Signals and Jumps

CSAPP2e, Chapter 8

Recall: Running a New Program

int execl (char *path,

char *arg0O, .., char *argn,
char *null)
— Loads & runs executable:

* path is the complete path of an executable
 arg0 becomes the name of the process

e arg0,..,argn - argv[0],.. argv[n]
e Argument list terminated by a NULL argument

— Returns -1 if error, otherwise doesn’t return!

if (fork() == 0)
execl ("/usr/bin/cp", "cp", "foo", "bar", NULL);
else

printf ("hello from parent\n");

CIS 330 W9 Signals and Jumps

Interprocess Communication

<> Synchronization allows very limited communication

<> Pipes:
— One-way communication stream that mimics a file in each process:
one output, one input
— Seeman 7 pipe
<> Sockets:
— A pair of communication streams that processes connect to

— Seeman 7 socket

CIS 330 W9 Signals and Jumps

The World of Multitasking

<> System Runs Many Processes Concurrently
— Process: executing program
e State consists of memory image + register values + program counter
— Continually switches from one process to another

e Suspend process when it needs I/O resource or timer event occurs
e Resume process when I/O available or given scheduling priority

— Appears to user(s) as if all processes executing simultaneously
e Even though most systems can only execute one process at a time
e Except possibly with lower performance than if running alone

CIS 330 W9 Signals and Jumps

Programmer’s Model of Multitasking

<> Basic Functions

— fork () spawns new process
e Called once, returns twice

— exit () terminates own process
e (Called once, never returns
e Puts process into “zombie” status

- wait () andwaitpid () wait for and reap terminated children
— execl () and execve () run anew program in an existing process
e (Called once, (normally) never returns
<> Programming Challenge
— Understanding the nonstandard semantics of the functions

— Avoiding improper use of system resources
e E.g., “Fork bombs” can disable a system

CIS 330 W9 Signals and Jumps

$ oo

UNIX Startup: 1

Pushing reset button loads the PC with the address of a small bootstrap program
Bootstrap program loads the boot block (disk block 0)

Boot block program loads kernel from disk

Boot block program passes control to kernel

Kernel handcrafts the data structures for process 0

< [0] > Process 0: handcrafted kernel process
- Process 1: user mode process
<init [1]> fork () and exec (/sbin/init)

CIS 330 W9 Signals and Jumps

UNIX Startup: 2

init forks new processes as per
the /etc/inittab file

Forks getty (get tty or get terminal)
for the console

CIS 330 W9 Signals and Jumps

UNIX Startup: 3

getty execs a login program

CIS 330 W9 Signals and Jumps

UNIX Startup: 4

login gets user’s uid & password
o If OK, it execs appropriate shell
o If not OK, it execs getty

CIS 330 W9 Signals and Jumps

Shell Programs

<> A shell is an application program that runs programs on

behalf of user

— sh —Original Unix Bourne Shell
— ¢sh —BSD Unix C Shell, tcsh — Enhanced C Shell

— bash — Bourne-Again Shell

— ksh — Korn Shell

Read-evaluate loop:

an interpreter

{

int main (void)

char cmdline[MAXLINE] ;
while (true) {
/* read */
printf ("> ") ;
Fgets (cmdline, MAXLINE, stdin);
if (feof(stdin))
exit (0);

/* evaluate */
eval (cmdline) ;

CIS 330 WP Sig}nals and Jumps

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* argv for execve() */

bool bg; /* should the job run in bg or fg? */
pid t pid; /* process id */
int status; /* child status */

bg = parseline(cmdline, argv);
if ('builtin command(argv)) {
if ((pid = Fork()) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);
exit (0);
}

}
if ('bg) { /* parent waits for fg job to terminate */

if (waitpid(pid, &status, 0) < 0)
unix error ("waitfg: waitpid error");

}

else /* otherwise, don’t wait for bg job */
printf ("%d %s", pid, cmdline) ;

}

CIS 330 W9 Signals and Jumps

Problem with Simple Shell Example

<> Correctly waits for & reaps foreground jobs

<> But what about background jobs?
— Will become zombies when they terminate
— Will never be reaped because shell (typically) will not terminate

— Creates a process leak that will eventually prevent the forking of new
processes

<> Solution: Reaping background jobs requires a mechanism
called a signal

CIS 330 W9 Signals and Jumps

Signals

<> A signalis a small message that notifies a process that an event of some
type has occurred in the system

— Kernel abstraction for exceptions and interrupts

— Sent from the kernel (sometimes at the request of another process) to a
process

— Different signals are identified by small integer ID’s
— Typically, the only information in a signal is its ID and the fact that it arrived

2 | SIGINT | Terminate Keyboard interrupt (ctrl-c)
O | SIGKILL | Terminate Kill program

11 | SIGSEGV | Terminate & Dump | Segmentation violation

14 | SIGALRM | Terminate Timer signal

18 | SIGCHLD | Ignhore Child stopped or terminated

CIS 330 W9 Signals and Jumps

Signals: Sending

<> OS kernel sends a signal to a destination process by updating
some state in the context of the destination process

<> Reasons:
— OS detected an event

— Another process used the kill system call to explicitly request the
kernel to send a signal to the destination process

CIS 330 W9 Signals and Jumps

Signals: Receiving

<> Destination process receives a signal when it is forced by the
kernel to react in some way to the delivery of the signal

<> Three ways to react:
— lgnore the signal
— Terminate the process (& optionally dump core)
— Catch the signal with a user-level signal handler

CIS 330 W9 Signals and Jumps

Signals: Pending & Blocking

<> Signal is pending if sent, but not yet received
— At most one pending signal of any particular type

— Important: Signals are not queued

e |f process has pending signal of type k, then process discards subsequent
signals of type k

— A pending signal is received at most once

<> Process can block the receipt of certain signals

— Blocked signals can be delivered, but will not be received until the
signal is unblocked

CIS 330 W9 Signals and Jumps

Signals: Pending & Blocking

<> Kernel maintains pending & blocked bit vectors in each
process context

<> pending —represents the set of pending signals
— Signal type k delivered - kernel sets kth bit
— Signal type k received - kernel clears kth bit

<> blocked —represents the set of blocked signals
— Application sets & clears bits via sigprocmask ()

CIS 330 W9 Signals and Jumps

Process Groups

Each process
belongs to exactly |
ONe Process group peieeio

One group in foreground

Background Background
process group 32 process group 40

getpgrp () = Return process group of
current process

setpgid () — Change process group of
a process

Foreground
process group 20

CIS 330 W9 Signals and Jumps

Sending Sighals with /bin/kill

UNIX% fork2anddie

Sends arbitrary signal to @ childi: pid=11662 pgrp=11661
process or process group Child2: pid=11663 pgrp=11661

UNIX% ps x
PID TTY STAT TIME COMMAND
11263 pts/7 Ss 0:00 -tcsh
11662 pts/7 R 0:18 ./fork2anddieH
- »4 11663 pts/7 R 0:16 ./fork2anddie
kill 9 11662 11664 pts/7 R+ 0:00 ps x
Send SIGKILL to process 116 UNIX% kill -9 -11661
UNIX% ps x
PID TTY STAT TIME COMMAND
. 11263 pts/7 Ss 0:00 -tcsh
kill -9 -1lleel 11665 pts/7 R+ 0:00 ps x

Send SIGKILL to every process unNIxs
in process group 11661

CIS 330 W9 Signals and Jumps

Sending Signals from the Keyboard

<> Typing ctrl-c (ctrl-z) sends SIGINT (SIGTSTP) to every job in the
foreground process group
— SIGINT — default action is to terminate each process
— SIGTSTP — default action is to stop (suspend) each process

CIS 330 W9 Signals and Jumps

Example of ctrl-cand ctrl-=z

UNIX% ./forkl

Child: pid=24868 pgrp=24867
Parent: pid=24867 pgrp=24867
<typed ctrl-z>

Suspended
UNIX3 ps x

PID TTY STAT TIME COMMAND
24788 pts/2 Ss 0:00 -tcsh S=Sleeping
24867 pts/2 T 0:01 forkl R=Running or Runnable
24868 pts/2 T 0:01 forkl T=St d
24869 pts/2 R+ 0:00 ps x °PP€
UNIXS$ £g Z=Zombie
forkl
<typed ctrl-c>
UNIX% ps x

PID TTY STAT TIME COMMAND
24788 pts/2 Ss 0:00 -tcsh
24870 pts/2 R+ 0:00 ps x

CIS 330 W9 Signals and Jumps

kill ()

void kill example (void)
{
pid t pid[N], wpid;
int child status, i;
for (i = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
while (1); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {

printf ("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT) ;

}

/* Parent reaps terminated children */
for (i = 0; i < N; i++) {
wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid);

CIS 330 W9 Signals and Jumps

Receiving Signals: How It Happens

<> Suppose kernel is returning from an exception handler & is ready to pass
control to process p

<> Kernel computes pnb = pending & ~blocked
— The set of pending nonblocked signals for process p
< If pnb == 0
— Pass control to next instruction in the logical control flow for p

<> Else

— Choose least nonzero bit k in pnb and force process p to receive signal k
— The receipt of the signal triggers some action by p
— Repeat for all nonzero k in pnb

— Pass control to next instruction in the logical control flow for p

CIS 330 W9 Signals and Jumps

Signals: Default Actions

<> Each signal type has predefined default action

<> One of:

— Process terminates

— Process terminates & dumps core

— Process stops until restarted by a SIGCONT signal
— Process ignores the signal

CIS 330 W9 Signals and Jumps

Signal Handlers

#include <signal.h>
typedef void (*sighandler t) (int);
sighandler t signal (int signum, sighandler t handler);

Two args:
— signum - Indicates which signal, e.g.,
e SIGSEGV, SIGINT, ...
— handler - Signal “disposition”, one of
e Pointer to a handler routine, whose int argument is the kind of signal raised

e SIG_IGN —ignore the signal
e SIG_DFL — use default handler

Returns previous disposition for this signal
— Details: man signalandman 7 signal

CIS 330 W9 Signals and Jumps

Signal Handlers: Example 1

#include <stdlib.h>
#include <stdio.h>

#include <signal.h>
#include <stdbool.h>

void sigint handler (int sig) {
printf ("Control-C caught.\n");
exit (0) ;

int main(void) {
signal (SIGINT, sigint handler);
while (true) {

}

CIS 330 W9 Signals and Jumps

Signal Handlers: Example 2

#include <stdio.h>
#include <signal.h>
#include <stdbool.h>

int ticks = 5;

void sigalrm handler (int sig) {
printf ("tick\n") ;

ticks -= 1;
if (ticks
signal (SIGALRM,
sigalrm handler) :

} else {
printf ("*BOOM!*\n") ;
exit (0) ;

}

int main(void) {
signal (SIGALRM,
sigalrm handler);
alarm(l); /* send SIGALRM in
1l second */

while (true) {
/* handler returns here */

}

UNIX% ./alrm
tick
tick
'Signal resets handler >
. tick
to default action each .

- tick
time handler runs, ,
sigset, sigaction tick

4 * 1%
do not BOOM:
UNIX$%

CIS 330 W9 Signals and Jumps

Signal Handlers (POSIX)

<> OS may allow more detailed control:

< int sigaction (int sig,

<> const struct sigaction *act,
<> struct sigaction *oact);

< struct sigaction includes a handler:

< void sa handler (int sig);

< Signal from csapp.cis aclean wrapper around sigaction

CIS 330 W9 Signals and Jumps

Pendlng Signals Not Queued

For each signal type,

int ccount =

void child handler (int sig) single bit indicates
{ whether a signal is
int child status; d.
pid t pid = wait(&child status); pending
ccount -= 1;

printf ("Received signal %d from process %d\n", sig, pid);

}

void example (void)
{
pid t pid[N];
int child status, 1i;
ccount = N;
Signal (SIGCHLD, child handler);

for (i = 0; i < N; i+=1) Will probably lose
if ((pid[i] = fork()) ==0) { some signals:
* Child: it *
éxit(z, ; Exit */ ccount never reaches 0

}

while (ccount > 0)
pause () ;/* Suspend until signal occurs */

CIS 330 W9 Signals and Jumps

Living With Non-Queuing Signals

Must check for all terminated
jobs:

typically loop with wait

void child;handlerZ(int sig)
{

int child;status;

pid t pid;
while ((pid = waitpid(-1, &child status, WNOHANG)) > 0) {

ccount -= 1;
printf ("Received signal %d from process %d\n", sig, pid);

}
}

void example (void)

{
Signal (SIGCHLD, child handler2) ;

CIS 330 W9 Signals and Jumps

More Sighal Handler Funkiness

<> Consider signal arrival during long system calls, e.g., read

<> Signal handler interrupts read () call

— Some flavors of Unix (e.g., Solaris):
» read () fails with errno==EINTER
e Application program may restart the slow system call

— Some flavors of Unix (e.g., Linux):
e Upon return from signal handler, read () restarted automatically
<> Subtle differences like these complicate writing portable code
with signals

— Signal wrapperin csapp.c helps, uses sigaction to restart
system calls automatically

CIS 330 W9 Signals and Jumps

Signal Handlers (POSIX)

<> Handler can get extra information in siginfo t whenusing sigactionto
set handlers
E.g., for SIGSEGV:

e Whether virtual address didn’t map to any physical address, or whether the address was being
accessed in a way not permitted (e.g., writing to read-only space)

e Address of faulty reference

Details: man siginfo

static void segv_handler(int sig, siginfo_t *sip, ucontext t *uap)
{
fprintf (stderr, "Segmentation fault caught!\n");
fprintf (stderr, "Caused by access of invalid address %p.\n",
sip->si_addr);
exit(1l);

CIS 330 W9 Signals and Jumps

Other Types of Exceptional Control Flow

<> Non-local Jumps

— C mechanism to transfer control to any program point higher in the

current stack

£1 eventually

calls £2 and. -~
£3.

f1

£2

£3

When can non-local jumps be used:
e Yes: f2to fl1

e Yes: f3tofl

e No: f1 to either f2 or f3
e No: f2 to 3, or vice versa

CIS 330 W9 Signals and Jumps

Non-local Jumps

<> setjmp ()
— ldentify the current program point as a place to jump to

< longjmp ()
— Jump to a point previously identified by set jmp ()

CIS 330 W9 Signals and Jumps

Non-local Jumps: setjimp()

< int setjmp (jmp buf env)

— ldentifies the current program point with the name env
 jmp buf isa pointer to a kind of structure
 Stores the current register context, stack pointer, and PCin jmp buf

— Returns O

CIS 330 W9 Signals and Jumps

Non-local Jumps: longjmp()

¥ void longjmp (jmp buf env, int wval)

— Causes another return from the setjmp () named by env
e This time, setjmp () returns val

— (Except, returns 1 if val==0)

e Restores register context from jump buffer env
e Sets function’s return value register (SPARC: %00) to val
e Jumps to the old PC value stored in jump buffer env

— longjmp () doesn’t return!

CIS 330 W9 Signals and Jumps

Non-local Jumps
<> From the UNIX man pages:

WARNINGS
If longjmp() or siglongjmp() are called even though env was

never primed by a call to setjmp() or sigsetjmp(), or when
the last such call was in a function that has since

returned, absolute chaos is guaranteed.

CIS 330 W9 Signals and Jumps

Non-local Jumps: Example 1

#include <setjmp.h>
jmp buf buf;

int main (void)

{

if (setjmp(buf) == 0)
printf ("First time through.\n");
else

printf ("Back in main() again.\n");

£1();

CIS 330 W9 Signals and Jumps

£1()

£2() ;
}

£2()
{

longjmp (buf, 1);

Non-local Jumps: Example 2

#include <stdio.h> -
#include <signal.h> while (1) {

#include <setjmp.h> sleep (5) ;

printf (" waiting...\n");
sigjmp buf buf; }

void handler (int sig)

{ _ _ > a.out
siglongjmp (buf, 1); starting
}
waiting... « -
int main (void)) Control-c
{ waiting. ..
Signal (SIGINT, handler); restarting
if (sigsetjmp (buf, 1) == 0) waiting. .. ‘ Control-c
printf ("starting\n");
else waiting. ..) Control-c
printf ("restarting\n");
waiting...
restarting

CIS 330 W9 Signals and Jumps

waitina

Application-level Exceptions

<> Similar to non-local jumps
— Transfer control to other program points outside current block
— More abstract — generally “safe” in some sense
— Specific to application language

CIS 330 W9 Signals and Jumps

Summary: Exceptions & Processes

<> Exceptions
— Events that require nonstandard control flow

— Generated externally (interrupts) or internally (traps & faults)

<> Processes

— At any given time, system has multiple active processes
— Only one can execute at a time, though

— Each process appears to have total control of processor & private
memory space

CIS 330 W9 Signals and Jumps

Summary: Processes

<> Spawning
— fork —one call, two returns
<> Terminating
— exit —one call, noreturn
<> Reaping
— waltorwaitpid
<> Replacing Program Executed
— execl (orvariant) —one call, (normally) no return

CIS 330 W9 Signals and Jumps

Summary: Signals & Jumps

<> Signals — process-level exception handling
— Can generate from user programs
— Can define effect by declaring signal handler

— Some caveats

e Very high overhead
— >10,000 clock cycles
— Only use for exceptional conditions

e Don’t have queues

— Just one bit for each pending signal type

<> Non-local jumps — exceptional control flow within process
— Within constraints of stack discipline

CIS 330 W9 Signals and Jumps

