
HPCL

http://bit.ly/NUCLEI-Perf

Performance Optimization
Overview

Boyana Norris

NUCLEI Annual Meeting 2019
May 22, 2019

HPCL

http://bit.ly/NUCLEI-Perf

Structure

●  Summary of performance-related activities over the past year
○  DFTNESS = HFBTHO + HFODD kernels
○  MFDn
○  MPI
○  NuCCOR

●  For each code: Performance goals and hopes
○  Please add your input to the letter to the Performance Santa (during or

after the talk is not too late!) http://bit.ly/NUCLEI-Perf
●  Analysis and optimization summary

2

HPCL

http://bit.ly/NUCLEI-Perf

Architectures:
○  Heterogeneous

■  multicore CPUs (10s of threads per socket),
■  manycore (100s of threads per device)
■  several GPUs per node (1000s of threads per device)
■  more networking layers (on and off node)
■  in memory computing, FPGAs,

○  Ubiquitous vectors

○  I/O prohibitively expensive
Optimization goals:

○  Parallelism: inter-node (multiple networks), intra-node (multicore, manycore,
GPUs), vectors

○  Memory: optimizing data structures for specific computations or architectures
○  I/O 3

http://bit.ly/NUCLEI-Perf

Pieter Maris, James Vary, Esmond Ng, Chao Yang, postdocs...

http://bit.ly/NUCLEI-Perf

http://bit.ly/NUCLEI-Perf

http://bit.ly/NUCLEI-Perf

http://bit.ly/NUCLEI-Perf

http://bit.ly/NUCLEI-Perf

http://bit.ly/NUCLEI-Perf

http://bit.ly/NUCLEI-Perf

http://bit.ly/NUCLEI-Perf

NERSC	liaison:		
Brandon	Cook	

USING SHARED MEMORY – A MOTIVATING
EXAMPLE
▪ GFMC is a hybrid code using both MPI and OpenMP parallelism.
▪ Best performance on current many-core machines (like Argonne’s Theta)

requires multiple (~6) MPI ranks per node, since the OpenMP parallelism
within an MPI rank is limited (~10 threads per rank).
▪ Each thread requires access (read-only) to a large (7.5 GB) table, which

is read in at the start of a run. (Actually part doubles and part integers)
▪ As the size of this table has grown, multiple copies per node (one per

rank) have become a limitation.
▪ Solution: share a single copy of this table among multiple processes

(MPI ranks) on the same node.
▪ Challenge: how to do this portably and conveniently.
▪  MPI to the rescue. 13 http://bit.ly/NUCLEI-Perf

MPI Update Rusty Lusk, ANL

1.  General MPI consulting for NUCLEI, in particular the use of new MPI-3 features
for using shared memory, the documentation for which is inadequate,
particularly for Fortran programs. Short tutorial at last year’s meeting.

2.  Development of a long-message MPI library, useful since the signatures of
basic standard MPI communication routines have integer arguments, where
these days, in GFMC in particular, one would like these to be long integers
(integer*8 in Fortran). The MPIL library implements this feature, so that long
messages can be used in applications with minimal changes to them.

3.  Improving the build and run system of the GFMC code, which is notoriously
complex – new Python scripts being develped, which hopefully help to extend
the life of the GFMC code and serve as a model for the next generation. This is
in an early stage. 14 http://bit.ly/NUCLEI-Perf

THE CURRENT SITUATION

15

Have:

Don’t want:

http://bit.ly/NUCLEI-Perf

DESIRED SITUATION

Want:

http://bit.ly/NUCLEI-Perf

17 Nuclei from first principles

NuCCOR: At a glance Gustav R. Jansen, ORNL

Scheduler

Application
NuCCOR Tensor

Contraction Library
(NTCL)

NuCCOR STandard
Library (NSTL)

•  One scheduler process
•  Multiple MPI groups
•  Most expensive path first
• CCSD, CCSDT-1
• EOM, EOM-CCSDT-1
• EOM-2PA/2PR
• EOM-PA/PR

• High-level tensor operations
• Architecture independent

• Basic classes
• Memory management
• Low-level tensor operations
• Architecture dependent

Applications: Gustav Jansen, Gaute Hagen,
Thomas Papenbrock, Titus Morris http://bit.ly/NUCLEI-Perf

18 Nuclei from first principles

NuCCOR: High-level structure

•  Multiple levels of abstraction
–  Architecture dependent low-level library (NSTL)

•  Can easily be extended to new architectures
–  Architecture independent high-level library (NTCL)

•  New types of tensor contractions can be written using NSTL primitives
–  Applications interface with NTCL and runs on any supported architecture
–  Multiple instances of an application can run asynchronously using a

scheduler.
•  The scheduler manages multiple groups of MPI ranks, where each group is

responsible for a single calculation

http://bit.ly/NUCLEI-Perf

19 Nuclei from first principles

NuCCOR: Programming environment
•  Languages and libraries

–  Written in Fortran 2018 and C
–  Programming model

•  Supports Nvidia GPU’s using
CUDA C and HIP

•  Supports AMD GPU’s using HIP
(in development)

•  Uses OpenMP 3.1 to support
multithreading on CPU’s

•  Uses MPI 3.1 for message
passing

–  Linear algebra interfaces
•  BLAS/LAPACK
•  cuBLAS/cuSOLVER
•  rocBLAS (in development)
•  MAGMA (in development)

–  Distributed data structures
•  One-sided MPI implementation

(MPI 3.1)
•  OpenSHMEM implementation (in

development)
–  IO

•  Parallel HDF5
•  ADIOS (in development)

http://bit.ly/NUCLEI-Perf

20 Nuclei from first principles

NuCCOR: Strong scaling on Summit
•  Ground states of nuclei

from 4He up to 132Sn with
CCSDT-1.

•  1.32 trillion non-zero triples
amplitudes for 132Sn at
Nmax=14

•  Sub-optimal scaling at high
node counts mainly due to
load imbalance within an
MPI group.

 http://bit.ly/NUCLEI-Perf

21 Nuclei from first principles

NuCCOR: Outlook

•  First open-source release of NuCCOR libraries this fall
•  Continue porting legacy code to use the tensor contraction

library (NTCL)

•  New adaptive load balancing scheme to improve scaling at
high node counts.

•  Extend NTCL to support cartesian tensors to target
deformed nuclei

•  Port the NuCCOR standard library to AMD GPUs to run on
Frontier http://bit.ly/NUCLEI-Perf

22

DFT Update Nicolas Schunck

§  DFTNESS (Density Functional Theory for Nuclei at
Extreme ScaleS) codebase; with Nicolas Schunck

§  DFTNESS = HFBTHO + HFODD kernels
§  Scope: run a large number (10^6) of HFB calculations

in parallel
§  Both HFBTHO and HFODD are HFB solvers

http://bit.ly/NUCLEI-Perf

23

HFBTHO
§  Axial HFB solver: 1 min <= walltime <= 20 min on 6-12

cores depending on problem
§  Fortran 90, OpenMP kernel
§  Task management: Python with mpi4py
§  Target architecture: LLNL Sierra/Lassen (IMP P9 +

NVIDIA V100)
§  Wishlist: reduce cost of calculation to less than 1 min

for all problem sizes (= 1 order of magnitude speed-up)
•  Port entire code to GPU?
•  Fast load-balance for on-node task management

http://bit.ly/NUCLEI-Perf

24

HFODD
§  Symmetry-unrestricted HFB solver: 1 h <= walltime <= 24 h

depending on problem
§  Fortran 77/90, MPI-OpenMP kernel
§  Task management: 2-layer MPI (1 communicator for single HFB

solve, 1 communicator to handle all HFB solves)
§  Target architecture: LLNL Sierra/Lassen (IMP P9 + NVIDIA V100)
§  Wishlist: reduce cost of calculation to less than 1 hour for all

problem sizes (= 1-2 orders of magnitude speed-up)
•  Port only a few subroutines to GPU
•  Current code is already MPI-OpenMP for single execution:

where/how to put GPU in the mix?
•  Change I/O?

http://bit.ly/NUCLEI-Perf

HPCL

http://bit.ly/NUCLEI-Perf

Performance tools, approaches Boyana Norris, UO

DFTNESS (Density Functional Theory for Nuclei at Extreme
ScaleS) codebase; with Nicolas Schunck

➔  Over 130,000 lines of Fortran (SLOC)
➔  Parallelized with OpenMP and MPI
➔  Many calls to BLAS routines

➔  Currently investigating limitations to:
➔  OpenMP scaling
➔  Vectorization

25

HPCL

http://bit.ly/NUCLEI-Perf

OpenMP scaling

●  In progress – developing techniques that combine performance
measurement with compiler analysis

○  Currently considering compiler reports (gcc 9, Intel 19) – many
optimization details available, but hard to interpret; no tool connects this
detailed information directly with performance measurement results
(vendor tools present only vague high-level advice at best)

○  Creating “fake” prototype scenarios to explore scaling limits, e.g.,
marking all variables private

26

HPCL

http://bit.ly/NUCLEI-Perf

Vectorization (HFODD)

27

HPCL

http://bit.ly/NUCLEI-Perf

Overall performance

28

HPCL

http://bit.ly/NUCLEI-Perf

Tools

29

HPCL

http://bit.ly/NUCLEI-Perf

Current state
●  Performance analysis

○  A number of vendor tools provide extensive measurement and some
analysis capabilities
■  Vendor: Intel Advisor, NVIDIA nsight, PGI Profiler
■  Open source: PAPI, TAU (+ TAU Commander), Vampir, Scalasca, (too much of a

good thing?)

○  Automation still challenging
○  Some codes have built-in measurement

●  Performance optimization
○  Largely manual
○  A few research autotuners 30

HPCL

http://bit.ly/NUCLEI-Perf

My wish list

●  In the next couple of months:
○  Build knowledge on the current capabilities and needs

○  Create a low-overhead forum for sharing performance analysis and
optimization findings and approaches

●  Longer term
○  Automation of repetitive analyses that have been shown to be useful to at

least one code team

○  More methodical autotuner development based on actual application
needs

31

HPCL

http://bit.ly/NUCLEI-Perf

Summary
Architectures:
●  Heterogeneous

○  multicore CPUs (10s of threads per socket),
○  manycore (100s of threads per device)
○  several GPUs per node (1000s of threads per device)
○  more networking layers (on and off node)
○  in memory computing, FPGAs,

●  Ubiquitous vectors
●  I/O prohibitively expensive

Given: No single programming language/model/library clearly best.
è What can we do to make optimization less effort-intensive without
sacrificing code portability and maintainability?

32

HPCL

http://bit.ly/NUCLEI-Perf http://bit.ly/NUCLEI-Perf

Our General Approach to Empirical Analysis/Modeling

●  Define reusable, extensible workflows to collect and perform analysis
●  Currently

○  Use TAU Commander and Caliper for data

○  Use Python (Pandas, other packages)

○  Jupyter notebooks for initial development and sharing results with application
scientists

●  Long-term goals -- eliminate the need for “performance expert” help,
enable more thorough and frequent performance testing & analysis,
reproducibility!

33

You may be tempted to google “TAU Commander.”
It’s not that one.

See http://taucommander.paratools.com

HPCL

http://bit.ly/NUCLEI-Perf http://bit.ly/NUCLEI-Perf

Example Empirical Analysis Q&A

34

What are my least scalable
functions?

Cerati et. al, “Parallelized and Vectorized Tracking Using Kalman Filters with CMS Detector Geometry and Events”, 2018.
https://arxiv.org/abs/1811.04141

HPCL

http://bit.ly/NUCLEI-Perf http://bit.ly/NUCLEI-Perf
35

Did my least scalable function get
vectorized? How memory intensive is it?

HPCL

http://bit.ly/NUCLEI-Perf http://bit.ly/NUCLEI-Perf
36

Is cache contention a significant
contributor to my scaling problems?

HPCL

http://bit.ly/NUCLEI-Perf http://bit.ly/NUCLEI-Perf

Building Models

●  Empirical – linear regression most common
●  Static

○  Use source or binary code analysis

○  Parameterize by (some) architectural features

37

HPCL

http://bit.ly/NUCLEI-Perf http://bit.ly/NUCLEI-Perf

Example static modeling result

38

The Python “model” with instruction counts:

Example source code:

ROSE-
based
code

analysis

 K. Meng and B. Norris. “Mira: A framework for static performance analysis.” 2017 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 103–113, Sept 2017.

HPCL

http://bit.ly/NUCLEI-Perf http://bit.ly/NUCLEI-Perf

Another (Newer) Example output

Total number of nodes (basic block)

floating-point : memory ops : control ops : integer ops transition probabilities to other
nodes

Matrix representation

40

NVIDIA: You didn’t ask for
it, but here are a ton of tiny

processors that will fight
over the small memory we
could fit on this card.Teach
them to share better, you
are the boss! (What? You

want to use an existing
programming language?

And the same algorithms?
Hahaha!)

All vendors: What
do you mean you
want to use the
GPU and CPU
simultaneously???

PERFORMANCE OPTIMIZATION

HPCL

http://bit.ly/NUCLEI-Perf

Current optimization approaches
●  Eliminate unnecessary computation
●  Use optimized methods (libraries) – and use them well!
●  Create new algorithms when old approaches don’t map well to current

architectures
●  Rethink data structures
●  Low-level optimizations

○  Manual: rewrite code so loops can be better optimized by compilers, or as a last
resort, write low-level optimized code

○  Automatic: use a compiler-like tool to generate optimized code (autotuners)

41

