
Processes, Exceptional
Control Flow

 CSAPPe2, Chapter 8

CIS330, Week 9

CIS330 Week 9

Plan for Today

Exceptional Control Flow
Exceptions
Process context switches
Creating and destroying processes

CIS330 Week 9

Control Flow
● Computers do Only One Thing

○ From startup to shutdown, a CPU simply reads and
executes (interprets) a sequence of instructions, one
at a time.

○ This sequence is the system’s physical control flow
(or flow of control).

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

Physical control flow

Time

CIS330 Week 9

Altering the Control Flow

● Up to Now: two mechanisms for changing control flow:
○ Jumps and branches
○ Call and return using the stack discipline.
○ Both react to changes in program state.

● Insufficient for a useful system
○ Difficult for the CPU to react to changes in system state.
○ data arrives from a disk or a network adapter.
○ Instruction divides by zero
○ User hits Ctrl-c at the keyboard
○ System timer expires

● System needs mechanisms for “exceptional control
flow”

CIS330 Week 9

Exceptional Control Flow

● Mechanisms for exceptional control flow exists at all
levels of a computer system.

● Low level Mechanism
○ exceptions
○ change in control flow in response to a system event (i.e.,

change in system state)
○ Combination of hardware and OS software

● Higher Level Mechanisms
○ Process context switch
○ Signals
○ Nonlocal jumps (setjmp/longjmp)
○ Implemented by either:
○ OS software (context switch and signals).
○ C language runtime library: nonlocal jumps.

CIS330 Week 9

System context for exceptions

Local/IO Bus

Memory
Network
adapter

IDE disk
controller

Video
adapter

Display Network

Processor Interrupt
controller

SATA
controller

SATA bus

Serial port
controllers

Parallel port
controllerTimer

Keyboard Mouse PrinterModem

disk

disk CDROM

USB Ports

 I/O Chip

CIS330 Week 9

An exception is a transfer of control to the OS
in response to some event (i.e., change in
processor state)

User Process OS

exception
exception processing
by exception handler

exception
return (optional)

event current
next

Exceptions

CIS330 Week 9

Interrupt Vectors

● Each type of event
has a unique
exception number k

● Index into jump table
(a.k.a., interrupt
vector)

● Jump table entry k
points to a function
(exception handler).

● Handler k is called
each time exception k
occurs.

interrupt
vector

0
1
2 ...

n-1

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

Exception
numbers

CIS330 Week 9

Asynchronous Exceptions
(Interrupts)

● Caused by events external to the processor
○ Indicated by setting the processor’s interrupt pin
○ handler returns to “next” instruction.

● Examples:
○ I/O interrupts
○ hitting ctl-c at the keyboard
○ arrival of a packet from a network
○ arrival of a data sector from a disk
○ Hard reset interrupt
○ hitting the reset button
○ Soft reset interrupt
○ hitting Ctrl-Alt-Delete on a PC

CIS330 Week 9

Synchronous Exceptions

● Caused by events that occur as a result of executing an
instruction:
○ Traps
○ Intentional
○ Examples: system calls, breakpoint traps, special instructions
○ Returns control to “next” instruction
○ Faults
○ Unintentional but possibly recoverable
○ Examples: page faults (recoverable), protection faults

(unrecoverable), floating point exceptions.
○ Either re-executes faulting (“current”) instruction or aborts.
○ Aborts
○ unintentional and unrecoverable
○ Examples: parity error, machine check.
○ Aborts current program

CIS330 Week 9

Precise vs. Imprecise Faults

● Precise Faults: the exception handler knows exactly
which instruction caused the fault.
○ All prior instructions have completed and no

subsequent instructions had any effect.

● Imprecise Faults: the CPU was working on multiple
instructions concurrently and an ambiguity may exists
as to which instruction caused the Fault.
○ For example, multiple FP instructions were in the

pipe and one caused an exception.

CIS330 Week 9

User Process OS

exception
Open file

return

int
pop

● Opening a File
○ User calls open(filename, options)

○
○ Function open executes system call instruction int
○ OS must find or create file, get it ready for reading or writing
○ Returns integer file descriptor

0804d070 <__libc_open>:
 . . .
 804d082: cd 80 int $0x80
 804d084: 5b pop %ebx
 . . .

Trap Example

CIS330 Week 9

User Process OS

page fault
Create page and load into
memory

return

event
movl

Memory Reference
User writes to memory location
That portion (page) of user’s memory is currently on disk

Page handler must load page into physical memory
Returns to faulting instruction
Successful on second try

int a[1000];
main ()
{
 a[500] = 13;
}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

Fault Example #1

CIS330 Week 9

User Process OS or Hardware

TLB miss
Look up address translation
and store it in a TLB entry

return

event
movl

Memory Reference with TLB miss
User writes to memory location
That portion (page) of user’s memory is currently in physical memory, but

the processor has forgotten how to translate the this virtual address to
the physical address

TLB must be reloaded with current translation
Returns to faulting instruction
Successful on second try

int a[1000];
main ()
{
 a[500] = 13;
}

Fault Example #2

CIS330 Week 9

User Process OS

page fault

Detect invalid address

event
movl

Memory Reference
User writes to memory location
Address is not valid

Page handler detects invalid address (more on this next week)
Sends SIGSEG signal to user process
User process exits with “segmentation fault”

int a[1000];
main ()
{
 a[5000] = 13;
}

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

Signal process

Fault Example

CIS330 Week 9

Processes

● Definition: A process is an instance of a running
program.
○ One of the most profound ideas in computer science
○ Not the same as “program” or “processor”

● Process provides each program with two key
abstractions:
○ Logical control flow
○ Each program seems to have exclusive use of the CPU
○ Private address space
○ Each program seems to have exclusive use of main memory

● How are these Illusions maintained?
○ Process executions interleaved (multitasking)
○ Address spaces managed by virtual memory system

CIS330 Week 9

Logical Control Flows

Time

Process A Process B Process C

● Each process has its own logical control flow

CIS330 Week 9

Concurrent Processes

● Two processes run concurrently (are
concurrent) if their flows overlap in time.

● Otherwise, they are sequential.
● Examples:

○ Concurrent: A & B, A & C
○ Sequential: B & C

Time

Process A Process B Process C

CIS330 Week 9

User View of Concurrent Processes

● Control flows for concurrent processes are
disjoint in time.

● However, we can think of concurrent
processes are running in parallel with each
other.

Time

Process A Process B Process C

CIS330 Week 9

Context Switching
● Processes are managed by a shared chunk of OS code

called the kernel
○ Important: the kernel is not a separate process, but rather runs as part

of some user process
● Control flow passes from one process to another via a

context switch.
Process A
code

Process B
code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

CIS330 Week 9

Private Address Spaces
Each process has its own private address space.

kernel virtual memory
(code, data, heap, stack)

memory mapped region
for
shared libraries

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused0

%esp (stack
pointer)

memory
invisible
to
user code

brk

0xc000000
0

0x0804800
0

0x4000000
0

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

loaded from the
executable file

0xfffffff
f

execve: Loading and Running
Programs

int execve(
 char *filename,
 char *argv[],
 char *envp
)

Loads and runs
Executable filename
With argument list argv
And environment variable list envp

Does not return (unless error)
Overwrites process, keeps pid
Environment variables:

“name=value” strings

Null-terminated
environment
variable strings

unused

Null-terminated
commandline
arg strings

envp[n] = NULL

envp[n-1]

envp[0]

…

Linker vars

argv[argc] =
NULL
argv[argc-1]

argv[0]

…

envp

argc

argv

Stack
0xbfffffff

execve: Example

envp[n] = NULL

envp[n-1]

envp[0]

…

argv[argc] =
NULL
argv[argc-1]

argv[0]

…
“ls”
“-l”
“/usr/include”

“USER=luisceze”
“PRINTER=ps581”
“PWD=/homes/iws/luisceze”

CIS330 Week 9

Virtual Machines

● All current general purpose computers support multiple,
concurrent user-level processes. Is it possible to run
multiple kernels on the same machine?

● Yes: Virtual Machines (VM) were supported by IBM
mainframes for over 30 years

● Intel’s IA32 instruction set architecture is not
virtualizable (neither are the Sparc, Mips, and PPC
ISAs)

● With a lot of clever hacking, Vmware™ managed to
virtualize the IA32 ISA in software

● User Mode Linux

http://en.wikipedia.org/wiki/User-mode_Linux
http://en.wikipedia.org/wiki/User-mode_Linux

CIS330 Week 9 CSE361S – Introduction to Systems Software

fork: Creating new processes

int fork(void)
creates a new process (child process) that is identical to

the calling process (parent process)
returns 0 to the child process
returns child’s pid to the parent process

if (fork() == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Fork is interesting
(and often confusing)
because it is called
once but returns twice

CIS330 Week 9

Fork Example #1

void fork1()
{
 int x = 1;
 pid_t pid = fork();
 if (pid == 0) {

 printf("Child has x = %d\n", ++x);
 } else {

 printf("Parent has x = %d\n", --x);
 }
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

● Key Points
○ Parent and child both run same code

■ Distinguish parent from child by return value from fork
○ Start with same state, but each has private copy

■ Including shared output file descriptor
■ Relative ordering of their print statements undefined

CIS330 Week 9

Fork Example #2

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
}

Key Points
Both parent and child can continue forking

L0 L1

L1

Bye

Bye

Bye

Bye

CIS330 Week 9

Fork Example #3

void fork3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

Key Points
Both parent and child can continue forking

L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

CIS330 Week 9

Fork Example #4

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {
 printf("L2\n");
 fork();
}

 }
 printf("Bye\n");
}

Key Points
Both parent and child can continue forking

L0 L2

Bye

Bye

Bye
L1

Bye

child

parent

CIS330 Week 9

Fork Example #5

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {

 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 fork();
 }

 }
 printf("Bye\n");
}

Key Points
Both parent and child can continue forking

L0 Bye

L1

Bye

Bye

Bye

L2

CIS330 Week 9

exit: Destroying Process

void exit(int status)
exits a process

Normally return with status 0
atexit() registers functions to be executed upon exit

void cleanup(void) {
 printf("cleaning up\n");
}

void fork6() {
 atexit(cleanup);
 fork();
 exit(0);
}

CIS330 Week 9

Zombies

● Idea
○ When process terminates, still consumes system resources
○ Various tables maintained by OS
○ Called a “zombie”

● Reaping
○ Performed by parent on terminated child
○ Parent is given exit status information
○ Kernel discards process

● What if Parent Doesn’t Reap?
○ If any parent terminates without reaping a child, then

child will be reaped by init process
○ Only need explicit reaping for long-running processes
○ E.g., shells and servers

CIS330 Week 9

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

Zombie
Example

ps shows child process as “defunct”
Killing parent allows child to be reaped

void fork7()
{
 if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n",
 getpid());
exit(0);

 } else {
printf("Running Parent, PID = %d\n",
 getpid());
while (1)
 ; /* Infinite loop */

 }
}

CIS330 Week 9

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

Nonterminating Child Example
● Child process still active even though parent has

terminated
● Must kill explicitly, or else will keep running indefinitely

void fork8()
{
 if (fork() == 0) {

/* Child */
printf("Running Child, PID = %d\n",
 getpid());
while (1)
 ; /* Infinite loop */

 } else {
printf("Terminating Parent, PID = %d\n",
 getpid());
exit(0);

 }
}

CIS330 Week 9

wait: Synchronizing with children

int wait(int *child_status)
suspends current process until one of its children

terminates
return value is the pid of the child process that

terminated
if child_status != NULL, then the object it points to

will be set to a status indicating why the child process
terminated

CIS330
Week 9

wait: Synchronizing with children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

HP

HC Bye

CT Bye

CIS330 Week 9

Wait() Example

If multiple children completed, will take in arbitrary order
Can use macros WIFEXITED and WEXITSTATUS to get

information about exit status
void fork10()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));
else
 printf("Child %d terminate abnormally\n", wpid);

 }
}

CIS330 Week 9

Waitpid()

waitpid(pid, &status, options)
Can wait for specific process
Various options

void fork11()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));
else
 printf("Child %d terminated abnormally\n", wpid);

 }

CIS330
Week 9

Wait/Waitpid Example Outputs

Child 3565 terminated with exit status 103
Child 3564 terminated with exit status 102
Child 3563 terminated with exit status 101
Child 3562 terminated with exit status 100
Child 3566 terminated with exit status 104

Child 3568 terminated with exit status 100
Child 3569 terminated with exit status 101
Child 3570 terminated with exit status 102
Child 3571 terminated with exit status 103
Child 3572 terminated with exit status 104

Using wait (fork10)

Using waitpid (fork11)

CIS330 Week 9

exec: Running new programs

int execl(char *path, char *arg0, char *arg1, …, 0)

loads and runs executable at path with args arg0, arg1, …
path is the complete path of an executable
arg0 becomes the name of the process

typically arg0 is either identical to path, or else it contains only
the executable filename from path

“real” arguments to the executable start with arg1, etc.
list of args is terminated by a (char *)0 argument

returns -1 if error, otherwise doesn’t return!
main() {
 if (fork() == 0) {
 execl("/usr/bin/cp", "cp", "foo", "bar", 0);
 }
 wait(NULL);
 printf("copy completed\n");
 exit();
}

Summary

Exceptions
Events that require non-standard control flow
Generated externally (interrupts) or internally (traps
and faults)

Processes
At any given time, system has multiple active
processes

Only one can execute at a time, however,
Each process appears to have total control of
the processor + has a private memory space

Summary (cont’d)

Spawning processes
Call to fork
One call, two returns

Process completion
Call exit
One call, no return

Reaping and waiting for Processes
Call wait or waitpid

Loading and running Programs
Call execl (or variant)
One call, (normally) no return

Signals and Jumps

CSAPP2e, Chapter 8

Exceptional Control Flow

Recall: Running a New Program
int execl(char *path,
 char *arg0, …, char *argn,
 char *null)

– Loads & runs executable:
• path is the complete path of an executable

• arg0 becomes the name of the process

• arg0, …, argn → argv[0], …, argv[n]
• Argument list terminated by a NULL argument

– Returns -1 if error, otherwise doesn’t return!

if (fork() == 0)
 execl("/usr/bin/cp", "cp", "foo", "bar", NULL);
else
 printf("hello from parent\n");

Exceptional Control Flow

Interprocess Communication

✧ Synchronization allows very limited communication

✧ Pipes:
– One-way communication stream that mimics a file in each process:

one output, one input

– See man 7 pipe

✧ Sockets:
– A pair of communication streams that processes connect to

– See man 7 socket

Exceptional Control Flow

The World of Multitasking

✧ System Runs Many Processes Concurrently
– Process: executing program

• State consists of memory image + register values + program counter

– Continually switches from one process to another
• Suspend process when it needs I/O resource or timer event occurs

• Resume process when I/O available or given scheduling priority

– Appears to user(s) as if all processes executing simultaneously
• Even though most systems can only execute one process at a time

• Except possibly with lower performance than if running alone

Exceptional Control Flow

Programmer’s Model of Multitasking

✧ Basic Functions
– fork() spawns new process

• Called once, returns twice

– exit() terminates own process
• Called once, never returns
• Puts process into “zombie” status

– wait() and waitpid() wait for and reap terminated children
– execl() and execve() run a new program in an existing process

• Called once, (normally) never returns

✧ Programming Challenge
– Understanding the nonstandard semantics of the functions
– Avoiding improper use of system resources

• E.g., “Fork bombs” can disable a system

Exceptional Control Flow

UNIX Startup: 1
✧ Pushing reset button loads the PC with the address of a small bootstrap program

✧ Bootstrap program loads the boot block (disk block 0)

✧ Boot block program loads kernel from disk

✧ Boot block program passes control to kernel

✧ Kernel handcrafts the data structures for process 0

[0] Process 0: handcrafted kernel process

init [1]
Process 1: user mode process
fork() and exec(/sbin/init)

Exceptional Control Flow

UNIX Startup: 2

init [1]

[0]

Forks getty (get tty or get terminal)
for the consolegetty

init forks new processes as per
the /etc/inittab file

Daemons
e.g., sshd

Exceptional Control Flow

UNIX Startup: 3

init [1]

[0]

loginDaemons
e.g., sshd

getty execs a login program

Exceptional Control Flow

UNIX Startup: 4

init [1]

[0]

shellDaemons
e.g., sshd

login gets user’s uid & password
• If OK, it execs appropriate shell
• If not OK, it execs getty

Shell Programs

✧ A shell is an application program that runs programs on
behalf of user

– sh – Original Unix Bourne Shell

– csh – BSD Unix C Shell, tcsh – Enhanced C Shell

– bash – Bourne-Again Shell

– ksh – Korn Shell int main(void)
{
 char cmdline[MAXLINE];
 while (true) {

/* read */
printf("> ");
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))
 exit(0);

/* evaluate */
eval(cmdline);

 }
}

Read-evaluate loop:
an interpreter!

Exceptional Control Flow

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* argv for execve() */
 bool bg; /* should the job run in bg or fg? */
 pid_t pid; /* process id */
 int status; /* child status */

 bg = parseline(cmdline, argv);
 if (!builtin_command(argv)) {

if ((pid = Fork()) == 0) { /* child runs user job */
 if (execve(argv[0], argv, environ) < 0) {

printf("%s: Command not found.\n", argv[0]);
exit(0);

 }
}
if (!bg) { /* parent waits for fg job to terminate */
 if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else /* otherwise, don’t wait for bg job */
 printf("%d %s", pid, cmdline);

 }
}

Exceptional Control Flow

Problem with Simple Shell Example

✧ Correctly waits for & reaps foreground jobs

✧ But what about background jobs?
– Will become zombies when they terminate

– Will never be reaped because shell (typically) will not terminate

– Creates a process leak that will eventually prevent the forking of new
processes

✧ Solution: Reaping background jobs requires a mechanism
called a signal

Exceptional Control Flow

Signals
✧ A signal is a small message that notifies a process that an event of some

type has occurred in the system
– Kernel abstraction for exceptions and interrupts

– Sent from the kernel (sometimes at the request of another process) to a
process

– Different signals are identified by small integer ID’s
– Typically, the only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event
2 SIGINT Terminate Keyboard interrupt (ctrl-c)
9 SIGKILL Terminate Kill program

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

18 SIGCHLD Ignore Child stopped or terminated

Exceptional Control Flow

Signals: Sending

✧ OS kernel sends a signal to a destination process by updating
some state in the context of the destination process

✧ Reasons:
– OS detected an event

– Another process used the kill system call to explicitly request the
kernel to send a signal to the destination process

Exceptional Control Flow

Signals: Receiving

✧ Destination process receives a signal when it is forced by the
kernel to react in some way to the delivery of the signal

✧ Three ways to react:
– Ignore the signal

– Terminate the process (& optionally dump core)

– Catch the signal with a user-level signal handler

Exceptional Control Flow

Signals: Pending & Blocking

✧ Signal is pending if sent, but not yet received
– At most one pending signal of any particular type

– Important: Signals are not queued
• If process has pending signal of type k, then process discards subsequent

signals of type k

– A pending signal is received at most once

✧ Process can block the receipt of certain signals
– Blocked signals can be delivered, but will not be received until the

signal is unblocked

Exceptional Control Flow

Signals: Pending & Blocking

✧ Kernel maintains pending & blocked bit vectors in each
process context

✧ pending – represents the set of pending signals
– Signal type k delivered → kernel sets kth bit

– Signal type k received → kernel clears kth bit

✧ blocked – represents the set of blocked signals
– Application sets & clears bits via sigprocmask()

Exceptional Control Flow

Process Groups

Fore-
grou
nd
job

Back
-

grou
nd
job
#1

Back
-

grou
nd
job
#2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp() – Return process group of
current process

setpgid() – Change process group of
a process

Each process
belongs to exactly
one process group

One group in foreground

Exceptional Control Flow

Sending Signals with /bin/kill
UNIX% fork2anddie
Child1: pid=11662 pgrp=11661
Child2: pid=11663 pgrp=11661

UNIX% ps x
 PID TTY STAT TIME COMMAND
 11263 pts/7 Ss 0:00 -tcsh
 11662 pts/7 R 0:18 ./fork2anddie
 11663 pts/7 R 0:16 ./fork2anddie
 11664 pts/7 R+ 0:00 ps x
UNIX% kill -9 -11661
UNIX% ps x
 PID TTY STAT TIME COMMAND
 11263 pts/7 Ss 0:00 -tcsh
 11665 pts/7 R+ 0:00 ps x
UNIX%

kill –9 –11661
Send SIGKILL to every process
in process group 11661

kill –9 11662
Send SIGKILL to process 11662

Sends arbitrary signal to a
process or process group

Exceptional Control Flow

Sending Signals from the Keyboard

✧ Typing ctrl-c (ctrl-z) sends SIGINT (SIGTSTP) to every job in the
foreground process group

– SIGINT – default action is to terminate each process

– SIGTSTP – default action is to stop (suspend) each process

Exceptional Control Flow

Example of ctrl-c and ctrl-z
UNIX% ./fork1
Child: pid=24868 pgrp=24867
Parent: pid=24867 pgrp=24867
<typed ctrl-z>
Suspended
UNIX% ps x
 PID TTY STAT TIME COMMAND
24788 pts/2 Ss 0:00 -tcsh
24867 pts/2 T 0:01 fork1
24868 pts/2 T 0:01 fork1
24869 pts/2 R+ 0:00 ps x
UNIX% fg
fork1
<typed ctrl-c>
UNIX% ps x
 PID TTY STAT TIME COMMAND
24788 pts/2 Ss 0:00 -tcsh
24870 pts/2 R+ 0:00 ps x

S=Sleeping
R=Running or Runnable
T=Stopped
Z=Zombie

Exceptional Control Flow

kill()
void kill_example(void)
{
 pid_t pid[N], wpid;
 int child_status, i;
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
 while (1); /* Child infinite loop */

 /* Parent terminates the child processes */
 for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

 }

 /* Parent reaps terminated children */
 for (i = 0; i < N; i++) {

wpid = wait(&child_status);
if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));
else
 printf("Child %d terminated abnormally\n", wpid);

 }
}

Exceptional Control Flow

Receiving Signals: How It Happens

✧ Suppose kernel is returning from an exception handler & is ready to pass
control to process p

✧ Kernel computes pnb = pending & ~blocked
– The set of pending nonblocked signals for process p

✧ If pnb == 0
– Pass control to next instruction in the logical control flow for p

✧ Else
– Choose least nonzero bit k in pnb and force process p to receive signal k

– The receipt of the signal triggers some action by p

– Repeat for all nonzero k in pnb
– Pass control to next instruction in the logical control flow for p

Exceptional Control Flow

Signals: Default Actions

✧ Each signal type has predefined default action

✧ One of:
– Process terminates

– Process terminates & dumps core

– Process stops until restarted by a SIGCONT signal

– Process ignores the signal

Exceptional Control Flow

Signal Handlers

✧ #include <signal.h>

✧ typedef void (*sighandler_t)(int);

✧ sighandler_t signal(int signum, sighandler_t handler);

✧ Two args:
– signum – Indicates which signal, e.g.,

• SIGSEGV, SIGINT, …
– handler – Signal “disposition”, one of

• Pointer to a handler routine, whose int argument is the kind of signal raised
• SIG_IGN – ignore the signal
• SIG_DFL – use default handler

✧ Returns previous disposition for this signal
– Details: man signal and man 7 signal

Exceptional Control Flow

Signal Handlers: Example 1
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <stdbool.h>

void sigint_handler(int sig) {
 printf("Control-C caught.\n");
 exit(0);
}

int main(void) {
 signal(SIGINT, sigint_handler);
 while (true) {
 }
}

Exceptional Control Flow

Signal Handlers: Example 2
#include <stdio.h>
#include <signal.h>
#include <stdbool.h>

int ticks = 5;

void sigalrm_handler(int sig) {
 printf("tick\n");

 ticks -= 1;
 if (ticks > 0) {
 signal(SIGALRM,
 sigalrm_handler);
 alarm(1);
 } else {
 printf("*BOOM!*\n");
 exit(0);
 }
}

int main(void) {
 signal(SIGALRM,
 sigalrm_handler);
 alarm(1); /* send SIGALRM in
 1 second */

 while (true) {
 /* handler returns here */
 }
}

UNIX% ./alrm
tick
tick
tick
tick
tick
BOOM!
UNIX%

signal resets handler
to default action each

time handler runs,
sigset, sigaction do

not

Exceptional Control Flow

Signal Handlers (POSIX)

✧ OS may allow more detailed control:

✧ int sigaction(int sig,
✧ const struct sigaction *act,
✧ struct sigaction *oact);

✧ struct sigaction includes a handler:

✧ void sa_handler(int sig);

✧ Signal from csapp.c is a clean wrapper around sigaction

Exceptional Control Flow

Pending Signals Not Queued
int ccount = 0;

void child_handler(int sig)
{
 int child_status;
 pid_t pid = wait(&child_status);
 ccount -= 1;
 printf("Received signal %d from process %d\n", sig, pid);
}

void example(void)
{
 pid_t pid[N];
 int child_status, i;
 ccount = N;
 Signal(SIGCHLD, child_handler);
 for (i = 0; i < N; i+=1)

if ((pid[i] = fork()) == 0) {
 /* Child: Exit */
 exit(0);
}

 while (ccount > 0)
pause();/* Suspend until signal occurs */

}

For each signal type,
single bit indicates
whether a signal is

pending

Will probably lose
some signals:

ccount never reaches 0

Exceptional Control Flow

Living With Non-Queuing Signals

void child_handler2(int sig)
{
 int child_status;
 pid_t pid;
 while ((pid = waitpid(-1, &child_status, WNOHANG)) > 0) {

ccount -= 1;
printf("Received signal %d from process %d\n", sig, pid);

 }
}

void example(void)
{
 . . .
 Signal(SIGCHLD, child_handler2);
 . . .
}

Must check for all terminated jobs:
typically loop with wait

Exceptional Control Flow

More Signal Handler Funkiness

✧ Consider signal arrival during long system calls, e.g., read
✧ Signal handler interrupts read() call

– Some flavors of Unix (e.g., Solaris):
• read() fails with errno==EINTER
• Application program may restart the slow system call

– Some flavors of Unix (e.g., Linux):
• Upon return from signal handler, read() restarted automatically

✧ Subtle differences like these complicate writing portable code
with signals
– Signal wrapper in csapp.c helps, uses sigaction to restart

system calls automatically

Exceptional Control Flow

Signal Handlers (POSIX)
✧ Handler can get extra information in siginfo_t when using sigaction to

set handlers
E.g., for SIGSEGV:

• Whether virtual address didn’t map to any physical address, or whether the address was being
accessed in a way not permitted (e.g., writing to read-only space)

• Address of faulty reference

Details: man siginfo

static void segv_handler(int sig, siginfo_t *sip, ucontext_t *uap)
{
 fprintf(stderr, "Segmentation fault caught!\n");
 fprintf(stderr, "Caused by access of invalid address %p.\n",
 sip->si_addr);
 exit(1);
}

Exceptional Control Flow

Other Types of Exceptional Control Flow

✧ Non-local Jumps
– C mechanism to transfer control to any program point higher in the

current stack

f1

f2 f3

f1 eventually
calls f2 and

f3.

When can non-local jumps be used:
• Yes: f2 to f1
• Yes: f3 to f1

• No: f1 to either f2 or f3
• No: f2 to f3, or vice versa

Exceptional Control Flow

Non-local Jumps

✧ setjmp()
– Identify the current program point as a place to jump to

✧ longjmp()
– Jump to a point previously identified by setjmp()

Exceptional Control Flow

Non-local Jumps: setjmp()

✧ int setjmp(jmp_buf env)

– Identifies the current program point with the name env
• jmp_buf is a pointer to a kind of structure

• Stores the current register context, stack pointer, and PC in jmp_buf

– Returns 0

Exceptional Control Flow

Non-local Jumps: longjmp()

✧ void longjmp(jmp_buf env, int val)

– Causes another return from the setjmp() named by env
• This time, setjmp() returns val

– (Except, returns 1 if val==0)

• Restores register context from jump buffer env
• Sets function’s return value register (SPARC: %o0) to val
• Jumps to the old PC value stored in jump buffer env

– longjmp() doesn’t return!

Exceptional Control Flow

Non-local Jumps
✧ From the UNIX man pages:

WARNINGS
 If longjmp() or siglongjmp() are called even though env was
 never primed by a call to setjmp() or sigsetjmp(), or when
 the last such call was in a function that has since
 returned, absolute chaos is guaranteed.

Exceptional Control Flow

Non-local Jumps: Example 1

#include <setjmp.h>

jmp_buf buf;

int main(void)
{
 if (setjmp(buf) == 0)
 printf("First time through.\n");
 else
 printf("Back in main() again.\n");

 f1();
}

f1()
{
 …
 f2();
 …
}

f2()
{
 …
 longjmp(buf, 1);
 …
}

Exceptional Control Flow

Non-local Jumps: Example 2
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

sigjmp_buf buf;

void handler(int sig)
{
 siglongjmp(buf, 1);
}

int main(void)
{
 Signal(SIGINT, handler);

 if (sigsetjmp(buf, 1) == 0)
 printf("starting\n");
 else
 printf("restarting\n");
 …

 …
 while(1) {
 sleep(5);
 printf(" waiting...\n");
 }
}

> a.out
starting

waiting...

waiting...
restarting

waiting...

waiting...

waiting...
restarting

waiting...
restarting

waiting...

waiting...

Control-
c

Control-
c
Control-
c

Exceptional Control Flow

Application-level Exceptions

✧ Similar to non-local jumps
– Transfer control to other program points outside current block

– More abstract – generally “safe” in some sense

– Specific to application language

Exceptional Control Flow

Summary: Exceptions & Processes

✧ Exceptions
– Events that require nonstandard control flow

– Generated externally (interrupts) or internally (traps & faults)

✧ Processes
– At any given time, system has multiple active processes

– Only one can execute at a time, though

– Each process appears to have total control of processor & private
memory space

Exceptional Control Flow

Summary: Processes

✧ Spawning
– fork – one call, two returns

✧ Terminating
– exit – one call, no return

✧ Reaping
– wait or waitpid

✧ Replacing Program Executed
– execl (or variant) – one call, (normally) no return

Exceptional Control Flow

Summary: Signals & Jumps

✧ Signals – process-level exception handling
– Can generate from user programs

– Can define effect by declaring signal handler

– Some caveats
• Very high overhead

– >10,000 clock cycles

– Only use for exceptional conditions

• Don’t have queues
– Just one bit for each pending signal type

✧ Non-local jumps – exceptional control flow within process
– Within constraints of stack discipline

