
SIAM J. SCI. COMPUT. c© 2016 Society for Industrial and Applied Mathematics
Vol. 38, No. 5, pp. S750–S771

PERFORMANCE-BASED NUMERICAL SOLVER SELECTION IN
THE LIGHTHOUSE FRAMEWORK∗

ELIZABETH JESSUP† , PATE MOTTER† , BOYANA NORRIS‡ , AND KANIKA SOOD‡

Abstract. Scientific and engineering computing rely heavily on linear algebra for large-scale
data analysis, modeling and simulation, machine learning, and other applied problems. Sparse linear
system solution often dominates the execution time of such applications, prompting the ongoing
development of highly optimized iterative algorithms and high-performance parallel implementations.
In the Lighthouse project, we enable application developers with varied backgrounds to readily
discover and effectively apply the best available numerical software for their problems, aiming to
maximize both developer productivity and application performance. Lighthouse is a search-based
expert system built on a software taxonomy that combines expert knowledge, machine learning–
based classification of existing numerical software collections, and automated code generation and
optimization. In this paper we present the integration of PETSc and Trilinos iterative solvers for
sparse linear systems into the Lighthouse framework. In addition to functional information in the
taxonomy, we have created a comprehensive machine learning–based workflow for the automated
classification of sparse solvers, which can be generalized to other types of rapidly evolving numerical
methods. We present a comparative analysis of the solver classification results for a varied set of
input problems and machine learning methods, achieving up to 93% accuracy in identifying the
best-performing linear solution methods in PETSc and Trilinos.

Key words. linear algebra, taxonomy, machine learning

AMS subject classifications. 65Y10, 65F50, 15A06, 68N19

DOI. 10.1137/15M1028406

1. Introduction. Scientists and engineers in a wide variety of disciplines rely
extensively on linear algebra algorithms; see, e.g., [19, 46, 63]. The current high-
performance implementations of numerical linear algebra software are based on decades
of applied mathematics and computer science research. Hence, application developers
who cannot rely on simple implementations because of the size or complexity of the
problems they are solving must use optimized libraries developed by others. However,
selecting a suitable library and using it effectively to solve a given problem can require
a significant background in numerical analysis, high-performance computing (HPC),
software engineering, and domain science. Indeed, discovering the best approach to a
linear algebra problem typically involves reading documentation (when available) or
researching publications outside of the developer’s area of expertise as well as exper-
imenting across software options. While continuous advances in numerical analysis
and HPC libraries allow scientists and engineers to solve larger and more complex
problems than ever before, the likelihood that a user will identify the most relevant
and best-performing solution method is steadily decreasing.

∗Received by the editors July 1, 2015; accepted for publication (in revised form) September 21,
2016; published electronically October 27, 2016.

http://www.siam.org/journals/sisc/38-5/M102840.html
Funding: This work was supported by National Science Foundation (NSF) award CCF-1219089.

This research used resources of the Argonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
contract DE-AC02-06CH11357. It also used the Janus supercomputer, which is supported by NSF
award CNS-0821794 and by the University of Colorado Boulder.
†Department of Computer Science, University of Colorado, Boulder, CO 80309 (Elizabeth.

Jessup@colorado.edu, Pate.Motter@colorado.edu).
‡Department of Computer and Information Science, University of Oregon, Eugene, OR 97403

(norris@cs.uoregon.edu, kanikas@cs.uoregon.edu).

S750

http://www.siam.org/journals/sisc/38-5/M102840.html
mailto:Elizabeth.Jessup@colorado.edu
mailto:Elizabeth.Jessup@colorado.edu
mailto:Pate.Motter@colorado.edu
mailto:norris@cs.uoregon.edu
mailto:kanikas@cs.uoregon.edu

PERFORMANCE-BASED SOLVER SELECTION IN LIGHTHOUSE S751

A number of taxonomies exist to aid developers in the translation of linear algebra
algorithms to numerical software; see, e.g., [1, 25, 45, 54]. However, these taxonomies
do not provide accessible, comprehensive, and usable interfaces, nor do they supply
tools for high quality code production. Lighthouse [49] is the first framework that
offers an organized taxonomy of software components for linear algebra that enables
functionality- and performance-based search and generates code templates and opti-
mized low-level kernels.

In the Lighthouse project, we enable developers with varied backgrounds to read-
ily discover and effectively apply the best available numerical software for their prob-
lems. Lighthouse is a search-based expert system that combines expert knowledge
recorded in the taxonomy, machine learning (ML)–based performance classification
of existing numerical software collections, and automated code generation and opti-
mization. This novel software engineering environment is aimed at maximizing both
developer productivity and application performance. It currently offers support for
sequential dense linear algebra computations provided by LAPACK [2, 6] and for se-
quential and parallel sparse linear algebra computations provided by PETSc [7, 8, 9]
and SLEPc [3, 40]. We are in the process of adding the Trilinos [61] parallel sparse
linear algebra library as well.

Several projects have pursued automated solver selection and configuration, but
none of them is easily generalizable. Neither have they produced usable software in-
frastructure that enables users to apply the methods to their own applications. Hence,
our goal is to produce an extensible, general methodology for classifying algorithms
and software that can be applied repeatedly as solvers evolve. Lighthouse can be used
by computational scientists during the design and optimization stages of application
development or as an educational tool for introducing high-performance numerical
software to students.

The contributions in this paper can be summarized as follows:
• Integration into Lighthouse of a large number of PETSc and Trilinos precon-

ditioned Krylov methods for parallel solution of sparse linear systems.
• A generalizable ML-based workflow for classifying arbitrary sparse linear sys-

tems using different sized feature sets.
• Comparison of several machine learning algorithms’ performance for classify-

ing the PETSc and Trilinos solvers.

This rest of the paper is organized as follows. Section 2 presents the background
to this work. Section 3 reviews related work. Section 4 describes the approach we
took to extending the Lighthouse taxonomy to sparse linear solvers. Section 5 covers
our experimental results. Section 6 outlines our conclusions and future work.

2. Background. While, in this paper, we focus on the new Lighthouse support
for PETSc and Trilinos [61] preconditioned Krylov methods, we briefly introduce the
overall Lighthouse infrastructure in this section. The development of Lighthouse be-
gan with the selection of routines in LAPACK, an extensive collection of serial routines
for solving a variety of linear algebra problems with dense matrices. LAPACK pre-
sented a relatively straightforward target for Lighthouse. The user’s answers to a series
of questions about a specific problem typically lead to exactly one LAPACK routine,
except for those operations, including symmetric (generalized) eigenproblems or SVD,
for which multiple relatively robust representation (MRRR) implementations [23, 66]
are available. In the latter case, the user’s answers may lead to two options: the stan-
dard QR algorithm and the MRRR algorithm, which is marked as faster but requiring
more memory. The user can then choose based on resources available.

S752 JESSUP, MOTTER, NORRIS, AND SOOD

Lighthouse presently supports LAPACK functionality for linear systems, eigen-
value problems, SVD, and Sylvester matrix equations. We are in the process of
adding LAPACK orthogonal factorizations and linear least squares problems. This
paper describes the extension of Lighthouse to the sparse linear algebra domain (not
supported by LAPACK), which presents a substantially more difficult target. As dis-
cussed in [28], in iterative sparse linear system solving, there are a large (and growing)
number of preconditioners and solution methods. The convergence behavior of a given
method on a given system cannot be predicted without prohibitively expensive com-
putation (e.g., computing the eigenvectors of the preconditioned system), making this
approach impractical. And while previous efforts described in more detail in section 3
have used various approaches to classify numerical solution methods, none so far has
produced an extensible framework that can be used in production applications that
rely on continuously evolving numerical software packages.

2.1. Using sparse linear algebra libraries. The first problem of interest is
the solution of sparse linear systems with routines from the PETSc package [7, 8, 9].
In structure, PETSc resembles LAPACK as a collection of parallel routines for direct
solvers, Krylov iterative methods, and preconditioners that can be used in application
codes written in C, C++, Fortran, and Python. While PETSc also addresses other
aspects of the scalable solution of systems of PDEs, our current focus is on iterative
methods and preconditioners.

The process of getting started with PETSc is reasonably well supported. There
are multiple ways of downloading PETSc: using a Git repository, installing a Debian
package, or following a direct Web download link. Once PETSc has been successfully
installed, it is easy to find the commands to configure and build it in the appropriate
PETSc tutorial or other online PETSc documentation. Needed packages are auto-
matically downloaded, configured, built, and installed with PETSc. A number of
PETSc examples instruct the user on writing PETSc programs and setting command
line options.

Selecting the appropriate PETSc routines, however, presents a substantially more
difficult problem compared to choosing a LAPACK routine. A sparse solver is typi-
cally paired with a preconditioner. To the uninformed user, the set of parallel Krylov
methods and preconditioners contained in PETSc and summarized in Table 1 suggest
that there are more than 300 possible pairings. Which iterative solvers and precondi-
tioners from this collection are the best choices for a given linear system depends on
properties of its coefficient matrix and may also depend on the physics of the problem.
Determining how to choose requires a search of the extensive numerical linear algebra
literature and may also require reading in the domain science. The performance of a
chosen solver-preconditioner pair, in turn, strongly depends on structural and spec-
tral features of the linear system, and the PETSc implementation of each method has
several configuration parameters that can affect the accuracy and performance of the
computed solution. Neither specific system features nor parameter details are typi-
cally addressed in the literature. As a result, achieving best performance is generally
a matter of experimenting with a variety of options.

All libraries for the solution of sparse matrix algebra problems inherit the same
difficulties in selecting the best routines, and some introduce new complications of
their own. As we proceed with PETSc, we are also working on extending Lighthouse to
include Trilinos. Trilinos is an open source framework designed for creating scientific
applications.

Like PETSc, Trilinos consists of parallel routines for direct solvers, Krylov it-

PERFORMANCE-BASED SOLVER SELECTION IN LIGHTHOUSE S753

Table 1
PETSc parallel Krylov iterative solvers and preconditioners.

Capability Algorithm

Preconditioners
Jacobi
point block Jacobi
block Jacobi
additive Schwarz

Incomplete factorizations ILU dt
Matrix-free infrastructure
Multigrid infrastructure

geometric (DMDA for structured grid)
geometric/algebraic
structured geometric
classical algebraic (BoomerAMG/hypre)
classical algebraic (ML/Trilinos)
unstructured geometric and smoothed aggregation

Physics-based splitting relaxation and Schur-complement
least squares commutator

Approximate inverses approximate inverses
Substructuring balancing Neumann-Neumann

BDDC

Krylov methods
Richardson, Chebyshev, conjugate gradients, GM-
RES, Bi-CG-stab, transpose-free QMR, conju-
gate residuals, conjugate gradient squared, bi-
conjugate gradient , MINRES, flexible GMRES,
LSQR, SYMMLQ, LGMRES, GCR, conjugate
gradient on the normal equations

erative methods, and preconditioners. Trilinos also contains functionality for other
aspects of scientific computing, such as load balancing and meshing. Each of these
computational areas is handled by individual packages within Trilinos. Each package
is a self-contained module created by an independent group and designed to solve a
specific problem commonly found in scientific computing. These packages interface
with each other when appropriate using common matrix and vector objects provided
by packages such as Epetra or Tpetra.

Almost all of Trilinos’s packages are written in C++ and are designed to be used
in other C++ codes. However, there is support for using Trilinos with C, Python,
and Fortran codes via included wrappers.

Due to the large number of packages and numerous options for tweaking individual
parameters, choosing an efficient set of options in Trilinos can prove difficult. As of
the most recent release (12.0.1), Trilinos consists of roughly 60 unique packages, the
relevant subset of which is shown in Tables 2 and 3. This broad range of options
allows a user to solve a problem effectively but also creates a complex search space
for selecting an appropriate combination of these packages. A simple linear algebra
problem solved using Trilinos can require as many as five packages, while a complicated
problem may take many more. Each package has its own unique collection of C++
classes and functions, with very little if there is any similarity between packages.

When first starting to use Trilinos, a new user is directed to the Trilinos Hands-
on Tutorial [62]. which features examples and lessons designed to help someone new
to the library. Unfortunately, the tutorial covers only a small subset of available
packages with varying thoroughness. Being able to use a package requires looking

S754 JESSUP, MOTTER, NORRIS, AND SOOD

Table 2
Trilinos packages for solving linear system and eigenvalue problems.

Capability Package(s)

Services
Linear algebra objects Epetra, Jpetra, Tpetra, Kokkos
C++ utilities, I/O Teuchos, EpetraExt, Kokkos, Triutils,

ThreadPool, Phalanx, Trios
Linear solvers

Iterative solvers AztecOO, Belos, Komplex
Preconditioners

ILU-type AztecOO, Ifpack, Ifpack2
Multilevel ML, CLAPS, Muelu
Block Meros, Teko

Table 3
Trilinos parallel Krylov iterative solvers and preconditioners.

Capability Algorithm

Ifpack2 preconditioners
ILUT, RILUK, Diagonal, Relaxation, Krylov, Chebyshev

Belos methods
Block GMRES, Hybrid Block GMRES, Pseudoblock GM-
RES, Recycling GMRES, Block CG, Pseudoblock CG,
Pseudoblock Stochastic CG, Recycling CG, MINRES,
LSQR, TFQMR, Pseudoblock TFQRM, Preconditioned
Conjugate Projected Gradient, Fixed Point

at the documentation for the necessary classes and methods defined within it. The
documentation consists of a handful of examples for certain packages and Doxygen
documents for every package’s source code. In some cases it is necessary to examine
the source code itself when the documentation is lacking. Each package’s documenta-
tion is maintained by the developers of that specific package. Therefore large variation
can be seen in the quality of documentation and examples across various packages.

Rarely does a new or even average user need to use all of the available packages,
since some can be viewed as being mutually exclusive. For example, Epetra and
Tpetra are the two core packages of Trilinos for creating linear algebra objects like
matrices, vectors, and graphs. Because both Epetra and Tpetra provide very similar
objects, most packages are designed to work with only one or the other, but rarely
both. For example, the Trilinos packages Ifpack and Ifpack2 perform matrix precon-
ditioning, but the former provides support only for Epetra while the latter supports
only Tpetra. There are a small number of packages that do support both: Amesos2,
a direct solver for sparse linear systems, is one such package providing functionality
for matrices and vectors defined in either Tpetra or Epetra [61].

There is not currently a prebuilt or easy install version of Trilinos available, so it
must be built from source. All packages are included when downloading Trilinos but
are built and installed only if the user specifies in the CMake file that they should
be. While Lighthouse does not address the challenges in building complex software
packages, it can help determine which Trilinos packages are actually needed based
on a high-level description of the user’s problem and hence simplify the installation
process.

2.2. The Lighthouse framework. We have implemented a prototype of the
Lighthouse framework [49] for assisting scientists, engineers, and students with the

PERFORMANCE-BASED SOLVER SELECTION IN LIGHTHOUSE S755

implementation of the matrix algebra computations that dominate many high-perfor-
mance applications. Lighthouse is the first framework that combines a matrix algebra
software taxonomy with code generation and tuning capabilities. In addition, its
user-friendly interfaces can accommodate users with different backgrounds via differ-
ent search interfaces and code generation options. For example, after the search is
performed, Lighthouse generates a complete program template in C or Fortran that
correctly uses the search result. The template can be downloaded, compiled, and
run immediately, provided the user has installed the corresponding library on their
computer. This template can be used as a starting point for an application or as a
component to be extended and integrated into an existing application. The Light-
house interface is a working product for the LAPACK and SLEPc packages. It is
a work in progress for linear solvers from PETSc and Trilinos. Next, we give an
overview of the design and implementation of the Lighthouse prototype.

2.2.1. Lighthouse for LAPACK. Lighthouse was inspired by the LAPACK
Search Engine [45] and two classroom usability studies of later search prototypes.
As one of the most widely used serial dense direct solver packages, LAPACK was
the logical first choice for inclusion in the Lighthouse taxonomy. As noted earlier,
Lighthouse has broad functionality across LAPACK. In this section, we discuss the
interface for the solution of systems of linear equations. This part of Lighthouse
contains over 800 LAPACK subroutines.

The taxonomic information for LAPACK is stored in a MySQL database in which
the subroutines are first categorized by the kinds of tasks they perform. The Light-
house system then sorts and identifies 11 different matrix types based on five different
storage properties. It then categorizes the precision level (single or double) and pa-
rameter type (real or complex) of the subroutines.

The database-driven user interface of Lighthouse is implemented as a Django [24]
application. Django provides a dynamic database access application programming
interface (API) using the Python programming language and supports an automatic
administrative interface that makes future data maintenance simple and convenient.
Through pairing with Haystack [39], a modular search application for Django that of-
fers powerful database queries and multiple search indices, Lighthouse enables
LAPACK subroutine search via three methods: guided search, advanced search, and
keyword search. In the guided search interface, users are prompted to answer in-
creasingly detailed questions describing the problems they wish to solve. Portions
of the interface are automatically generated based on earlier responses using Django
dynamic forms and the Django session framework. After answering the last question,
a user sees exactly one subroutine that matches all of the answers. Populated with
numerous help buttons, Lighthouse also serves as an educational tool. Information
about the library, the routines, and the definition of a word or a phrase can be accessed
easily by clicking on the help buttons.

The guided search dialogue for solving a dense linear system with LAPACK is
depicted in Figure 1. Unlike the guided search, the advanced search is designed
for users who are familiar with LAPACK. The advanced search interface provides
users with a form containing checkboxes where users can make multiple selections,
enabling the simultaneous search for multiple subroutines in different types of routine
categories.

The keyword search interface supports keyword-based search of the taxonomy in-
formation. In order to enhance the effectiveness and efficiency of the keyword search,
Lighthouse provides automatic completion and spelling correction with words col-

S756 JESSUP, MOTTER, NORRIS, AND SOOD

Fig. 1. Guided search dialogues in the Lighthouse LAPACK interface showing the result and a
portion of the generated code template for using a dense linear solver.

lected from linear algebra textbook indices. In addition, Lighthouse uses a list of
linear algebra keywords and phrases for Django-Haystack filtering in order to reduce
search time.

Drag-and-drop functionality allows users to select a routine retrieved by Light-
house by dragging it to the Selected Routines work area for generating a code tem-
plate. Lighthouse currently offers two code template languages: Fortran90 and C.
The template helps users to explicitly declare the arguments and correctly construct
routine calls. The template program is split into several subprograms, making it
easier for users to modify the code. Moreover, Lighthouse code templates contain
some decision logic to enable tailoring of the solution to specific problem character-
istics. For example, code templates for equilibration can also determine whether a
provided matrix is worth scaling. If it is, a method of matrix scaling (row, column,
or row-and-column) is automatically selected and executed.

In addition to the search component, Lighthouse provides a client interface to
the Build to Order (BTO) BLAS compiler [12, 44] for generating custom autotuned
C matrix algebra computations based on high-level MATLAB-like input. Lighthouse
connects to a server running BTO, which generates optimized C implementations of
these operations.

The design and implementation of Lighthouse for LAPACK taxonomy are de-
scribed in more detail in [56].

2.2.2. Lighthouse for SLEPc. SLEPc is a toolkit for solving large sparse
eigenvalue problems and is built on top of PETSc. The interface of Lighthouse for
SLEPc relies on the same technology just described for Lighthouse for LAPACK, and
its use is similar. A user of the SLEPc guided search again answers a series of ques-
tions about the problem. The user also must enter some specific information that
cannot be encoded with simple questions: the matrix order, the desired number of
eigenvalues, and the residual tolerance. Because SLEPc provides parallel solutions,
the user must also enter the number of processors to be used.

PERFORMANCE-BASED SOLVER SELECTION IN LIGHTHOUSE S757

The main difference between Lighthouse for LAPACK and Lighthouse for SLEPc
is in the decision process. Most of the eigensolvers available in SLEPc are compatible
with most types of problems. However, not all solvers are equal in terms of efficiency.
To find the most efficient eigensolvers, we use an ML approach. We performed exper-
iments on compatible SLEPc solvers with varying problem domains recording such
statistics as time to solution, residual, and number of iterations. In this way, we
collected more than 10,000 experimental data points using real matrices obtained
from Matrix Market [55] and the University of Florida Sparse Matrix Collection [21]
to serve as a training set for a decision tree [37] for classifying algorithms. With
the information from the classification, Lighthouse delivers not a unique result but
rather a set of eigensolvers all predicted to have performance within 10% of the top-
performing eigensolver. The user can then select a solver from this set and generate
a code template for it.

2.2.3. Lighthouse for system solution. We have in place a preliminary ver-
sion of Lighthouse for PETSc. As is true for the other packages, the guided search
user interface for PETSc is an interactive system that enables users to generate and
download PETSc programs for solving sparse linear systems. The style of this inter-
face is different, however. To begin, the user has the option to upload a coefficient
matrix.1 If the user chooses to do so, Lighthouse computes a variety of matrix features
and uses those values in an ML classification algorithm to predict a good-performing
solver for a system using that matrix. This algorithm is rudimentary and does not
yet rely on the detailed analysis presented in this paper. If the user does not upload
a matrix, Lighthouse offers a choice of downloading either a PETSc program for com-
puting matrix properties or else a general PETSc program for solving a linear system.
In the latter case, the program is generic without a Krylov method or preconditioner
specified, so it is a reasonable alternative only for an experienced PETSc user. We will
continue work on Lighthouse for PETSc and Trilinos using the work that we describe
in sections 4 and 5 of this paper.

3. Related work. We discuss briefly some of the most relevant prior work in
numerical software taxonomies and performance-based algorithm classification.

3.1. Other taxonomy efforts. A number of taxonomies exist to aid developers
in translation of matrix algebra algorithms to numerical software. Perhaps the old-
est one is the Netlib Mathematical Software Repository [52], started in 1985, which
contains freely available software, documents, and databases pertaining to numerical
computing, including matrix algebra. Contents are provided as lists of packages or
routines, with or without some explanatory words. In newer work, the Linear Alge-
bra Software Survey [25] lists more than 100 items categorized as support routines,
dense direct solvers, sparse direct solvers, preconditioners, sparse iterative solvers, and
sparse eigenvalue solvers together with a checklist specifying problem types for each
entry. NIST’s Guide to Available Mathematical Software (GAMS) [54] includes even
more basic matrix algebra software along with software for a variety of other numerical
applications. While the Linear Algebra Software Survey is a linear list, GAMS allows
search by problem solved, package name, module name, or text in module abstract.
The now discontinued HotGAMS [53] Java-based client allowed an interactive search
of the GAMS repository. Both the Survey and GAMS index into Netlib for software

1While currently only the PETSc binary format is supported, new matrix formats will be added
in the near future.

S758 JESSUP, MOTTER, NORRIS, AND SOOD

downloads. Another example is the LAPACK Search Engine [45], which provides a
simple way to search the list of LAPACK routines from Netlib.

Existing numerical software taxonomy approaches are general and allow rela-
tively stand-alone algorithms to be found, downloaded, and compiled or used perhaps
through a domain-specific Web interface. Operations for which no library implemen-
tation exists or more complex software packages, however, cannot be accommodated
by this function-level indexing and query capability. For example, the functionality of
large toolkits, such as Trilinos and PETSc, is difficult or impossible to represent and
maintain in most taxonomies, which at present simply point the user to the toolkits’s
home pages and do not offer support for selecting solution methods based on both
functional and performance requirements.

3.2. Performance-based algorithm classification. Several previous efforts
relate to what we describe in this paper, although none exactly matches in function.
The goal of Self-Adapting Numerical Algorithms (SANS) [26], for example, is to build
a common framework for different tools for the optimization of software. In particular,
SANS is an umbrella for ATLAS [65] and generic code optimization (GCO) [34], which
was part of the DOE SciDAC PERI project [50]. Both projects use empirical search to
create portable high-performance codes. ATLAS is directed at matrix algebra, while
GCO produces implementations for adaptive multiresolution methods in multiwavelet
bases. ATLAS has been used to create tuned versions of the Basic Linear Algebra
Subprograms (BLAS) [1] and some LAPACK routines, and we expect that it will have
a place in the Lighthouse taxonomy in the future. Our goal is to allow the integration
of such existing performance tools into Lighthouse, not replicate their functionality.
Another related taxonomy example not from linear algebra is the decision tree for
optimization software at Arizona State University [51]. It refers to Netlib entries if
available or points directly to the home page of the software package.

This work builds on results of researchers (including one of the authors) who
have previously used ML to identify “good” solvers in the context of parallel nonlin-
ear PDE solution [15, 16, 57]. In the area of sparse linear system solution, several ML
approaches are used to classify a limited set of methods [13, 14, 29, 41, 67]. Barrett
et al. [10] introduce the idea of algorithmic bombardment, which composes multialgo-
rithm approaches by executing several Krylov methods simultaneously. Bhowmick et
al. [16] introduce composite linear solvers, in which several different Krylov methods
execute in sequence. Kotthoff, Gent, and Miguel [47] evaluate the performance of
several ML algorithms on five datasets of hard algorithm selection problems from the
literature. Weerawarana et al. [64] present a knowledge-based system called PYTHIA
for selecting methods from Parallel ELLPACK [43], a package of routines for solving
elliptic PDEs. PYTHIA matches the features of a given problem with those of PDEs in
a known collection and then uses performance information about solvers to match one
based on user-supplied error and time bounds. While similar in style to Lighthouse,
PYTHIA requires substantially more human participation than does Lighthouse. Ei-
jkhout and Fuentes [28] present a comprehensive approach to the classification and
selection of preconditioned sparse iterative solvers, including the development of the
Anamod feature extraction library, which we are using in our work. At a high level,
our approach is similar to that of [28], and in fact we plan to incorporate some of
the hierarchical classification ideas in our future work. Unlike most previous research
efforts, we aim to completely automate the classification and recommendation process
and ensure that the framework is general enough to enable the integration of many
different types of numerical software methods and HPC packages.

PERFORMANCE-BASED SOLVER SELECTION IN LIGHTHOUSE S759

The success of these previous explorations into performance-based multisolver
methods motivates the work presented in this paper, which is not limited to a par-
ticular problem domain and considers a broader range of matrices, solvers, and ML
methods.

4. Approach. The most straightforward approach to building a taxonomy of
mathematical software is the one that we have followed in constructing Lighthouse
for LAPACK. The first step is to enumerate methodically all provided algorithms,
as well as their inputs and outputs. For each problem, we then construct a decision
tree, where each node corresponds to making a decision related to the problem being
solved, e.g., what form of linear system do you want to solve? or is the coefficient
matrix symmetric? The leaves of the decision tree are single algorithms. The root of
the tree is the fundamental problem statement of the problem to be solved. The best
algorithm is identified by traversing the tree from root to a single leaf by answering
the question posed at each node along the way. The design and implementation of
the Lighthouse for LAPACK taxonomy are described in more detail in [56].

In the case of serial or parallel sparse linear solvers, a taxonomy of the LAPACK
sort that contains only functional descriptions of methods is not sufficient. The per-
formance of a given method is strongly dependent on the problem features. The most
appropriate solutions also depend on the specific input, the scale of the problem, and
the available computing resources. The best choice of method depends on its appli-
cation as well. If a student in a linear algebra class is working on homework involving
small matrices, a simple and easy-to-use sequential method will satisfy the particular
need. On the other hand, a climate scientist seeking an efficient parallel nsolver for a
very large system should ideally be guided to an HPC implementation such as those
available in PETSc. In this section, we describe our efforts to incorporate performance
awareness into the taxonomies for PETSc and Trilinos.

To classify solvers based on their performance for inputs with given characteristics
(features), we employed several supervised ML techniques. Supervised learning in-
volves designing a classification function based on a set of already classified data [38].
The training set is used to build the classifier, and the testing set is used to verify the
accuracy of the classifier. This process is repeated k times (k-fold cross validation),
each time with a different subset as the testing set. The results are combined to pro-
duce the final classifier that is applied to testing sets. A binary classifier determines
in which of two groups to classify an unknown entry. A tertiary classifier determines
in which of the three groups to classify an unknown entry. In this case, each entry
is a combination of a linear solver and preconditioner method with certain configu-
ration parameters. The prediction accuracy of a binary classifier is measured by the
sensitivity and specificity. If the labels are “good” and “bad” or “good”, “fair”, and
“bad”, the sensitivity is the probability that the classifier will predict a “good” entry
as “good” and the specificity is the probability that a “bad” entry will be predicted
as “bad”. Our primary software for this work was Weka [35], which is a collection of
ML algorithms for data mining tasks. The sensitivity and specificity information is
produced by Weka in the form of a confusion matrix [31].

To enable performance-aware algorithm discovery for sparse linear solvers in the
proposed taxonomy, we developed a multistep approach, which we describe in the
remainder of this section.

4.1. Creating the training dataset. For PETSc, we used a total of 154 solver
and preconditioner configurations to solve a set of sparse linear systems derived from
1,015 input matrices in the University of Florida Sparse Matrix Collection [4, 21] with

S760 JESSUP, MOTTER, NORRIS, AND SOOD

all right-hand-side elements set to one. We shuffled the resulting large set of data
points and then selected the first 10,000 points to use for further testing. For those
systems, we captured the time taken to solve the system, the number of iterations, and
solver and preconditioning options like number of blocks and overlap. For Trilinos,
we considered a total of 67 parallel solver and preconditioner configurations, solving
a set of 1,429 matrices from the same collection.

4.2. Training data preparation. The next step was to convert the data in
the training set into a form that is usable by Weka. In particular, the input to the
learning process was Weka’s attribute-relation file format (ARFF) ASCII text file,
which describes a list of instances that share some attributes. Each data point includes
a list of feature values, the solver identifier, and a label. The solver identifier is unique
to each pairing of specific Krylov method and preconditioner configurations. We refer
to each such combination as a method Si, i ∈ {1, N}, for N possible solvers. Given M
input matrices, an exhaustive training dataset consists of M×N data points. Because
this number can be prohibitively large, we constructed the training set by computing
a smaller number of randomly selected points, Pi,j , j ∈ {1,M}. For binary labeling,
we labeled each point Pi,j as “good” or “bad” or for tertiary labeling as “good”,
“fair”, or “bad”based on the performance of the solver Si on matrix Mj based on a
threshold parameter b in the range {0, 1} specifying how close Si’s performance is to
the known best-performing method. For tertiary labeling a threshold parameter r in
the range {b, 1} was considered in addition to the parameter b for labeling solvers as
“fair”. For example, for binary labeling, when b = 25, solvers whose performance for
a given problem is within 25% of the best were labeled “good”, while all other solvers
were labeled as “bad”.

4.3. Feature computation. For both PETSc and Trilinos, we used Anamod
[27] to extract 68 features of the coefficient matrices. In particular, we computed linear
system attributes in several categories, including simple (norm-like quantities), vari-
ance (heuristics estimating how different matrix elements are), normality (estimates
of the departure from normality), structure (nonzero structure properties), and spec-
trum (eigenvalue and singular value estimates produced using SLEPc). To provide
an easy way to compute features for Trilinos applications without requiring users to
install PETSc and Anamod, we also computed a smaller, 38-feature set with Trilinos,
which mostly overlaps with some of the Anamod features but does not require PETSc.

4.4. Feature set reduction. The cost of computing features varies widely from
milliseconds to minutes or hours depending on the time out parameter settings for in-
terrupting nonconvergent feature computations (e.g., iterative eigenvalue algorithms).
Hence, in order to reduce the overall cost of the process, we performed analysis to
remove features that do not contribute significantly to the accuracy of the classifica-
tion.

First, we reduced the number of features by using Weka’s RemoveUseless filter.
This filter removes the data points corresponding to features whose values either re-
main constant or else vary too much (over 99% variance). Using this simple filter
reduced our number of features from 68 to 54 and typically improved the accuracy of
subsequent classifications. We completed the selection with Weka by combining five
attribute evaluators with two search methods. The evaluator determines a method
to assign a worth to each subset of features. The search method determines what
style of search is performed. These evaluators rank the features, allowing us to dis-
card those that do not contribute much to the classification. The evaluators we used

PERFORMANCE-BASED SOLVER SELECTION IN LIGHTHOUSE S761

are Gain Ratio, ChiSquared, CfsSubset, Information Gain, and Principle Component
Analysis [35]. The search methods we chose were GreedyStepwise and Ranker [36].
Tables 7, 9, and 10 show reduced feature sets for PETSc and Trilinos solvers, which
are those determined to be the best by all or a majority of the aforementioned evalua-
tors for maximizing the classifier’s true positive rate or sensitivity (“good” as “good”
predictions).

The best features are expected to vary if new feature sets are evaluated and
reranked. Computing the smallest eigenvalue with either Trilinos or SLEPc can take
on the order of 10−2 seconds for relatively small matrices (< 1, 000, 000 nonzeros),
while a bandwidth computation requires on the order of 10−5 seconds. Our exper-
iments show that the expensive features do not contribute significantly to the per-
formance of the classification, and hence they can be safely removed. Removing
expensive features ensures minimal runtime overhead of selecting a good linear solver
configuration.

4.5. Solver classification. The next step was the classification of the data. We
used Weka [35] to compare the performance of several classification algorithms. Weka
allows us to choose different classifiers. In this paper, we examine Bayes Net [17],
k-nearest neighbor [5], Alternate Decision Trees (ADT) [33], multiclass extension
of Alternating Decision Trees (LADT) [42], Random Forests [58], J48 [59], Voting
Feature Interval (VFI) [22], and Support Vector Machines (SVM) [20]. We also tested
bagging [18], which is a technique used to improve accuracy of models by generating
multiple versions of a predictor and then using them to get an aggregated predictor.
We used Decision Stump [32] and LADT bagging techniques for our experiments.
Figure 2 shows the Weka knowledge flow components we defined and used to generate
the results described in section 5.

Fig. 2. Weka workflow showing a subset of the classifiers. The same workflow was used for
the full and reduced feature sets.

S762 JESSUP, MOTTER, NORRIS, AND SOOD

4.6. Performance evaluation of the classification. We measured the pre-
diction accuracy by using the confusion matrix produced by Weka, which enabled
us to compute the sensitivity (percent of accurate “good as good” predictions) and
specificity (percent of accurate “bad as bad” predictions) of each classifier. In this
stage, we compared the performance of the ML methods in terms of their sensitivity
and the cost of building these classifiers. We used 10-fold cross validation on each
dataset. Tables 8 and 12 are the confusion matrices for PETSc and Trilinos for a
66%-34% train-test data split. Tables 6 and 11 are the confusion matrices for PETSc
and Trilinos for 10-cross validation. These tables show the overall accuracies for the
good and bad solvers identified by the classifiers for PETSc and Trilinos.

Predicting what the best solver is for any given sparse linear system is impos-
sible by using a purely analytical approach, i.e., without any empirical performance
analysis [30]. Hence, we adopted the empirical approach described here. The ac-
curacy of the classifier is determined by measuring true positives (TP) and false
negatives (FN). We focus on the true positive rate (TPR) because the goal is to
identify solution methods that are likely to perform well. Hence, the accuracy mea-
sures presented in section 5 are computed using the usual true positive rate formula:
TPR = TP/P = TP/(TP +FN), where P is the actual number of positive instances,
i.e., solvers labeled as “good”.

5. Experimental results. We performed the steps described in section 4 to
construct classifiers that label a solver and preconditioner combination Si as either
“good”, “fair”, or “bad” based on the features of the input linear system. The per-
formance data for Trilinos was collected using Ifpack2 for preconditioning, Belos for
iterative solvers, and Tpetra for the common data structures. We collected perfor-
mance data for different Si chosen from PETSc and Trilinos on two architectures;
the results are described in sections 5.1 and 5.2, respectively. We also performed a
preliminary combined analysis using solver timings from both toolkits together, but
because we do not yet have complete results for both toolkits on the same architec-
tures and for the same set of matrices, we do not discuss it here. More comprehensive
training data collection is planned as future work as the software infrastructure we
are developing automates more of the process. All training data and Weka workflows
used in this paper are available at the Lighthouse web site [49].

Table 5 summarizes the solver configurations that were most likely to perform
well among all the configurations we tested and lists the most-frequently used solver-
preconditioner combination for our experiments (described in more detail in the re-
mainder of this section). For the PETSc solvers, the current analysis considers only
sequential runs, while the Trilinos results reflect small-scale (12 MPI tasks) parallel
runs.

While each solver has its own unique parameters, each library does contain some
default parameters that are similar between solvers. More information can be found
in the documentation of Trilinos’s Belos package [11] and PETSc’s Krylov subspace
component [48]. Default solver parameters are shown in Table 4.

5.1. PETSc solver analysis. We collected solver performance information with
PETSc version 3.5.3 on two supercomputers: a Blue Gene/Q at Argonne National
Laboratory and the Aciss cluster at the University of Oregon consisting of nodes
containing two hex-core 2.66GHz Intel Westmere (X5650) processors and 72 GB of
RAM. Because the University of Florida matrices are not very large, each experiment
used a single node. We performed binary and tertiary labeling for the PETSc solvers,
and the results indicate that tertiary labeling outperformed binary labeling. There-

PERFORMANCE-BASED SOLVER SELECTION IN LIGHTHOUSE S763

Table 4
Default solver parameters in PETSc and Trilinos’s Belos.

PETSc Trilinos

Maximum iterations 10000 1000

Residual tolerance 1.0e−5 1.0e−8

GMRES restart size 30 20

Table 5
Top 10 solvers that were labeled as “good” as a percentage of all “good” solvers for PETSc and

Trilinos.

PETSc Trilinos

31.6% LSQR, ASM(1) 17.2% Hybrid Block GMRES, Chebyshev
16.3% GMRES, ILU(0) 9.4% Hybrid Block GMRES, Diagonal
14.3% LGMRES, ILU(3) 8.8% Hybrid Block GMRES, Jacobi
12.5% FGMRES, ASM(0) 3.9% TFQMR, Chebyshev
8.0% TFQMR, ILU(2) 3.7% Hybrid Block GMRES, ILUT
7.7% GMRES, ILU(2) 2.8% Hybrid Block GMRES, RILUK
5.6% BiCG, ASM(0) 2.8% Block CG, Jacobi
1.4% TCQMR, ILU(3) 2.7% Block CG, Diagonal
1.3% CG, ILU(2) 2.4% Pseudoblock CG, Jacobi
0.2% BCGS, ICC(3) 2.4% TFQMR, Jacobi

fore we present the tertiary labeling results in this section. Some of the solvers had
substantially more data points than others because of the simple random selection
method we used. In order to balance the amount of data for different solvers in the
complete dataset, some of the data points (i.e., the solvers for which fewer than 10
timing results are available) are removed. This operation leaves us with a total of
16,861 data points on the Blue Gene/Q and 5,437 data points on the Xeon cluster.
These datasets are split into training and test subsets in the two types of validation
described next.

For 10-fold cross-validation of the classification on the Blue Gene/Q, using all
68 features computed by Anamod, the VFI [22] classifier, a very fast classification
method based on voting feature intervals (the same algorithm that performed best for
the Trilinos solver classification described in section 5.2) had the best true positive
rate (TPR) of 88.4% (Table 6). The best TPR of 82.9% was delivered by Random
Forest when we redid the classification with the eight features in Reduced Feature
Set 1 (RS1) shown in the second column of Table 7. The best accuracy for Reduced
Feature Set 2 (RS2) was 82.2 % and was achieved by Random Forest, as shown in
the third column of Table 7. We created RS2 by removing size-dependent features
to evaluate the sensitivity of the classification accuracy to problem size. We observe
that removing size-based features has minimal impact on the accuracy of the best
classification.

Table 6
10-fold cross validation for PETSc (Blue Gene/Q).

Class labels All features Reduced Feature Set 1 Reduced Feature Set 2

Predicted label good fair bad good fair bad good fair bad
True label (good) 1206 33 126 1131 180 54 1122 187 56
True label (fair) 5435 8680 984 114 14957 28 127 14935 37
True label (bad) 327 9 61 120 128 149 120 135 142

S764 JESSUP, MOTTER, NORRIS, AND SOOD

On the Aciss cluster, we achieved TPR of 84.3% (RS1) and 83.7% (RS2) with
Random Forest. At the time of writing, we have comprehensive data for a relatively
small number of solvers on this architecture and hence the success of a relatively
simple classification method. We expect that as our training dataset grows, we may
find a different best classification algorithm for Aciss.

For the 66%-34% train-test data split of the Blue Gene/Q dataset, when using all
68 features computed by Anamod, VFI performed the best with an accuracy of 86.5%
(Table 8). With reduced feature sets RS1 and RS2, accuracies of 77.9% and 78.1%
were achieved, respectively, by Random Forest. For the Aciss dataset, the 66%-34%
train-test data split resulted in over 82% accuracy for the reduced feature sets. The
full feature set TPR accuracy was at 78.3% (using J48). These results suggest that
future classifiers can be created without having to include data points for a wide range
of matrix sizes.

Table 7
Reduced feature set for PETSc.

Feature name Reduced Reduced
Set 1 (RS1) Set 2 (RS2)

Average distance of nonzero diagonal to main diagonal X X
Total number of nonzeros X
1-norm, maximum column sum of absolute element sizes X X

Column variability: maxj log10
maxi |aij |
mini |aij |

X X

Minimum number of nonzeros per row X X

Row variability: maxi log10
maxj |aij |
minj |aij |

X X

Number of diagonals that have any nonzero element X
Estimated condition number X X

Table 8
Validation with 66%-34% train-test data split for PETSc (Blue Gene/Q).

Class labels All features Reduced Feature Set 1 Reduced Feature Set 2

Predicted label good fair bad good fair bad good fair bad
True label (good) 411 12 52 370 83 22 371 86 18
True label (fair) 1742 2973 399 41 5069 4 41 5066 7
True label (bad) 113 5 26 52 46 46 48 52 44

Figure 3(left side) is a radar chart that shows the performance of the six ML
methods we tested for the full and reduced feature sets (invoked with default Weka
parameters). The radar chart contains 10 radial axes, with values ranging between
0% and 100% from the center to the perimeter in increments of 10%. An accuracy of
100% indicates a classifier that predicts the good classifiers correctly each time. An
accuracy of 0% indicates a classifier that fails to predict good classifiers in each case.
We tested more methods than are included in the figure, but none performed better
than the best method shown in the figure. The threshold used for labeling the dataset
in this case was b = 40% and r = 60%, which means that methods within the top 40%
of the best solver time were labeled as “good” and labeled as “fair” for all the cases
with times greater than the “good” criterion but within 60% of the minimum. This
value of b was chosen as the best among several sampled values between 1 and 45 for
the BG/Q dataset. The total number of actual “good” class instances was 1,365. For
the Aciss dataset, we were able to choose b = 40%, for which the actual number of
“good” class instances was 1,135. The classification was performed on an Intel Core

PERFORMANCE-BASED SOLVER SELECTION IN LIGHTHOUSE S765

Method TAll TRS1 TRS2

LibSVM 1.21 0.32 0.31
RF 4.25 2.84 2.88
BayesNet 0.09 0.02 0.02
knn 0.001 0.001 0.001
LADT 3.3 0.5 0.4
J48 0.56 0.11 0.11

Fig. 3. ML algorithm comparison for PETSc linear solvers using full and reduced Anamod-
based feature sets for training and prediction: “good as good” prediction accuracy (left) and the time
(in seconds) for constructing the classifier with each method (right) using all features (TAll) and
two different reduced feature sets (TRS1and TRS2) shown in Table 7.

i5 MacBook Pro.
We analyzed the impact of our PETSc solver selection strategy on the execution

time on Aciss by comparing the execution time of automatically selected good solvers
(using the approach described in section 4) with that of the default PETSc solver
configuration. We used a speedup value s computed as default solver time divided by
recommended solver time (higher is better).

When solvers classified as good were actually good (true positives), which occurs
in 82% of the testing dataset, the maximum improvement was s = 10, 331, the average
improvement was s = 467, median s = 1.39, and minimum improvement was s = 0.71
(which is a slowdown). Similarly, in the 18% of cases where we mispredicted a solver
as good or fair, the maximum improvement was s = 5, 824, average s = 257, median
s = 1, and minimum (slowdown) s = 0.63. As these results show, while in some
cases the recommended solver can be slower than the default, on average we deliver
significant (orders of magnitude) improvement in execution time. Figure 4 shows the
speedup s of all test dataset solvers classified as good by using the approach described
in section 4. A speedup of 1 means that there was no speedup or slowdown, values
less than 1 indicate a slowdown, and values over 1 indicate speedup. Another way to
represent the loss or gain of performance is by looking at the area under the curve
with relationship to the base case (line at y = 1). The area corresponding to speedup
is 99.96% of the total area and is 2,397 times larger than the area corresponding to
slowdown, which is 0.04% of the total area.

5.2. Trilinos solver analysis. The first set of Trilinos experiments was per-
formed on more than 14,000 data points on 66 Belos solvers/preconditioner combina-
tions using the Janus supercomputer at the University of Colorado. Each Janus node
contains two hex-core 2.8GHz Intel Westmere processors (X5660) and 24 GB of RAM.
We used Weka to build the classifiers on an Intel Core i5 MacBook Pro following the
steps outlined in section 4.

First, we used the Anamod-based features to perform the classification on the
same matrices as the PETSc solver classification. With 10-fold cross-validation, the
best “good as good” (TPR) solver accuracy with all 68 features was 71.8% and was
produced by J48 [59]. With Reduced Feature Set 1 (RS1) the best TPR was 75%

S766 JESSUP, MOTTER, NORRIS, AND SOOD

!"!#$

!"#$

#$

#!$

#!!$

#!!!$

#!!!!$

#!!!!!$

!$ #!!$ %!!$ &!!$ '!!$ (!!$)!!$ *!!$ +!!$,!!$

 s

!"#$%&'%()%&*+%,-.

s = Trecommended_solver / Tdefault_solver

Fig. 4. Speedup s of the 851 test solvers classified as “good”. The x-axis represents the individual
solver tests, sorted in increasing order of s.

Table 9
Reduced feature sets for Trilinos using Anamod-based matrix properties.

Feature name Reduced Reduced
Set 1 (RS1) Set 2 (RS2)

Average distance of nonzeros to the diagonal X X
Integer size of blocks that comprise matrix block structure,
1 in the general case

X X

Left bandwidth: maxi{i− j : aij 6= 0} X X

Column variability: maxj log10
maxi |aij |
mini |aij |

X X

Diagonal dominance X X

Row variability: maxi log10
maxj |aij |
minj |aij |

X X

Number of nonzero elements in the matrix X

with Random Forest (100 trees), as shown in the second column of Table 9.
With Reduced Feature Set 2 (RS2) shown in the third column of Table 9, the

best accuracy of 73.1% resulted from Random Forest (100 trees). The performance
of other ML methods is shown as a radar chart in the left part of Figure 5.

With a 66%-34% train-test data split, the best accuracy of 72.2% was achieved by
J48 for the full feature set. Accuracies of 73.5% and 70% were achieved with reduced
sets RS1 and RS2 with Random Forest (100 trees), respectively. We labeled solutions
as “good” if they were within b = 35% of the best known solution time, which was
chosen as the best among values of b between 1 and 45.

Next, we performed the same steps, but this time with Trilinos-computed features
because applications using Trilinos need to compute matrix features at runtime and
hence most conveniently use available Trilinos functionality. Starting with the full 38-
feature set, for 10-fold cross-validation, we identified the features in Table 102 using
the same set of Weka attribute selection methods listed in section 4.4. We did not
implement the equivalent of all 68 Anamod features; hence, the reduced features for
Trilinos are somewhat different. The total number of data points used for training
and 10-fold cross validation (Table 11) was 39,388, of which 2,986 were “good” solvers
for b = 15, which is a more stringent labeling of “good” solvers than the best one for
PETSc solvers. Again, we selected b based on sampling values between 1 and 45.

2Total DNE %: structural property indicating that the fraction of matrix elements for which
there is no nonzero in the symmetrical element.

PERFORMANCE-BASED SOLVER SELECTION IN LIGHTHOUSE S767

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

!"#$%&'

'()*'

+,-./0.1'

233'

456'

789'

-..#/0123405# 6073807#902#$# 6073807#902#%#

Method TAll TRS1 TRS2

LibSVM 62.88 23.13 23.17
RF 7.90 3.16 2.63
BayesNet 0.22 0.07 0.05
knn 0.001 0.001 0.001
ADT 4.31 0.43 0.32
J48 0.64 0.09 0.09

Fig. 5. ML algorithm comparison for Trilinos linear solvers using full and reduced Anamod-
based feature sets for training and prediction: “good as good” prediction accuracy (left) and the time
(in seconds) for constructing the classifier with each method (right) using all features (TAll) and
two different reduced feature sets (TRS1and TRS2) shown in Table 9.

Table 10
Reduced feature set for Trilinos using Trilinos-computed matrix properties.

Feature name Reduced Feature Set 1 Reduced Feature Set 2
(RS1) (RS2)

Dummy rows X X
Trace X X
Column diagonal dominance X X
Row diagonal dominance X X
Diagonal nonzeros X
Diagonal mean X X
Total DNE % X X

Table 11
10-fold cross-validation for Trilinos.

Class labels All features Reduced Feature Set 1 Reduced Feature Set 2

Predicted label good bad good bad good bad
True label (good) 2764 222 2690 296 2693 293
True label (bad) 6245 30157 5602 30800 5636 30766

As shown in Figure 6, the best TPR of 93% was delivered by VFI [22]. With
the reduced feature sets shown in the last two columns of Table 10, VFI delivered the
best TPR of 92% and 92.5%, respectively. We did not consider LibSVM because it
is prohibitively slow on this larger dataset (over 300 seconds to build the model).

With a 66%-34% train-test data-split, again VFI performed the best with an
accuracy of 93.0% for full-feature set. For both of the reduced sets, an accuracy of
90.3% was achieved by VFI (Table 12). Because of the significantly larger dataset
used in this case, the time required for building the classifiers using different ML
techniques was also longer than for those shown in Figure 5.

6. Conclusions and future work. The Lighthouse framework contains search-
able taxonomies for a growing number of numerical libraries, presently including

S768 JESSUP, MOTTER, NORRIS, AND SOOD

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

!"#$

$%"$

&'()*+),$-./$

012$

-..#/0123405# 6073807#902#$# 6073807#902#%#

Method TAll TRS1 TRS2

VFI 0.09 0.02 0.02
RF 14.33 6.83 6.09
BayesNet 0.30 0.08 0.07
ADT 5.83 1.41 0.77
J48 1.05 0.26 0.18

Fig. 6. ML algorithm comparison for Trilinos linear solvers using full and reduced Trilinos-
based feature sets for training and prediction: “good as good” prediction accuracy (left) and the time
(in seconds) for constructing the classifier with each method (right) using all features (TAll) and
two different reduced feature sets (TRS1and TRS2) shown in Table 10.

Table 12
Validation with 66%-34% train-test data split for Trilinos.

Class labels All features Reduced Feature Set 1 Reduced Feature Set 2

Predicted label good bad good bad good bad
True label (good) 963 73 935 100 936 100
True label (bad) 2180 10176 1935 10421 1935 10421

LAPACK, PETSc, and SLEPc. We have successfully integrated performance-based
decision support for selecting sparse linear solvers and eigensolvers for portions of
PETSc, Trilinos, and SLEPc. Results to date indicate that the ML-based classifi-
cation can produce up to 93% accurate predictions of well-performing sparse linear
system solution methods. As we continue to expand the set of input problems and
solution methods, we expect this accuracy to improve further.

We will continue to expand the Lighthouse taxonomy with more HPC software
routines and libraries. The greater coverage will allow us to fill out the training dataset
in order to improve prediction accuracy. We will also extend and fully automate the
prototype infrastructure for generating performance models of selected algorithms
through ML-based methods. For example, determining the best threshold b for la-
beling solvers as “good” is currently a manual task, which can be automated fairly
easily. While Weka allows quick algorithmic exploration of relatively small datasets,
we plan to switch to a more scalable and efficient ML infrastructure, such as scikit-
learn [60]. Additional tuning of ML algorithm parameters will also be investigated.
Our long-term plan is to integrate the classification-based solver selection capabilities
into PETSc and Trilinos, both for initial solver configuration and also to enable some
runtime adaptivity. In addition, a new Lighthouse Web page will be created to pro-
vide an up-to-date summary of the type of results described in this paper as they are
automatically updated with new classification results.

Because both PETSc and Trilinos are designed for parallel computation, we will
work on adding another dimension, scalability, when recommending results to a user.
While some options may be preferred for single-threaded or small workstation sized
problems, other solver-preconditioner combinations may prove to be better for the
same problem if using multiple cluster nodes. In further support of parallel computing,

PERFORMANCE-BASED SOLVER SELECTION IN LIGHTHOUSE S769

we will consider custom hierarchical ML approaches to provide scalable support for
all possible solvers and levels of parallelism. Lighthouse will thus provide support to
an ever broader class of scientific users.

Acknowledgments. The authors would like to thank Branden Romero for his
participation in and contributions to the project. We thank Prof. Dejing Dou and
Prof. Daniel Lowd of University of Oregon for their valuable feedback on the ML
aspects of our approach. The Janus supercomputer is a joint effort of the University
of Colorado Boulder, the University of Colorado Denver, and the National Center for
Atmospheric Research. Janus is operated by the University of Colorado Boulder.

REFERENCES

[1] Basic Linear Algebra Subprograms (BLAS), http://www.netlib.org/blas, 2015.
[2] LAPACK - Linear Algebra PACKage, http://www.netlib.org/lapack/, 2015.
[3] Scalable Library for Eigenvalue Problem Computations (SLEPc), http://www.grycap.upv.es/

slepc/, 2015.
[4] The University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/

matrices/, 2015.
[5] D. W. Aha, D. Kibler, and M. K. Albert, Instance-based learning algorithms, Mach. Learn.,

6 (1991), pp. 37–66.
[6] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. D. Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, 3rd ed., SIAM, Philadelphia, 1995, https://doi.org/10.1137/1.9780898719604.

[7] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp,
B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Tech. Report
ANL-95/11 - Revision 3.7, Argonne National Laboratory, 2016, http://www.mcs.anl.gov/
petsc.

[8] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, B. F. Smith, and H. Zhang, PETSc Web Page, http://www.mcs.anl.gov/petsc,
2016.

[9] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of paral-
lelism in object oriented numerical software libraries, in Modern Software Tools in Scientific
Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser Press, 1997,
pp. 163–202.

[10] R. Barrett, M. Berry, J. Dongarra, V. Eijkhout, and C. Romine, Algorithmic bombard-
ment for the iterative solution of linear systems: A polyiterative approach, J. Comput.
Appl. Math., 74 (1996), pp. 91–110.

[11] Belos documentation, https://trilinos.org/docs/dev/packages/belos/browser/doc/html/
namespaceBelos.html, 2015.

[12] G. Belter, E. R. Jessup, I. Karlin, and J. G. Siek, Automating the generation of composed
linear algebra kernels, in SC ’09: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, ACM, New York, 2009, pp. 1–12, https:
//doi.org/10.1145/1654059.1654119.

[13] S. Bhowmick, V. Eijkhout, Y. Freund, E. Fuentes, and D. Keyes, Application of machine
learning to selecting solvers for sparse linear systems, in Proceedings of the 2006 SIAM
Conference on Parallel Processing, San Francisco, CA, 2006.

[14] S. Bhowmick, V. Eijkhout, Y. Freund, E. Fuentes, and D. Keyes, Application of alternat-
ing decision trees in selecting sparse linear solvers, in Software Automatic Tuning: From
Concepts to the State-of-the-Art Results, K. Naono, K. Teranishi, J. Cavazos, and R. Suda,
eds., Springer, 2010, pp. 153–173.

[15] S. Bhowmick, D. Kaushik, L. McInnes, B. Norris, and P. Raghavan, Parallel adaptive
solvers in compressible PETSc-FUN3D simulations, in Proceedings of the 17th Interna-
tional Conference on Parallel Computational Fluid Dynamics, University of Maryland, Col-
lege Park, MD, 2005, http://www.mcs.anl.gov/papers/P1279.pdf; preprint, ANL/MCS-
P1279-0805.

[16] S. Bhowmick, P. Raghavan, L. C. McInnes, and B. Norris, Faster PDE-based simulations
using robust composite linear solvers, Future Generation Computer Systems, 20 (2004),
pp. 373–387, https://doi.org/10.1016/j.future.2003.07.012.

http://www.netlib.org/blas
http://www.netlib.org/lapack/
http://www.grycap.upv.es/slepc/
http://www.grycap.upv.es/slepc/
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
https://doi.org/10.1137/1.9780898719604
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
https://trilinos.org/docs/dev/packages/belos/browser/doc/html/namespaceBelos.html
https://trilinos.org/docs/dev/packages/belos/browser/doc/html/namespaceBelos.html
https://doi.org/10.1145/1654059.1654119
https://doi.org/10.1145/1654059.1654119
http://www.mcs.anl.gov/papers/P1279.pdf
https://doi.org/10.1016/j.future.2003.07.012

S770 JESSUP, MOTTER, NORRIS, AND SOOD

[17] R. R. Bouckaert, Bayesian network classifiers in Weka for version 3-5-7, Artificial Intelli-
gence Tools, 11 (2008), pp. 369–387.

[18] L. Breiman, Bagging predictors, Mach. Learn., 24 (1996), pp. 123–140.
[19] K. Bryan and T. Leise, The $25,000,000,000 eigenvector: The linear algebra behind Google,

SIAM Rev., 48 (2006), pp. 569–581, https://doi.org/10.1137/050623280.
[20] C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn., 20 (1995), pp. 273–297.
[21] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.

Softw., 38 (2011), pp. 1:1–1:25, https://doi.org/10.1145/2049662.2049663.
[22] G. Demiröz and H. A. Güvenir, Classification by voting feature intervals, in Proceedings

of the 9th European Conference on Machine Learning, ECML ’97, London, UK, 1997,
Springer-Verlag, pp. 85–92, http://dl.acm.org/citation.cfm?id=645325.649678.

[23] J. W. Demmel, O. A. Marques, B. N. Parlett, and C. Vömel, Performance and accuracy of
LAPACK’s symmetric tridiagonal eigensolvers, SIAM J. Sci.Comput., 30 (2008), pp. 1508–
1526, https://doi.org/10.1137/070688778.

[24] Django: The Web Framework for Perfectionists with Deadlines, http://www.djangoproject.
com, 2015.

[25] J. Dongarra, Freely Available Software for Linear Algebra on the Web, http://www.netlib.
org/utk/people/JackDongarra/la-sw.html, 2015.

[26] J. Dongarra, G. Bosilca, Z. Chen, V. Eijkhout, G. E. Fagg, E. Fuentes, J. Langou,
P. Luszczek, J. Pjesivac-Grbovic, K. Seymour, H. You, and S. S. Vadhiyar, Self-
adapting numerical software (SANS) effort, IBM J. Res. Dev., 50 (2006), pp. 223–238,
https://doi.org/10.1147/rd.502.0223.

[27] V. Eijkhout and E. Fuentes, A standard and software for numerical metadata, ACM Trans.
Math. Softw., 35 (2009), pp. 1–20, https://doi.org/10.1145/1462173.1462174.

[28] V. Eijkhout and E. Fuentes, Machine learning for multi-stage selection of numerical meth-
ods, in New Advances in Machine Learning, Y. Zhang, ed., In-Teh, Olajnica, Croatia, 2010,
pp. 117–136, http://www.intechopen.com/books/new-advances-in-machine-learning.

[29] P. R. Eller, J.-R. C. Cheng, and R. S. Maier, Dynamic linear solver selection for transient
simulations using machine learning on distributed systems, in IPDPS Workshops, 2012,
pp. 1915–1924.

[30] A. Ern, V. Giovangigli, D. E. Keyes, and M. D. Smooke, Towards polyalgorithmic linear
system solvers for nonlinear elliptic problems, SIAM J. Sci. Comput., 15 (1994), pp. 681–
703, https://doi.org/10.1137/0915044.

[31] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Lett., 27 (2006), pp. 861–
874, https://doi.org/10.1016/j.patrec.2005.10.010.

[32] E. Frank, M. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. H. Witten, and L. Trigg,
Weka, in Data Mining and Knowledge Discovery Handbook, Springer, 2005, pp. 1305–1314.

[33] Y. Freund and L. Mason, The alternating decision tree learning algorithm, in ICML ’99: Pro-
ceedings of the Sixteenth International Conference on Machine Learning, Vol. 99, Morgan
Kaufmann, 1999, pp. 124–133.

[34] Generic code optimization, http://icl.eecs.utk.edu/gco/, 2015.
[35] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, The

Weka data mining software: An update, ACM SIGKDD explorations newsletter, 11 (2009),
pp. 10–18.

[36] M. A. Hall, Correlation-Based Feature Subset Selection for Machine Learning, Ph.D. thesis,
The University of Waikato, 1999.

[37] J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques, 3rd ed., Morgan
Kaufman, 2012.

[38] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning,
Springer, 2001.

[39] Haystack, http://haystacksearch.org/, 2015.
[40] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit for the

solution of eigenvalue problems, ACM Trans. Math. Softw., 31 (2005), pp. 351–362.
[41] A. Holloway and T.-Y. Chen, Neural networks for predicting the behavior of preconditioned

iterative solvers, in Computational Science: ICCS 2007, Y. Shi, G. D. van Albada, J. Don-
garra, and P. M. A. Sloot, eds., Lecture Notes in Comput. Sci. 4487, Springer, Berlin,
Heidelberg, 2007, pp. 302–309.

[42] G. Holmes, B. Pfahringer, R. Kirkby, E. Frank, and M. Hall, Multiclass alternating
decision trees, in Machine learning: ECML 2002, Springer, 2002, pp. 161–172.

[43] E. N. Houstis, J. R. Rice, N. P. Chrisochoides, H. C. Karathanasis, P. N. Papachiou,
M. K. Samartzis, E. A. Vavalis, K. Y. Wang, and S. Weerawarana, //ellpack: A
numerical simulation programming environment for parallel mimd machines, SIGARCH

https://doi.org/10.1137/050623280
https://doi.org/10.1145/2049662.2049663
http://dl.acm.org/citation.cfm?id=645325.649678
https://doi.org/10.1137/070688778
http://www.djangoproject.com
http://www.djangoproject.com
http://www.netlib.org/utk/people/JackDongarra/la-sw.html
http://www.netlib.org/utk/people/JackDongarra/la-sw.html
https://doi.org/10.1147/rd.502.0223
https://doi.org/10.1145/1462173.1462174
http://www.intechopen.com/books/new-advances-in-machine-learning
https://doi.org/10.1137/0915044
https://doi.org/10.1016/j.patrec.2005.10.010
http://icl.eecs.utk.edu/gco/
http://haystacksearch.org/

PERFORMANCE-BASED SOLVER SELECTION IN LIGHTHOUSE S771

Comput. Archit. News, 18 (1990), pp. 96–107, https://doi.org/10.1145/255129.255144.
[44] I. K. Jeremy G. Siek and E. R. Jessup, Build to order linear algebra kernels, in Workshop on

Performance Optimization for High-Level Languages and Libraries (POHLL 2008), Miami,
FL, 2008, pp. 1–8.

[45] E. Jessup, B. Bolton, B. Enosh, F. Ma, and T. Nguyen, LAPACK Internet Interface and
Search Engine, http://www.cs.colorado.edu/∼lapack, 2008.

[46] R. Katz, M. Knepley, B. Smith, M. Spiegelman, and E. Coon, Numerical simulation
of geodynamic processes with the Portable Extensible Toolkit for Scientific Computation,
Physics of the Earth and Planetary Interiors, 163 (2007), pp. 52–68.

[47] L. Kotthoff, I. P. Gent, and I. Miguel, An evaluation of machine learning in algorithm
selection for search problems, AI Commun., 25 (2012), pp. 257–270, http://dl.acm.org/
citation.cfm?id=2350296.2350300.

[48] Krylov methods - KSP, http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/
KSP/index.html, 2015.

[49] Lighthouse Project, http://lighthousehpc.github.io/lighthouse/, 2015.
[50] R. Lucas, PERI: Performance Engineering Research Institute, http://peri-scidac.org, 2007.
[51] H. D. Mittelmann, Decision Tree for Optimization Software, http://plato.asu.edu/guide.

html, 2008.
[52] Netlib, http://www.netlib.org/, 2015.
[53] NIST, HotGAMS: Guide to Available Mathematical Software; formerly available from http:

//gams.nist.gov/HotGAMS/HotGAMS.html, 2008.
[54] NIST, Guide to Available Mathematical Software, http://gams.nist.gov, 2015.
[55] NIST, Matrix Market, http://math.nist.gov/MatrixMarket/, 2015.
[56] B. Norris, S.-L. Bernstein, R. Nair, and E. Jessup, Lighthouse: A user-centered Web

system for linear algebra software, Elsevier Journal of Systems and Software (JSS): Special
Issue on Software Engineering for Parallel Systems, (2015), to appear; arXiv preprint
arXiv:1408.1363.

[57] B. Norris, L. C. McInnes, S. Bhowmick, and L. Li, Adaptive numerical components for
PDE-based simulations, PAMM: Special Issue: Sixth International Congress on Industrial
Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zurich 2007, 7 (2007),
pp. 1140509–1140510, https://doi.org/10.1002/pamm.200700687.

[58] N. Pater, Enhancing random forest implementation in Weka, in Machine Learning Conference
paper for ECE591Q, 2005.

[59] R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993.
[60] scikit-learn: Machine learning in python, http://scikit-learn.org/stable/, 2015.
[61] Trilinos, https://trilinos.org, 2015.
[62] Trilinos Hands-on Tutorial, https://github.com/trilinos/Trilinos tutorial/wiki/

TrilinosHandsOnTutorial, 2015.
[63] G. Vidal, Efficient simulation of one dimensional quantum many-body systems, Phys. Rev.

Lett., 93 (2004), 040502.
[64] S. Weerawarana, E. N. Houstis, J. R. Rice, A. Joshi, and C. E. Houstis, Pythia: A

knowledge-based system to select scientific algorithms, ACM Trans. Math. Softw., 22
(1996), pp. 447–468, https://doi.org/10.1145/235815.235820.

[65] R. C. Whaley, A. Petitet, and J. J. Dongarra, Automated empirical optimizations of
software and the ATLAS project, Parallel Comput., 27 (2001), pp. 3–35, citeseer.ist.psu.
edu/whaley00automated.html.

[66] P. R. Willems, B. Lang, and C. Vömel, Computing the bidiagonal SVD using multiple
relatively robust representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 907–926,
https://doi.org/10.1137/050628301.

[67] S. Xu and J. Zhang, SVM Classification for Predicting Sparse Matrix Solvability with Param-
eterized Matrix Preconditioners, Tech. Report 458-06, Department of Computer Science,
University of Kentucky, 2006.

https://doi.org/10.1145/255129.255144
http://www.cs.colorado.edu/~lapack
http://dl.acm.org/citation.cfm?id=2350296.2350300
http://dl.acm.org/citation.cfm?id=2350296.2350300
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/index.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/index.html
http://lighthousehpc.github.io/lighthouse/
http://peri-scidac.org
http://plato.asu.edu/guide.html
http://plato.asu.edu/guide.html
http://www.netlib.org/
http://gams.nist.gov/HotGAMS/HotGAMS.html
http://gams.nist.gov/HotGAMS/HotGAMS.html
http://gams.nist.gov
http://math.nist.gov/MatrixMarket/
https://doi.org/10.1002/pamm.200700687
http://scikit-learn.org/stable/
https://trilinos.org
https://github.com/trilinos/Trilinos_tutorial/wiki/TrilinosHandsOnTutorial
https://github.com/trilinos/Trilinos_tutorial/wiki/TrilinosHandsOnTutorial
https://doi.org/10.1145/235815.235820
citeseer.ist.psu.edu/whaley00automated.html
citeseer.ist.psu.edu/whaley00automated.html
https://doi.org/10.1137/050628301

	Introduction
	Background
	Using sparse linear algebra libraries
	The Lighthouse framework
	Lighthouse for LAPACK
	Lighthouse for SLEPc
	Lighthouse for system solution

	Related work
	Other taxonomy efforts
	Performance-based algorithm classification

	Approach
	Creating the training dataset
	Training data preparation
	Feature computation
	Feature set reduction
	Solver classification
	Performance evaluation of the classification

	Experimental results
	PETSc solver analysis
	Trilinos solver analysis

	Conclusions and future work
	References

