI meeting, May 2019, Santa Fe

- http://bit.ly/NUCLEI-Perf
Current issues .

Bottleneck for large runs with 3-body interactions

» Need to improve performance of the 3-body subroutines on KNL
by generalizing and implementing the code improvements from
the NN-only subroutines

» Solution: run on Mira, for now ... (or on Cori-Haswell)
Bottlenecks for large runs with NN-only potentials

» Communication time can fluctuate significantly for jobs larger than
few dozen nodes potentially becoming a bottleneck for jobs larger
than several hundred nodes (network is shared resource!)

» Memory footprint seems to increase during LOBPCG iterations,

even though no new arrays are used nor allocated, leading to
OOM failures, or worse, 'hanging’ until it hits the walltime limit

» possibly due to 'hidden’ memory allocation inside e.g. MPI calls
(temporary arrays)?

» Solution: use Lanczos for large jobs, despite lack of vectorization

P. Maris (ISU) MFDn Performance and Code Development NUCLEI meeting, May 2019, Santa Fe 6

http://bit.ly/NUCLEI-Perf

Code developments and plans

» Fault tolerance (PhD project Nathan Weeks, AMCS student)
» various technical issues encountered and addressed

» ULFM not suitable for Fortran (e.g. no long-jump in Fortran standard)
» Fortran 2018 standardized syntax and semantics for recovery from
failed images may be more useful, but currently lacks implementation

» Post-processor to evaluate expectation values of arbitrary
two-body operators for wavefunctions w. same number nucleons

» functional, and being tested for correctness
» performance needs to be optimized
(straightforward, analous to two-body matrix construction)

» Calculation of electroweak operators consistent with Hamiltonian

» main focus: M1 moments and transitions; (double) 3 decay
» status: in progress, several PhD students

» Use parallel HDFS5 for 10 of interaction files and wavefunctions

P Maris (ISU) MFDn Performance and Code Development NUCLEI meeting, May 2019, Santa Fe 7

http://bit.ly/NUCLEI-Perf

Looking forward: Perlmutter

NERSC-9: A System Optimized for Science m

Cray Shasta System providing 3-4x capability of Cori system
First NERSC system designed to meet needs of both large scale simulation

and data analysis from experimental facilities
Includes both NVIDIA GPU-accelerated and AMD CPU-only nodes

Cray Slingshot high-performance network will support Terabit rate connections to system
Optimized data software stack enabling analytics and ML at scale
All-Flash filesystem for 1/O acceleration

Robust readiness program for simulation, data and learning applications
and complex workflows
Delivery in late 2020

ocer bk PEFLIMUTIEFLER

P. Maris (ISU) MFDn Performance and Code Development NUCLEI meeting, May 2019, Santa Fe 8

http://bit.ly/NUCLEI-Perf

NESAP for Perlmutter

MFDn selected as one of the NESAP for Perimutter projects

» Commitment that user-applications run efficiently on Perimutter
» Finished benchmarks and Figure-of-Merit on Edison
» Figure-of-Merit due by mid 2021
» Support from NERSC and vendors for porting MFDn to Perimutter

» MPI 'skeleton’ of the solver to be sent to Cray for simulation
on new 'Cray Slingshot' network

» Contract with PGI to implement OpenMP for GPUs

» NERSC support staff, hackathons, ... NERSC liaison:

» Additional support from NVIDIA and Cray Brandon Cook

» Possibly a dedicated postdoc, to be hired by NERSC

» Early-user access to Perlmutter in spring 2021

» including large-scale runs
» no specific amount of resources available for early-science runs

Stay tuned, more on this over the next two years

P. Maris (ISU) MFDn Performance and Code Development NUCLE! meeting, May 2019, Santa Fe 9

USING SHARED MEMORY — A MOTIVATING
EXAMPLE
= GFMC is a hybrid code using both MPI and OpenMP parallelism.

= Best performance on current many-core machines (like Argonne’s Theta)
requires multiple (~6) MPI ranks per node, since the OpenMP parallelism
within an MPI rank is limited (~10 threads per rank).

= Each thread requires access (read-only) to a large (7.5 GB) table, which
is read in at the start of a run. (Actually part doubles and part integers)

= As the size of this table has grown, multiple copies per node (one per
rank) have become a limitation.

= Solution: share a single copy of this table among multiple processes
(MPI ranks) on the same node.

= Challenge: how to do this portably and conveniently.

= MPI to the rescue.
° http://bit.ly/NUCLEI-Perf Argonne &

MPI Update Rusty Lusk, ANL

1.

General MPI consulting for NUCLEI, in particular the use of new MPI-3 features
for using shared memory, the documentation for which is inadequate,
particularly for Fortran programs. Short tutorial at last year’s meeting.

Development of a long-message MPI library, useful since the signatures of
basic standard MPI communication routines have integer arguments, where
these days, in GFMC in particular, one would like these to be long integers
(integer*8 in Fortran). The MPIL library implements this feature, so that long
messages can be used in applications with minimal changes to them.

Improving the build and run system of the GFMC code, which is notoriously
complex — new Python scripts being develped, which hopefully help to extend
the life of the GFMC code and serve as a model for the next generation. This is

in an earl :
an early stage 14 http://bit.ly/NUCLEI-Perf eomed

THE CURRENT SITUATION

Have m E
Dontwant m m

° http://bit.ly/NUCLEI-Perf Argonne &

DESIRED SITUATION

- I-II
- — eee® |

http://bit.ly/NUCLEI-Perf Argonne &

NuCCOR: At a glance Gustav R. Jansen, ORNL

* One scheduler process
Scheduler « Multiple MPI groups
* Most expensive path first

+CCSD, CCSDT-1
+EOM, EOM-CCSDT-1

Appl ication -EOM-2PA/2PR

*EOM-PA/PR

NuCCOR Tensor |
Contraction Library i netiesure micoendent
(NTCL)
< NuCCOR STandard g

. *Low-level tensor operations
LI brary (N STL) *Architecture dependent

Applications: Gustav Jansen, Gaute Hagen,

Thomas Papenbrock, Titus Morris http://bit.ly/NUCLEI-Perf 3 OAK RIDCE

L
~ National Laboratory

NuCCOR: High-level structure

« Multiple levels of abstraction
— Architecture dependent low-level library (NSTL)
* Can easily be extended to new architectures
— Architecture independent high-level library (NTCL)
* New types of tensor contractions can be written using NSTL primitives
— Applications interface with NTCL and runs on any supported architecture

— Multiple instances of an application can run asynchronously using a
scheduler.

* The scheduler manages multiple groups of MPI ranks, where each group is
responsible for a single calculation

http://bit.ly/NUCLEI-Perf 3¢ OAK RIDGE

- National Laboratory

NuCCOR: Programming environment

- Languages and libraries — Linear algebra interfaces
— Written in Fortran 2018 and C * BLAS/LAPACK
= Programming model * CUBLAS/CUSOLVER
. S‘fﬁ?or"s Nvidia GPU’s using * rocBLAS (in development)
CUDA C and HIP * MAGMA (in development)
* Supports AMD GPU’s using HIP — Distributed data structures
(in development) . 0 ided MP! imol tati
- Uses OpenMP 3.1 to support (|Vr|]|§[s§_1e) ‘mpiementation
multithreading on CPU’s : L
* OpenSHMEM implementation (in
* Uses MPI 3.1 for message development)
passing 0

- Parallel HDF5
« ADIOS (in development)

http://bit.ly/NUCLEI-Perf 3¢ OAK RIDGE

J)
~ National Laboratory

NuCCOR: Strong scaling on Summit

- Ground states of nuclei
~ from 4He up to 132Sn with

R = S CCSDT-1.
e 1.32 trillion non-zero triples

— o« amplitudes for 132Sn at
Nmax=14

Time to solution (s)
x
%
¢ o ¢
| X
»
L ™Y
x

" Number of nodes ~ Sub-optimal scaling at high
—e—CPU-only —e—GPU -—e-ldeal CPU ideal GPU node Counts malnly due to
load imbalance within an
MPI group.

http://bit.ly/NUCLEI-Perf &(\)ﬁln(llL{{P%F

NuCCOR: Outlook

* First open-source release of NUCCOR libraries this fall

« Continue porting legacy code to use the tensor contraction
library (NTCL)

* New adaptive load balancing scheme to improve scaling at
high node counts.

« Extend NTCL to support cartesian tensors to target
deformed nuclei

 Port the NuCCOR standard library to AMD GPUs to run on

Frontier http://bit.ly/NUCLEI-Perf 3 OAK RIDGE

DFT Update Nicolas Schunck

= DFTNESS (Density Functional Theory for Nuclei at
Extreme ScaleS) codebase; with Nicolas Schunck

= DFTNESS = HFBTHO + HFODD kernels

= Scope: run a large number (1076) of HFB calculations
In parallel

= Both HFBTHO and HFODD are HFB solvers

—__ http:/ibit.ly/NUCLEI-Perf — LL.
22

http://bit.ly/NUCLEI-Perf

HFBTHO

= Axial HFB solver: 1 min <= walltime <= 20 min on 6-12
cores depending on problem

= Fortran 90, OpenMP kernel
= Task management: Python with mpi4py

= Target architecture: LLNL Sierra/Lassen (IMP P9 +
NVIDIA V100)

= \Wishlist: reduce cost of calculation to less than 1 min
for all problem sizes (= 1 order of magnitude speed-up)

e Port entire code to GPU?
e Fast load-balance for on-node task management u'__

23

http://bit.ly/NUCLEI-Perf

HFODD

= Symmetry-unrestricted HFB solver: 1 h <= walltime <= 24 h
depending on problem

= Fortran 77/90, MPI-OpenMP kernel

= Task management: 2-layer MPI (1 communicator for single HFB
solve, 1 communicator to handle all HFB solves)

= Target architecture: LLNL Sierra/Lassen (IMP P9 + NVIDIA V100)

= Wishlist: reduce cost of calculation to less than 1 hour for all
problem sizes (= 1-2 orders of magnitude speed-up)

e Port only a few subroutines to GPU

e Current code is already MPI-OpenMP for single execution:
where/how to put GPU in the mix?

* Change 1/0O? UL-

24

Performance tools, approaches Boyana Norris, UO

DFTNESS (Density Functional Theory for Nuclei at Extreme
ScaleS) codebase; with Nicolas Schunck

- Over 130,000 lines of Fortran (SLOC)
- Parallelized with OpenMP and MPI
- Many calls to BLAS routines

- Currently investigating limitations to:
=> OpenMP scaling
=> Vectorization

IIIIIIIIIIII

O ‘ OREGON http://bit.ly/NUCLEI-Perf

e
HPCL

25

_ 'I'-l'
OpenMP scaling

e In progress — developing techniques that combine performance
measurement with compiler analysis

o Currently considering compiler reports (gcc 9, Intel 19) — many
optimization details available, but hard to interpret; no tool connects this
detailed information directly with performance measurement results
(vendor tools present only vague high-level advice at best)

o Creating “fake” prototype scenarios to explore scaling limits, e.qg.,
marking all variables private

UNIVERSITY OF 26

OREGON http://bit.ly/NUCLEI-Perf

O

=
Vectorization (HFODD) s

- — JPorformance | CPUTIme)
4= Function Call Sites and Loops B b e Tmew | TtalTme Type
+ O [loop In _o2avrg MOD_avrxsd at hfodd lpcorrf90:659) | [5.05258 5.95251 Scalar
« O [loop in inavr at hfodd lipcorr.f90:3045) O 480558 4.805s! Scalar
« O [loop in intcou at hfodd.f90:86214) O 336858 3.368s0 Scalar
« O [loop in denshf . omp_fn.1 at hfodd.}90:73432) O 1System functi.. 3.2505@ B.554s(Scalar
+ O [loop in Intmas at hfodd.f90:60064) O @1Msalignedloo... 3.1165@ 311650 Scalar
« O [loop in denshf . omp_fn.0 at hfodd.#90:73340] O 266658 3.92050 Scalar
« O [loop in intmas at hfodd.f90:60063) 0 &1Msaligned loo... 2.60658 260650 Scalar
- [loop In spaver_._omp_fn.0 at hfodd.190:52627) 0 24850 24851 Vectorized (Body)
«) [loop in rotavr at hodd_lpcorr.90:2167) O 247758 24775t Vectorzed (Body)
« O [loop in inavr at hfodd lipcorr.f90:3063) O 24150 241550 Scalar
« O [loop in rotavr at hfodd hpcorr.f90:2166) O 238450 238450 Scalar
« O [loop i hnavr at hfodd_lipcorr.f90:3064) O 232058 2.320s0 Scalar
« O [loop in rotavr at hfodd lpcorr.f90:2115) O 1 Misaligned loo... 2.20558 2.205s0 Scalar

UNIVERSITY OF 27

OREGON http://bit.ly/NUCLEI-Perf

O

=i

HPCL

Overall performance

rQ - g v Cores 40 om 2 socketis) ¥ « 'y Default: FLOAT » || 2 Compared Resuits « —
10000 1~ ’

1000

1
oRVE r
vt Scalr Add Peak 247 X5 GFLOPS
e : - —
W= 6 __—
00 == S
g—

1 ' _----'."—- . ° 4
. 3_1_:.__2‘935‘"/‘ :: ' 2 .
R TR LY A
: i ",0: a- . .o
e O e I
°o ° -é e -

02] 0 | 1
D Physcal Cores 40 V' App Thveads 80 YV Self Bapsed Time 0,008 5 Total Time 0,108 5
UNIVERSITY OF 28

OREGON http://bit.ly/NUCLEI-Perf

O

e
HPCL

Tools

UNIVERSITY OF 29

OREGON http://bit.ly/NUCLEI-Perf

O

=i
HPCL

Current state

e Performance analysis
o A number of vendor tools provide extensive measurement and some
analysis capabilities
m Vendor: Intel Advisor, NVIDIA nsight, PGI Profiler

m Open source: PAPI, TAU (+ TAU Commander), Vampir, Scalasca, (too much of a
good thing?)

o Automation still challenging
o Some codes have built-in measurement

e Performance optimization

o Largely manual
o A few research autotuners

UNIVERSITY OF 30

OREGON http://bit.ly/NUCLEI-Perf

O

'I'll'
My wish list

e In the next couple of months:
o Build knowledge on the current capabilities and needs

o Create a low-overhead forum for sharing performance analysis and
optimization findings and approaches

e Longerterm

o Automation of repetitive analyses that have been shown to be useful to at
least one code team

o More methodical autotuner development based on actual application
needs

UNIVERSITY OF 31

OREGON http://bit.ly/NUCLEI-Perf

O

=i
HPCL

Summary

Architectures:

® Heterogeneous

multicore CPUs (10s of threads per socket),
manycore (100s of threads per device)

several GPUs per node (1000s of threads per device)
more networking layers (on and off node)

in memory computing, FPGAs,

e Ubiquitous vectors
e |/O prohibitively expensive

O O O O O

Given: No single programming language/model/library clearly best.
= What can we do to make optimization less effort-intensive without
sacrificing code portability and maintainability?

UNIVERSITY OF 32

OREGON http://bit.ly/NUCLEI-Perf

O

)=
Our General Approach to Empirical Analysis/Modeling .'

e Define reusable, extensible workflows to collect and perform analysis
e Currently

o Jupyter notebooks for initial developme\
scientists

® Long-term goals -- eliminate the n
enable more thorough and frequ

reproducibility! (S .ﬁ\'

UNIVERSITY OF

OREGON http://bit.ly/NUCLEI-Per

O

b=
Example Empirical Analysis Q&A s

[SUMMARY] Hat::Hiel)
[l
¥ [SUMMARY) Matriplexi:Matriplex<fioat, 1, 1, 8>:ioperator{](int) l
(SUMMARY] Layerinfociis within r semsitive region(ficat, float) const Whaf are my /eaS f scalable I
functions?

[SUMMARY) RadixSort::Sort(fleat const*, unsigned int)

= 2500000 - 2000000 «~ 1500000 =~ 1000000 ~ 500000 0
Diference in total Cycles Detween 8 and 256 threads

https:/arxiv.org/abs/1811.04141

UNIVERSIT¥

OREGON http://bit.ly/NUCLEI-Perf

O

=i

HPCL

MkBuilder::map_seed_hits: Instruction Mix

Did my least scalable function get

vectorized? How memory intensive is it?
Y onal branches

operations
vector ops

Load/store instructions

Other

onditional branches

UNIVERSITY Ol

OREGON

O

=i
0.12 HPCL

~®= L3 MISSRATE ~—— L1 MISSRATE
== L2 MISSRATE -~ BRANCH MR

0.10
0008 ..'.".‘0.‘..'0--.‘.".....
) T TTPURTL Ll
4 Mreem
C —
0.06 ..'. o —— P -":'_;.:.'.’-‘n..
3 ¢ D e el O ’
= N
0.04 Is cache contention a significant
contributor to my scaling problems?
0.02
e
0.00
0 50 100 150 200 250

Threads

. =i
Building Models

e Empirical — linear regression most common
e Static

o Use source or binary code analysis

o Parameterize by (some) architectural features

UNIVERSITY OF

OREGON http://bit.ly/NUCLEI-Perf

O

=l
Example static modeling result

s A{
foo(double *a, double *b){
r(int 1 = @) 1 < 10; 1++)) \)
or(int 3 = @; j < b[1]); Je+d{ get QO
fprogma PAnnotation {lp_cond:vy} local = d(‘f(lultdl(t(i amoG JI[':)
ao[3] = o[3] * b[1]; local['x86_mov'] += 11
} local['x86_mov'] += 13
} local['x86_call']) += 1
b local ['x86_mov'] += 3
¢ main(){ local ['x86 '.4._‘;1'] 4= 3
A a; ret = A_foo_2(y._16)
enf] =« {1.0, 2.0, 3.0, 4.0, 5.0}: handle_function_call(local, ret)
e n[] = {5.0, 6.0, 7.0, 8.9, 9.0, 10.0}; return local
a.foo(m, n);
}

O GkEGoN http://bit.ly/NUCLEI-Perf

Matrix representation

Another (Newer) Example output

00000e+00
00000e+00
00000e+00
00000e+00
00000e-01

SeN® OO0
SO NGS
i
b eSS
NeeoeS
VeSS ®

1.000000e+00
0.000000e+00
0.000000e+00
7.900000e-01
2.500000e-01

Total number of nodes (basic block)

0.000000e+00
1.000000e+00
8.000000e-01
0.000000e+00
0.000000e+00

floating-point : memory ops : control ops : integer ops
nodes

O

UNIVERSITY OF

OREGON

http://bit.ly/NUCLEI-Perf

0.000000e+00
0.000000e+00
2.000000e-01
0.000000e+00
0.000000e+00

0.000000e+00
0.000000e+00
0.000000e+00
2.100000e-01
0.000000e+00

transition probabilities to other

HPCL

§ YOUR PLAN.

All vendors: What
do you mean you
want to use the
GPU and CPU
simultaneously???

NVIDIA: You didn’t ask for
it, but here are a ton of tiny
processors that will fight
over the small memory we
could fit on this card.Teach
them to share better, you
are the boss! (What? You
want to use an existing
programming language?
And the same algorithms?
Hahaha!)

HPCL

Current optimization approaches

e Eliminate unnecessary computation

® Use optimized methods (libraries) — and use them well!

e Create new algorithms when old approaches don’t map well to current
architectures

e Rethink data structures

® Low-level optimizations

o Manual: rewrite code so loops can be better optimized by compilers, or as a last
resort, write low-level optimized code

o Automatic: use a compiler-like tool to generate optimized code (autotuners)

UNIVERSITY OF 41

OREGON http://bit.ly/NUCLEI-Perf

O

