
Signals	and	Jumps	

CSAPP2e,	Chapter	8	

Recall:	Running	a	New	Program	
int execl(char *path,

 char *arg0, …, char *argn,
 char *null)

–  Loads	&	runs	executable:	
•  path	is	the	complete	path	of	an	executable	
•  arg0	becomes	the	name	of	the	process	
•  arg0,	…,	argn 	→		argv[0],	…,	argv[n]
•  Argument	list	terminated	by	a	NULL	argument	

–  Returns	-1	if	error,	otherwise	doesn’t	return!	

if (fork() == 0)
 execl("/usr/bin/cp", "cp", "foo", "bar", NULL);
else
 printf("hello from parent\n");

CIS 330 W9 Signals and Jumps

Interprocess	CommunicaLon	
✧  SynchronizaLon	allows	very	limited	communicaLon	
	
✧  Pipes:	

–  One-way	communicaLon	stream	that	mimics	a	file	in	each	process:		
one	output,	one	input	

–  See	man 7 pipe
✧  Sockets:	

–  A	pair	of	communicaLon	streams	that	processes	connect	to	
–  See	man 7 socket

CIS 330 W9 Signals and Jumps

The	World	of	MulLtasking	
✧  System	Runs	Many	Processes	Concurrently	

–  Process:	execuLng	program	
•  State	consists	of	memory	image	+	register	values	+	program	counter	

–  ConLnually	switches	from	one	process	to	another	
•  Suspend	process	when	it	needs	I/O	resource	or	Lmer	event	occurs	
•  Resume	process	when	I/O	available	or	given	scheduling	priority	

–  Appears	to	user(s)	as	if	all	processes	execuLng	simultaneously	
•  Even	though	most	systems	can	only	execute	one	process	at	a	Lme	
•  Except	possibly	with	lower	performance	than	if	running	alone	

CIS 330 W9 Signals and Jumps

Programmer’s	Model	of	MulLtasking	

✧  Basic	FuncLons	
–  fork()	spawns	new	process	

•  Called	once,	returns	twice	
–  exit()	terminates	own	process	

•  Called	once,	never	returns	
•  Puts	process	into	“zombie”	status	

–  wait()	and	waitpid()	wait	for	and	reap	terminated	children	
–  execl()	and	execve()	run	a	new	program	in	an	exisLng	process	

•  Called	once,	(normally)	never	returns	
✧  Programming	Challenge	

–  Understanding	the	nonstandard	semanLcs	of	the	funcLons	
–  Avoiding	improper	use	of	system	resources	

•  E.g.,	“Fork	bombs”	can	disable	a	system	

CIS 330 W9 Signals and Jumps

UNIX	Startup:	1	
✧  Pushing	reset	bu_on	loads	the	PC	with	the	address	of	a	small	bootstrap	program	
✧  Bootstrap	program	loads	the	boot	block	(disk	block	0)	
✧  Boot	block	program	loads	kernel	from	disk	
✧  Boot	block	program	passes	control	to	kernel	
✧  Kernel	handcrabs	the	data	structures	for	process	0	

[0] Process 0: handcrafted kernel process

init [1]
Process 1: user mode process
fork() and exec(/sbin/init)

CIS 330 W9 Signals and Jumps

UNIX	Startup:	2	

init [1]

[0]

Forks getty (get tty or get terminal)
for the console getty

init forks new processes as per
the /etc/inittab file

Daemons
e.g., sshd

CIS 330 W9 Signals and Jumps

UNIX	Startup:	3	

init [1]

[0]

login Daemons
e.g., sshd

getty execs a login program

CIS 330 W9 Signals and Jumps

UNIX	Startup:	4	

init [1]

[0]

shell Daemons
e.g., sshd

login gets user’s uid & password
•  If OK, it execs appropriate shell
•  If not OK, it execs getty

CIS 330 W9 Signals and Jumps

Shell	Programs	
✧  A	shell	is	an	applicaLon	program	that	runs	programs	on	

behalf	of	user	
–  sh	–	Original	Unix	Bourne	Shell	
–  csh	–	BSD	Unix	C	Shell,	tcsh	–	Enhanced	C	Shell		
–  bash	–	Bourne-Again	Shell	
–  ksh	–	Korn	Shell		 int main(void)

{
 char cmdline[MAXLINE];
 while (true) {

 /* read */
 printf("> ");
 Fgets(cmdline, MAXLINE, stdin);
 if (feof(stdin))
 exit(0);

 /* evaluate */
 eval(cmdline);

 }
}

Read-evaluate loop:
an interpreter!

CIS 330 W9 Signals and Jumps

Simple	Shell	eval	FuncLon	
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* argv for execve() */
 bool bg; /* should the job run in bg or fg? */
 pid_t pid; /* process id */
 int status; /* child status */

 bg = parseline(cmdline, argv);
 if (!builtin_command(argv)) {

 if ((pid = Fork()) == 0) { /* child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }
 if (!bg) { /* parent waits for fg job to terminate */
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }
 else /* otherwise, don’t wait for bg job */
 printf("%d %s", pid, cmdline);

 }
}

CIS 330 W9 Signals and Jumps

Problem	with	Simple	Shell	Example	

✧  Correctly	waits	for	&	reaps	foreground	jobs	
	
✧  But	what	about	background	jobs?	

–  Will	become	zombies	when	they	terminate	
–  Will	never	be	reaped	because	shell	(typically)	will	not	terminate	
–  Creates	a	process	leak	that	will	eventually	prevent	the	forking	of	new	

processes	

	
✧  SoluLon:	Reaping	background	jobs	requires	a	mechanism	

called	a	signal	

CIS 330 W9 Signals and Jumps

Signals	
✧  A	signal	is	a	small	message	that	noLfies	a	process	that	an	event	of	some	

type	has	occurred	in	the	system	
–  Kernel	abstracLon	for	excepLons	and	interrupts	
–  Sent	from	the	kernel	(someLmes	at	the	request	of	another	process)	to	a	

process	
–  Different	signals	are	idenLfied	by	small	integer	ID’s	
–  Typically,	the	only	informaLon	in	a	signal	is	its	ID	and	the	fact	that	it	arrived	

ID Name Default Action Corresponding Event
2 SIGINT Terminate Keyboard interrupt (ctrl-c)
9 SIGKILL Terminate Kill program

11 SIGSEGV Terminate & Dump Segmentation violation
14 SIGALRM Terminate Timer signal
18 SIGCHLD Ignore Child stopped or terminated

CIS 330 W9 Signals and Jumps

Signals:	Sending		
✧ OS	kernel	sends	a	signal	to	a	desLnaLon	process	by	updaLng	

some	state	in	the	context	of	the	desLnaLon	process	
	
✧  Reasons:	

–  OS	detected	an	event	
–  Another	process	used	the	kill	system	call	to	explicitly	request	the	

kernel	to	send	a	signal	to	the	desLnaLon	process	
	

CIS 330 W9 Signals and Jumps

Signals:	Receiving	
✧  DesLnaLon	process	receives	a	signal	when	it	is	forced	by	the	

kernel	to	react	in	some	way	to	the	delivery	of	the	signal	
	
✧  Three	ways	to	react:	

–  Ignore	the	signal	
–  Terminate	the	process	(&	opLonally	dump	core)	
–  Catch	the	signal	with	a	user-level	signal	handler	

CIS 330 W9 Signals and Jumps

Signals:	Pending	&	Blocking	
✧  Signal	is	pending	if	sent,	but	not	yet	received	

–  At	most	one	pending	signal	of	any	parLcular	type	
–  Important:	Signals	are	not	queued	

•  If	process	has	pending	signal	of	type	k,	then	process	discards	subsequent	
signals	of	type	k	

–  A	pending	signal	is	received	at	most	once	

	
✧  Process	can	block	the	receipt	of	certain	signals	

–  Blocked	signals	can	be	delivered,	but	will	not	be	received	unLl	the	
signal	is	unblocked	

CIS 330 W9 Signals and Jumps

Signals:	Pending	&	Blocking	
✧  Kernel	maintains	pending	&	blocked	bit	vectors	in	each	

process	context	
	
✧  pending	–	represents	the	set	of	pending	signals	

–  Signal	type	k	delivered	→	kernel	sets	kth	bit	
–  Signal	type	k	received	→	kernel	clears	kth	bit	

✧  blocked	–	represents	the	set	of	blocked	signals	
–  ApplicaLon	sets	&	clears	bits	via	sigprocmask()

CIS 330 W9 Signals and Jumps

Process	Groups	

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp() – Return process group of
current process

setpgid() – Change process group of
a process

Each process
belongs to exactly
one process group

One group in foreground

CIS 330 W9 Signals and Jumps

Sending	Signals	with	/bin/kill
UNIX% fork2anddie
Child1: pid=11662 pgrp=11661
Child2: pid=11663 pgrp=11661

UNIX% ps x
 PID TTY STAT TIME COMMAND
 11263 pts/7 Ss 0:00 -tcsh
 11662 pts/7 R 0:18 ./fork2anddie
 11663 pts/7 R 0:16 ./fork2anddie
 11664 pts/7 R+ 0:00 ps x
UNIX% kill -9 -11661
UNIX% ps x
 PID TTY STAT TIME COMMAND
 11263 pts/7 Ss 0:00 -tcsh
 11665 pts/7 R+ 0:00 ps x
UNIX%

kill –9 –11661
Send SIGKILL to every process
in process group 11661

kill –9 11662
Send SIGKILL to process 11662

Sends arbitrary signal to a
process or process group

CIS 330 W9 Signals and Jumps

Sending	Signals	from	the	Keyboard	

✧  Typing	ctrl-c	(ctrl-z)	sends	SIGINT	(SIGTSTP)	to	every	job	in	the	
foreground	process	group	
–  SIGINT	–	default	acLon	is	to	terminate	each	process		
–  SIGTSTP	–	default	acLon	is	to	stop	(suspend)	each	process	

CIS 330 W9 Signals and Jumps

Example	of	ctrl-c	and	ctrl-z
UNIX% ./fork1
Child: pid=24868 pgrp=24867
Parent: pid=24867 pgrp=24867
<typed ctrl-z>
Suspended
UNIX% ps x
 PID TTY STAT TIME COMMAND
24788 pts/2 Ss 0:00 -tcsh
24867 pts/2 T 0:01 fork1
24868 pts/2 T 0:01 fork1
24869 pts/2 R+ 0:00 ps x
UNIX% fg
fork1
<typed ctrl-c>
UNIX% ps x
 PID TTY STAT TIME COMMAND
24788 pts/2 Ss 0:00 -tcsh
24870 pts/2 R+ 0:00 ps x

S=Sleeping
R=Running or Runnable
T=Stopped
Z=Zombie

CIS 330 W9 Signals and Jumps

kill()
void kill_example(void)
{
 pid_t pid[N], wpid;
 int child_status, i;
 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)
 while (1); /* Child infinite loop */

 /* Parent terminates the child processes */
 for (i = 0; i < N; i++) {

 printf("Killing process %d\n", pid[i]);
 kill(pid[i], SIGINT);

 }

 /* Parent reaps terminated children */
 for (i = 0; i < N; i++) {

 wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);

 }
}

CIS 330 W9 Signals and Jumps

Receiving	Signals:	How	It	Happens	
✧  Suppose	kernel	is	returning	from	an	excepLon	handler	&	is	ready	to	pass	

control	to	process	p	
✧  Kernel	computes	pnb = pending & ~blocked

–  The	set	of	pending	nonblocked	signals	for	process	p		
✧  If		pnb == 0

–  Pass	control	to	next	instrucLon	in	the	logical	control	flow	for	p	
✧  Else	

–  Choose	least	nonzero	bit	k	in	pnb	and	force	process	p	to	receive	signal	k	
–  The	receipt	of	the	signal	triggers	some	acLon	by	p	
–  Repeat	for	all	nonzero	k	in	pnb
–  Pass	control	to	next	instrucLon	in	the	logical	control	flow	for	p	

CIS 330 W9 Signals and Jumps

Signals:	Default	AcLons	
✧  Each	signal	type	has	predefined	default	ac.on	
	
✧ One	of:	

–  Process	terminates	
–  Process	terminates	&	dumps	core	
–  Process	stops	unLl	restarted	by	a	SIGCONT	signal	
–  Process	ignores	the	signal	

	
	

CIS 330 W9 Signals and Jumps

Signal	Handlers	
✧  #include <signal.h>

✧  typedef void (*sighandler_t)(int);

✧  sighandler_t signal(int signum, sighandler_t handler);

✧  Two	args:	

–  signum	–	Indicates	which	signal,	e.g.,	
•  SIGSEGV,	SIGINT,	…	

–  handler	–	Signal	“disposiLon”,	one	of	
•  Pointer	to	a	handler	rouLne,	whose	int	argument	is	the	kind	of	signal	raised	
•  SIG_IGN	–	ignore	the	signal	
•  SIG_DFL	–	use	default	handler	

✧  Returns	previous	disposiLon	for	this	signal	
–  Details:	man signal	and	man 7 signal

CIS 330 W9 Signals and Jumps

Signal	Handlers:	Example	1	
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <stdbool.h>

void sigint_handler(int sig) {
 printf("Control-C caught.\n");
 exit(0);
}

int main(void) {
 signal(SIGINT, sigint_handler);
 while (true) {
 }
}

CIS 330 W9 Signals and Jumps

Signal	Handlers:	Example	2	
#include <stdio.h>
#include <signal.h>
#include <stdbool.h>

int ticks = 5;

void sigalrm_handler(int sig) {
 printf("tick\n");

 ticks -= 1;
 if (ticks > 0) {
 signal(SIGALRM,
 sigalrm_handler);
 alarm(1);
 } else {
 printf("*BOOM!*\n");
 exit(0);
 }
}

int main(void) {
 signal(SIGALRM,
 sigalrm_handler);
 alarm(1); /* send SIGALRM in
 1 second */

 while (true) {
 /* handler returns here */
 }
}

UNIX% ./alrm
tick
tick
tick
tick
tick
BOOM!
UNIX%

signal resets handler
to default action each

time handler runs,
sigset, sigaction

do not

CIS 330 W9 Signals and Jumps

Signal	Handlers	(POSIX)	
✧  OS	may	allow	more	detailed	control:	

✧  int sigaction(int sig,
✧  const struct sigaction *act,
✧  struct sigaction *oact);

✧  struct sigaction	includes	a	handler:	
	
✧  void sa_handler(int sig);

✧  Signal	from	csapp.c	is	a	clean	wrapper	around	sigaction

CIS 330 W9 Signals and Jumps

Pending	Signals	Not	Queued	
int ccount = 0;

void child_handler(int sig)
{
 int child_status;
 pid_t pid = wait(&child_status);
 ccount -= 1;
 printf("Received signal %d from process %d\n", sig, pid);
}

void example(void)
{
 pid_t pid[N];
 int child_status, i;
 ccount = N;
 Signal(SIGCHLD, child_handler);
 for (i = 0; i < N; i+=1)

 if ((pid[i] = fork()) == 0) {
 /* Child: Exit */
 exit(0);
 }

 while (ccount > 0)
 pause();/* Suspend until signal occurs */

}

For each signal type,
single bit indicates
whether a signal is

pending

Will probably lose
some signals:

ccount never reaches 0

CIS 330 W9 Signals and Jumps

Living	With	Non-Queuing	Signals	

void child_handler2(int sig)
{
 int child_status;
 pid_t pid;
 while ((pid = waitpid(-1, &child_status, WNOHANG)) > 0) {

 ccount -= 1;
 printf("Received signal %d from process %d\n", sig, pid);

 }
}

void example(void)
{
 . . .
 Signal(SIGCHLD, child_handler2);
 . . .
}

Must check for all terminated
jobs:

typically loop with wait

CIS 330 W9 Signals and Jumps

More	Signal	Handler	Funkiness	
✧  Consider	signal	arrival	during	long	system	calls,	e.g.,	read
✧  Signal	handler	interrupts	read()	call	

–  Some	flavors	of	Unix	(e.g.,	Solaris):	
•  read()	fails	with	errno==EINTER
•  ApplicaLon	program	may	restart	the	slow	system	call	

–  Some	flavors	of	Unix	(e.g.,	Linux):	
•  Upon	return	from	signal	handler,	read()	restarted	automaLcally	

✧  Subtle	differences	like	these	complicate	wriLng	portable	code	
with	signals	
–  Signal	wrapper	in	csapp.c	helps,	uses	sigaction	to	restart	

system	calls	automaLcally	

CIS 330 W9 Signals and Jumps

Signal	Handlers	(POSIX)	
✧  Handler	can	get	extra	informaLon	in	siginfo_t when	using	sigaction	to	

set	handlers	
E.g.,	for	SIGSEGV:	

•  Whether	virtual	address	didn’t	map	to	any	physical	address,	or	whether	the	address	was	being	
accessed	in	a	way	not	permi_ed	(e.g.,	wriLng	to	read-only	space)	

•  Address	of	faulty	reference	
	
Details: man siginfo

static void segv_handler(int sig, siginfo_t *sip, ucontext_t *uap)
{
 fprintf(stderr, "Segmentation fault caught!\n");
 fprintf(stderr, "Caused by access of invalid address %p.\n",
 sip->si_addr);
 exit(1);
}

CIS 330 W9 Signals and Jumps

Other	Types	of	ExcepLonal	Control	Flow	

✧ Non-local	Jumps	
–  C	mechanism	to	transfer	control	to	any	program	point	higher	in	the	

current	stack	

f1

f2

f3

f1 eventually
calls f2 and

f3.

When can non-local jumps be used:
•  Yes: f2 to f1
•  Yes: f3 to f1

•  No: f1 to either f2 or f3
•  No: f2 to f3, or vice versa

CIS 330 W9 Signals and Jumps

Non-local	Jumps	
	
	
✧  setjmp()

–  IdenLfy	the	current	program	point	as	a	place	to	jump	to	

	
✧  longjmp()

–  Jump	to	a	point	previously	idenLfied	by	setjmp()

CIS 330 W9 Signals and Jumps

Non-local	Jumps:	setjmp()	
✧  int setjmp(jmp_buf env)

–  IdenLfies	the	current	program	point	with	the	name	env

•  jmp_buf is	a	pointer	to	a	kind	of	structure	
•  Stores	the	current	register	context,	stack	pointer,	and	PC	in	jmp_buf

	
–  Returns	0	

CIS 330 W9 Signals and Jumps

Non-local	Jumps:	longjmp()	
✧  void longjmp(jmp_buf env, int val)

	
–  Causes	another	return	from	the	setjmp()	named	by	env

•  This	Lme,	setjmp()	returns	val
–  (Except,	returns	1	if	val==0)	

	
•  Restores	register	context	from	jump	buffer	env
•  Sets	funcLon’s	return	value	register	(SPARC:	%o0)	to	val
•  Jumps	to	the	old	PC	value	stored	in	jump	buffer	env

	
–  longjmp()	doesn’t	return!	

CIS 330 W9 Signals and Jumps

Non-local	Jumps	
✧  From	the	UNIX	man	pages:	

WARNINGS
 If longjmp() or siglongjmp() are called even though env was
 never primed by a call to setjmp() or sigsetjmp(), or when
 the last such call was in a function that has since
 returned, absolute chaos is guaranteed.

CIS 330 W9 Signals and Jumps

Non-local	Jumps:	Example	1	

#include <setjmp.h>

jmp_buf buf;

int main(void)
{
 if (setjmp(buf) == 0)
 printf("First time through.\n");
 else
 printf("Back in main() again.\n");

 f1();
}

f1()
{
 …
 f2();
 …
}

f2()
{
 …
 longjmp(buf, 1);
 …
}

CIS 330 W9 Signals and Jumps

Non-local	Jumps:	Example	2	
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

sigjmp_buf buf;

void handler(int sig)
{
 siglongjmp(buf, 1);
}

int main(void)
{
 Signal(SIGINT, handler);

 if (sigsetjmp(buf, 1) == 0)
 printf("starting\n");
 else
 printf("restarting\n");
 …

 …
 while(1) {
 sleep(5);
 printf(" waiting...\n");
 }
}

> a.out
starting

waiting...

waiting...
restarting

waiting...

waiting...

waiting...
restarting

waiting...
restarting

waiting...

waiting...

Control-c

Control-c

Control-c

CIS 330 W9 Signals and Jumps

ApplicaLon-level	ExcepLons	
✧  Similar	to	non-local	jumps	

–  Transfer	control	to	other	program	points	outside	current	block	
–  More	abstract	–	generally	“safe”	in	some	sense	
–  Specific	to	applicaLon	language	

	

CIS 330 W9 Signals and Jumps

Summary:	ExcepLons	&	Processes	
✧  ExcepLons	

–  Events	that	require	nonstandard	control	flow	
–  Generated	externally	(interrupts)	or	internally	(traps	&	faults)	

	
✧  Processes	

–  At	any	given	Lme,	system	has	mulLple	acLve	processes	
–  Only	one	can	execute	at	a	Lme,	though	
–  Each	process	appears	to	have	total	control	of	processor	&	private	

memory	space	

CIS 330 W9 Signals and Jumps

Summary:	Processes	
✧  Spawning	

–  fork	–	one	call,	two	returns	
✧  TerminaLng	

–  exit	–	one	call,	no	return	
✧  Reaping	

–  wait	or	waitpid
✧  Replacing	Program	Executed	

–  execl (or	variant)	–	one	call,	(normally)	no	return	

CIS 330 W9 Signals and Jumps

Summary:	Signals	&	Jumps	
✧  Signals	–	process-level	excepLon	handling	

–  Can	generate	from	user	programs	
–  Can	define	effect	by	declaring	signal	handler	
–  Some	caveats	

•  Very	high	overhead	
–  >10,000	clock	cycles	
–  Only	use	for	excepLonal	condiLons	

•  Don’t	have	queues	
–  Just	one	bit	for	each	pending	signal	type	

✧ Non-local	jumps	–	excepLonal	control	flow	within	process	
–  Within	constraints	of	stack	discipline	

CIS 330 W9 Signals and Jumps

