Introduction to C and C++ Function Pointers, Callbacks and Functors

The Function Pointer Tutorials

written by Lars Haendel
January 2005, Bochum, Germany
http://www.newty.de
email: Have a look at the web page please
version 2.07

Copyright (¢) 2000-2005 by Lars Haendel. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with the Front-
Cover Text being the text from the title up to the table of contents, and
with no Back-Cover Texts. A copy of the license can be obtained from
http://www.gnu.org .

Be aware that there may be a newer version of this document! Check
http://www.newty.de/fpt/zip/e_fpt.pdf for the latest release. If you want
to distribute this document, I suggest you to link to the URL above to
prevent spreading of outdated versions.

You may also download the source code of the examples at
http://www.newty.de/fpt/zip/source.zip . The example code is free soft-

ware under the terms of the GNU General Public License.

Contents

1 Introduction to Function Pointers

1.1
1.2

What is a Function Pointer 7 . . . . . .. ... oo
Introductory Example or How to Replace a Switch-Statement . . . . . .

2 The Syntax of C and C++ Function Pointers

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5

4.1

Define a Function Pointer . . . . . . . .. ... .. ... .
Calling Convention . . . . . . . . . ... ..
Assign an Address to a Function Pointer . . . . . . . . ... ... ....
Comparing Function Pointers . . . . . . .. .. ... ... ...
Calling a Function using a Function Pointer . . . . . . .. ... ... ..
How to Pass a Function Pointer as an Argument ? . . . . . .. ... ..
How to Return a Function Pointer 7 . . . . . ... .. ... ... ....
How to Use Arrays of Function Pointers 7 . . . . . . ... .. ... ...

How to Implement Callback Functions in C and C++

Introduction to the Concept of Callback Functions . . . . ... ... ..
How to Implement a Callbackin C7 . . . ... ... ... ........
Example Code of the Usage of gsort . . . . ... ... ... ... ....
How to Implement a Callback to a static C++ Member Function ? . . .

How to Implement a Callback to a non-static C++ Member Function ?

Functors to encapsulate C and C++ Function Pointers
What are Functors 7 . . . . . . . . . . e



1 Introduction to Function Pointers

Function Pointers provide some extremely interesting, efficient and elegant programming techniques. You can
use them to replace switch/if-statements, to realize your own late-binding or to implement callbacks. Unfor-
tunately — probably due to their complicated syntax — they are treated quite stepmotherly in most computer
books and documentations. If at all, they are addressed quite briefly and superficially. They are less error prone
than normal pointers cause you will never allocate or de-allocate memory with them. All you’ve got to do is
to understand what they are and to learn their syntax. But keep in mind: Always ask yourself if you really
need a function pointer. It’s nice to realize one’s own late-binding but to use the existing structures of C++
may make your code more readable and clear. One aspect in the case of late-binding is runtime: If you call a
virtual function, your program has got to determine which one has got to be called. It does this using a V-Table
containing all the possible functions. This costs some time each call and maybe you can save some time using
function pointers instead of virtual functions. Maybe not ... !

1.1 What is a Function Pointer ?

Function Pointers are pointers, i.e. variables, which point to the address of a function. You must keep in mind,
that a running program gets a certain space in the main-memory. Both, the executable compiled program code
and the used variables, are put inside this memory. Thus a function in the program code is, like e.g. a character
field, nothing else than an address. It is only important how you, or better your compiler /processor, interpret
the memory a pointer points to.

1.2 Introductory Example or How to Replace a Switch-Statement

When you want to call a function Dolt() at a certain point called label in your program, you just put the call
of the function Dolt() at the point label in your source code. Then you compile your code and every time your
program comes up to the point label, your function is called. Everything is ok. But what can you do, if you
don’t know at build-time which function has got to be called? What do you do, when you want to decide it
at runtime? Maybe you want to use a so called Callback-Function or you want to select one function out of a
pool of possible functions. However you can also solve the latter problem using a switch-statement, where you
call the functions just like you want it, in the different branches. But there’s still another way: Use a function
pointer! In the following example we regard the task to perform one of the four basic arithmetic operations.
The task is first solved using a switch-statement. Then it is shown, how the same can be done using a function
pointer.?

// 1.2 Introductory Example or How to Replace a Switch-Statement
// Task: Perform one of the four basic arithmetic operations specified by the
// characters ’+’, =, ’%’ or ’/’.

// The four arithmetic operations ... one of these functions is selected
// at runtime with a swicth or a function pointer

float Plus (float a, float b) { return a+b; }

float Minus (float a, float b) { return a-b; }

float Multiply(float a, float b) { return axb; }

float Divide (float a, float b) { return a/b; }

// Solution with a switch-statement - <opCode> specifies which operation to execute
void Switch(float a, float b, char opCode)
{

float result;

// execute operation

switch(opCode){
case ’+’ : result = Plus (a, b); break;
case ’-’ : result = Minus (a, b); break;

case ’*’ : result = Multiply (a, b); break;
case ’/’ : result = Divide (a, b); break; }

IModern compilers are very good! With my Borland Compiler the time I was able to save calling a virtual function which
multiplies two floats was about 2 percent.
21t’s only an example and the task is so easy that I suppose nobody will ever use a function pointer for it ;-)



cout << "Switch: 2+5=" << result << endl; // display result

}

// Solution with a function pointer - <pt2Func> is a function pointer and points to
// a function which takes two floats and returns a float. The function pointer
// "specifies" which operation shall be executed.
void Switch_With_Function_Pointer(float a, float b, float (*pt2Func) (float, float))
{

float result = pt2Func(a, b); // call using function pointer

cout << "Switch replaced by function pointer: 2-5="; // display result

cout << result << endl;

}

// Execute example code
void Replace_A_Switch()

{
cout << endl << "Executing function ’Replace_A_Switch’" << endl;
Switch(2, 5, /* ’+’ specifies function ’Plus’ to be executed */ ’+’);
Switch_With_Function_Pointer(2, 5, /* pointer to function ’Minus’ */ &Minus);
}

Important note: A function pointer always points to a function with a specific signature! Thus all functions,
you want to use with the same function pointer, must have the same parameters and return-type!

2 The Syntax of C and C++4 Function Pointers

Regarding their syntax, there are two different types of function pointers: On the one hand there are pointers to
ordinary C functions or to static C4++ member functions. On the other hand there are pointers to non-static
C++ member functions. The basic difference is that all pointers to non-static member functions need a hidden
argument: The this-pointer to an instance of the class. Always keep in mind: These two types of function
pointers are incompatible with each other.

2.1 Define a Function Pointer

Since a function pointer is nothing else than a variable, it must be defined as usual. In the following example
we define two function pointers named pt2Function, pt2Member and pt2ConstMember. They point to functions,
which take one float and two char and return an int. In the C+4 example it is assumed, that the functions,
our pointers point to, are (non-static) member functions of TMyClass.

// 2.1 define a function pointer and initialize to NULL

int (*pt2Function) (float, char, char) = NULL; // C
int (TMyClass::*pt2Member) (float, char, char) = NULL; // C++
int (TMyClass::*pt2ConstMember) (float, char, char) const = NULL; // C++

2.2 Calling Convention

Normally you don’t have to think about a function’s calling convention: The compiler assumes __cdecl as
default if you don’t specify another convention. However if you want to know more, keep on reading ... The
calling convention tells the compiler things like how to pass the arguments or how to generate the name of a
function. Examples for other calling conventions are __stdcall, __pascal, __fastcall. The calling convention belongs
to a functions signature: Thus functions and function pointers with different calling convention
are incompatible with each other! For Borland and Microsoft compilers you specify a specific calling
convention between the return type and the function’s or function pointer’s name. For the GNU GCC you use
the __attribute__ keyword: Write the function definition followed by the keyword __attribute__ and then state the
calling convention in double parentheses.?

3If someone knows more: Let me know ;-) And if you want to know how function calls work under the hood you should take a
look at the chapter Subprograms in Paul Carter’s PC' Assembly Tutorial (http://www.drpaulcarter.com/pcasm/).



// 2.2 define the calling convention
void __cdecl DolIt(float a, char b, char c); // Borland and Microsoft
void DoIlt(float a, char b, char c) __attribute__((cdecl)); // GNU GCC

2.3 Assign an Address to a Function Pointer

It’s quite easy to assign the address of a function to a function pointer. You simply take the name of a suitable
and known function or member function. Although it’s optional for most compilers you should use the address
operator & infront of the function’s name in order to write portable code. You may have got to use the complete
name of the member function including class-name and scope-operator (::). Also you have got to ensure, that
you are allowed to access the function right in scope where your assignment stands.

// 2.3 assign an address to the function pointer

// Note: Although you may ommit the address operator on most compilers
// you should always use the correct way in order to write portable code.
// C

int DoIt (float a, char b, char c){ printf("DoIt\n"); return a+b+c; }

int DoMore(float a, char b, char c)const{ printf("DoMore\n"); return a-b+c; }

Dolt; // short form
&DoMore; // correct assignment using address operator

pt2Function
pt2Function

// C++
class TMyClass

{
public:
int DoIt(float a, char b, char c){ cout << "TMyClass::DoIt"<< endl; return at+b+c;l};
int DoMore(float a, char b, char c) const
{ cout << "TMyClass::DoMore" << endl; return a-b+c; 1};

/* more of TMyClass */
s

pt2ConstMember = &TMyClass::DoMore; // correct assignment using address operator
pt2Member = &TMyClass::DoIt; // note: <pt2Member> may also legally point to &DoMore

2.4 Comparing Function Pointers

You can use the comparison-operators (==, !=) the same way as usual. In the following example it is checked,
whether pt2Function and pt2Member actually contain the address of the functions Dolt and TMyClass::DoMore.
A text is shown in case of equality.

// 2.4 comparing function pointers

// C
if (pt2Function >0){ // check if initialized
if (pt2Function == &DoIt)
printf ("Pointer points to DoIt\n"); }
else
printf ("Pointer not initialized!!\n");

// C++
if (pt2ConstMember == &TMyClass: :DoMore)
cout << "Pointer points to TMyClass::DoMore" << endl;



2.5 Calling a Function using a Function Pointer

In C you call a function using a function pointer by explicitly dereferencing it using the * operator. Alternatively
you may also just use the function pointer’s instead of the funtion’s name. In C++ the two operators .* resp.
->* are used together with an instance of a class in order to call one of their (non-static) member functions. If
the call takes place within another member function you may use the this-pointer.

// 2.5 calling a function using a function pointer
int resultl = pt2Function (12, ’a’, ’b’); // C short way
int result2 = (*pt2Function) (12, ’a’, ’b’); // C

TMyClass instancel;
int result3 = (instancel.*pt2Member) (12, ’a’, ’b’); // C++
int result4 = (*this.*pt2Member) (12, ’a’, ’b’); // C++ if this-pointer can be used

TMyClass* instance2 = new TMyClass;
int result4 = (instance2->*pt2Member) (12, ’a’, ’b’); // C++, instance2 is a pointer
delete instance2;

2.6 How to Pass a Function Pointer as an Argument ?

You can pass a function pointer as a function’s calling argument. You need this for example if you want to pass
a pointer to a callback function. The following code shows how to pass a pointer to a function which returns
an int and takes a float and two char:

// 2.6 How to Pass a Function Pointer

// <pt2Func> is a pointer to a function which returns an int and takes a float and two char
void PassPtr(int (*pt2Func) (float, char, char))

{
int result = (*pt2Func) (12, ’a’, ’b’); // call using function pointer
cout << result << endl;
}
// execute example code - ’Dolt’ is a suitable function like defined above in 2.1-4
void Pass_A_Function_Pointer()
{
cout << endl << "Executing ’Pass_A_Function_Pointer’" << endl;
PassPtr (&Dolt);
+

2.7 How to Return a Function Pointer ?

It’s a little bit tricky but a function pointer can be a function’s return value. In the following example there are
two solutions of how to return a pointer to a function which is taking two float arguments and returns a float.
If you want to return a pointer to a member function you have just got to change the definitions/declarations
of all function pointers.

=
// 2.7 How to Return a Function Pointer
// ’Plus’ and ’Minus’ are defined above. They return a float and take two float

// Direct solution: Function takes a char and returns a pointer to a
// function which is taking two floats and returns a float. <opCode>
// specifies which function to return

float (*GetPtrl(const char opCode)) (float, float){

if (opCode == ’+7)
return &Plus;
else

return &Minus;} // default if invalid operator was passed



// Solution using a typedef: Define a pointer to a function which is taking
// two floats and returns a float
typedef float (*pt2Func) (float, float);

// Function takes a char and returns a function pointer which is defined
// with the typedef above. <opCode> specifies which function to return
pt2Func GetPtr2(const char opCode)

{
if (opCode == ’+7)
return &Plus;
else
return &Minus; // default if invalid operator was passed
¥

// Execute example code
void Return_A_Function_Pointer()

{
cout << endl << "Executing ’Return_A_Function_Pointer’" << endl;
// define a function pointer and initialize it to NULL
float (*pt2Function) (float, float) = NULL;
pt2Function=GetPtr1(’+’); // get function pointer from function ’GetPtrl’
cout << (*pt2Function) (2, 4) << endl; // call function using the pointer
pt2Function=GetPtr2(’-’); // get function pointer from function ’GetPtr2’
cout << (*pt2Function)(2, 4) << endl; // call function using the pointer
}

2.8 How to Use Arrays of Function Pointers ?

Operating with arrays of function pointer is very interesting. This offers the possibility to select a function
using an index. The syntax appears difficult, which frequently leads to confusion. Below you find two ways of
how to define and use an array of function pointers in C and C++. The first way uses a typedef, the second
way directly defines the array. It’s up to you which way you prefer.

// type-definition: ’pt2Function’ now can be used as type
typedef int (*pt2Function) (float, char, char);

// illustrate how to work with an array of function pointers
void Array_0f_Function_Pointers()
{

printf ("\nExecuting ’Array_0f_Function_Pointers’\n");

// define arrays and ini each element to NULL, <funcArrl> and <funcArr2> are arrays
// with 10 pointers to functions which return an int and take a float and two char

// first way using the typedef
pt2Function funcArr1[10] = {NULL};

// 2nd way directly defining the array
int (xfuncArr2[10]) (float, char, char) = {NULL};



// assign the function’s address - ’DoIt’ and ’DoMore’ are suitable functions
// like defined above in 2.1-4

funcArri[0] funcArr2[1] &Dolt;

funcArri[1] funcArr2[0] &DoMore;

/* more assignments */

// calling a function using an index to address the function pointer

printf ("%d\n", funcArri[1](12, ’a’, ’b’)); // short form

printf ("%d\n", (*funcArri1[0]) (12, ’a’, ’b’)); // "correct" way of calling
printf ("%d\n", (xfuncArr2[1]) (56, ’a’, ’b’));

printf ("%d\n", (*funcArr2[0])(34, ’a’, ’b’));

// type-definition: ’pt2Member’ now can be used as type
typedef int (TMyClass::*pt2Member) (float, char, char);

// illustrate how to work with an array of member function pointers
void Array_0f_Member_Function_Pointers()

{
cout << endl << "Executing ’Array_0f_Member_Function_Pointers’" << endl;
// define arrays and ini each element to NULL, <funcArrl> and <funcArr2> are
// arrays with 10 pointers to member functions which return an int and take
// a float and two char
// first way using the typedef
pt2Member funcArri[10] = {NULL};
// 2nd way of directly defining the array
int (TMyClass::*funcArr2[10]) (float, char, char) = {NULL};
// assign the function’s address - ’DolIt’ and ’DoMore’ are suitable member
// functions of class TMyClass like defined above in 2.1-4
funcArr1[0] = funcArr2[1] = &TMyClass::Dolt;
funcArri[1] = funcArr2[0] = &TMyClass: :DoMore;
/* more assignments */
// calling a function using an index to address the member function pointer
// note: an instance of TMyClass is needed to call the member functions
TMyClass instance;
cout << (instance.*funcArri[1]) (12, ’a’, ’b’) << endl;
cout << (instance.*funcArri1[0]) (12, ’a’, ’b’) << endl;
cout << (instance.*funcArr2[1]) (34, ’a’, ’b’) << endl;
cout << (instance.*funcArr2[0]) (89, ’a’, ’b’) << endl;
¥

3 How to Implement Callback Functions in C and C+4++

3.1 Introduction to the Concept of Callback Functions

Function Pointers provide the concept of callback functions. I’ll try to introduce the concept of callback functions
using the well known sort function gsort. This function sorts the items of a field according to a user-specific
ranking. The field can contain items of any type; it is passed to the sort function using a void-pointer. Also the
size of an item and the total number of items in the field has got to be passed. Now the question is: How can



the sort-function sort the items of the field without any information about the type of an item? The answer is
simple: The function receives the pointer to a comparison-function which takes void-pointers to two field-items,
evaluates their ranking and returns the result coded as an int. So every time the sort algorithm needs a decision
about the ranking of two items, it just calls the comparison-function via the function pointer.

3.2 How to Implement a Callback in C ?

To explain I just take the declaration of the function gsort which reads itself as follows*:

void gsort(void* field, size_t nElements, size_t sizeOfAnElement,
int (_USERENTRY *cmpFunc) (const void *, const void*));

field points to the first element of the field which is to be sorted, nFElements is the number of items in the
field, sizeOfAnElement the size of one item in bytes and cmpFunc is the pointer to the comparison function.
This comparison function takes two wvoid-pointers and returns an int. The syntax, how you use a function
pointer as a parameter in a function-definition looks a little bit strange. Just review, how to define a function
pointer and you’ll see, it’s exactly the same. A callback is done just like a normal function call would be
done: You just use the name of the function pointer instead of a function name. This is shown below. Note:
All calling arguments other than the function pointer were omitted to focus on the relevant things.

void gsort( ... , int(_USERENTRY *cmpFunc) (const void*, const voidx*))
{
/* sort algorithm - note: iteml and item2 are void-pointers */

int bigger=cmpFunc(iteml, item2); // make callback

/* use the result */

3.3 Example Code of the Usage of gsort

// 3.3 How to make a callback in C by the means of the sort function gsort

#include <stdlib.h> // due to: gsort
#include <time.h> // randomize
#include <stdio.h> // printf

// comparison-function for the sort-algorithm
// two items are taken by void-pointer, converted and compared
int CmpFunc(const void* _a, const void* _b)

{
// you’ve got to explicitly cast to the correct type
const float* a = (const float*) _a;
const float* b = (const float*) _b;
if (*a > *b) return 1; // first item is bigger than the second one -> return 1
else
if(¥a == *b) return O0; // equality -> return O
else return -1; // second item is bigger than the first one -> return -1
}

// example for the use of gsort()
void QSortExample ()

{
float field[100];
::randomize() ; // initialize random-number-generator
for(int ¢=0;c<100;c++) // randomize all elements of the field

4Taken from the Borland Compiler C++4 5.02 (BC5.02)



field[c]l=random(99);

// sort using qgsort()
gsort((voidx) field, /*number of items*/ 100, /*size of an item*/ sizeof(field[0]),
/*comparison-function*/ CmpFunc) ;

// display first ten elements of the sorted field
printf("The first ten elements of the sorted field are ...\n");
for(int c=0;c<10;c++)

printf ("element #%d contains %.0f\n", c+1, field[cl);
printf("\n");

3.4 How to Implement a Callback to a static C++4+ Member Function ?

This is the same as you implement callbacks to C functions. Static member functions do not need an object
to be invoked on and thus have the same signature as a C function with the same calling convention, calling
arguments and return type.

3.5 How to Implement a Callback to a non-static C++ Member Function ?

Pointers to non-static members are different to ordinary C function pointers since they need the this-pointer
of a class object to be passed. Thus ordinary function pointers and non-static member functions have different
and incompatible signatures! If you just want to callback to a member of a specific class you just change your
code from an ordinary function pointer to a pointer to a member function. But what can you do, if you want
to callback to a non-static member of an arbitrary class? It’s a little bit difficult. You need to write a
static member function as a wrapper. A static member function has the same signature as a C function! Then
you cast the pointer to the object on which you want to invoke the member function to void* and pass it to
the wrapper as an additional argument or via a global variable.> Of course you've also got to pass the
calling arguments for the member function. The wrapper casts the void-pointer to a pointer to an instance of
the correct class and calls the member function. Below you find two examples:

Example A: Pointer to a class instance passed as an additional argument The function DoltA does
something with objects of the class T'ClassA which implies a callback. Therefore a pointer to an object of class
TClassA and a pointer to the static wrapper function T'ClassA:: Wrapper_To_Call_Display are passed to DoltA.
This wrapper is the callback-function. You can write arbitrary other classes like T'ClassA and use them with
DoltA as long as these other classes provide the necessary functions. Note: This solution may be useful if you
design the callback interface yourself. It is much better than the second solution which uses a global variable.

// 3.5 Example A: Callback to member function using an additional argument
// Task: The function ’DoItA’ makes something which implies a callback to

// the member function ’Display’. Therefore the wrapper function
// ’Wrapper_To_Call_Display is used.
#include <iostream.h> // due to: cout

class TClassA

{

public:
void Display(const char* text) { cout << text << endl; I};
static void Wrapper_To_Call_Display(void* pt20bject, char* text);
/* more of TClassA */

};

5If you use a global variable it is very important that you make sure that it will always point to the correct object!



// static wrapper function to be able to callback the member function Display()
void TClassA::Wrapper_To_Call_Display(void* pt20bject, char* string)

{
// explicitly cast to a pointer to TClassA
TClassA* mySelf = (TClassAx*) pt20bject;
// call member
mySelf->Display(string) ;
¥

// function does something which implies a callback
// note: of course this function can also be a member function

void DoItA(void* pt20bject, void (*pt2Function)(void* pt20bject, char* text))

{
/* do something */

pt2Function(pt20bject, "hi, i’m calling back using a argument
X

// execute example code
void Callback_Using_Argument ()

{

// 1. instantiate object of TClassA

TClassA objA;

// 2. call ’DoItA’ for <objA>

DoItA((void#*) &objA, TClassA::Wrapper_To_Call_Display);
}

;")

Example B: Pointer to a class instance is stored in a global variable

// make callback

The function DoltB does
something with objects of the class T'ClassB which implies a callback. A pointer to the static wrapper function
TClassB::Wrapper_To_Call_Display is passed to DoltB. This wrapper is the callback-function. The wrapper
uses the global variable void* pt20bject and explicitly casts it to an instance of T'ClassB. It is very important,
that you always initialize the global variable to point to the correct class instance. You can write arbitrary other
classes like TClassB and use them with DoltB as long as these other classes provide the necessary functions.
Note: This solution may be useful if you have an existing callback interface which cannot be changed. It is

not a good solution because the use of a global variable is very dangerous and could cause serious errors.

// 3.5 Example B: Callback to member function using a global variable

// Task: The function ’DoItB’ makes something which implies a callback to

// the member function ’Display’. Therefore the wrapper function

// >Wrapper_To_Call_Display is used.

#include <iostream.h> // due to: cout

void* pt20bject; // global variable which points to an arbitrary object

class TClassB

{

public:
void Display(const char* text) { cout << text << endl; 7};
static void Wrapper_To_Call_Display(char* text);
/* more of TClassB */

};

10



// static wrapper function to be able to callback the member function Display()
void TClassB::Wrapper_To_Call_Display(char* string)

{
// explicitly cast global variable <pt20bject> to a pointer to TClassB
// warning: <pt20bject> MUST point to an appropriate object!
TClassB* mySelf = (TClassBx*) pt20bject;
// call member
mySelf->Display(string) ;
by

// function does something which implies a callback
// note: of course this function can also be a member function
void DoItB(void (*pt2Function) (char* text))
{
/* do something */
pt2Function("hi, i’m calling back using a global ;-)"); // make callback
}

// execute example code
void Callback_Using_Global()

{
// 1. instantiate object of TClassB
TClassB objB;
// 2. assign global variable which is used in the static wrapper function
// important: never forget to do this!!
pt20bject = (voidx*) &objB;
// 3. call ’DoItB’ for <objB>
DoItB(TClassB: :Wrapper_To_Call_Display);
}

4 Functors to encapsulate C and C++ Function Pointers

4.1 What are Functors ?

Functors are functions with a state. In C4++ you can realize them as a class with one or more private members
to store the state and with an overloaded operator® () to execute the function. Functors can encapsulate C and
C++ function pointers employing the concepts templates and polymorphism. You can build up a list of pointers
to member functions of arbitrary classes and call them all through the same interface without bothering about
their class or the need of a pointer to an instance. All the functions just have got to have the same return-
type and calling parameters. Sometimes Functors are also known as Closures. You can also use Functors to
implement callbacks.

4.2 How to Implement Functors ?

First you need a base class TFunctor which provides a virtual function named Call or a virtually overloaded
operator () with which you will be able to call the member function. It’s up to you if you prefer the overloaded
operator or a function like Call. From the base class you derive a template class TSpecificFunctor which
is initialized with a pointer to an object and a pointer to a member function in its constructor. The derived
class overrides the function Call and/or the operator () of the base class: In the overrided versions
it calls the member function using the stored pointers to the object and to the member function.

61f you prefer you can also use a function called Ezecute or something like that.

11



// 4.2 How to Implement Functors

// abstract base class
class TFunctor

{

public:
// two possible functions to call member function. virtual cause derived
// classes will use a pointer to an object and a pointer to a member function
// to make the function call
virtual void operator() (const char* string)=0; // call using operator
virtual void Call(const char* string)=0; // call using function

s

// derived template class
template <class TClass> class TSpecificFunctor : public TFunctor

{
private:
void (TClass::*fpt) (const char*); // pointer to member function
TClass* pt20bject; // pointer to object
public:
// constructor - takes pointer to an object and pointer to a member and stores
// them in two private variables
TSpecificFunctor(TClass* _pt20bject, void(TClass::*_fpt) (const charx))
{ pt20bject = _pt20bject; fpt=_£fpt; };
// override operator "()"
virtual void operator() (const char* string)
{ (xpt20bject.*fpt) (string);}; // execute member function
// override function "Call"
virtual void Call(const char* string)
{ (*pt20bject.*fpt) (string);}; // execute member function
s

4.3 Example of How to Use Functors

In the following example we have two dummy classes which provide a function called Display which returns
nothing (void) and needs a string (const char*) to be passed. We create an array with two pointers to TFunctor
and initialize the array entries with two pointers to TSpecificFunctor which encapsulate the pointer to an
object and the pointer to a member of TClassA respectively TClassB. Then we use the functor-array to call
the respective member functions. No pointer to an object is needed to make the function calls and
you do not have to bother about the classes anymore!

// 4.3 Example of How to Use Functors

// dummy class A

class TClassA{

public:
TClassA(){7};
void Display(const char* text) { cout << text << endl; 7};
/* more of TClassA */

3
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// dummy class B
class TClassB{
public:

};

TClassB(){};
void Display(const char* text) { cout << text << endl; };
/* more of TClassB */

// main program
int main(int argc, char* argv[])

{

// 1. instantiate objects of TClassA and TClassB
TClassA objA;
TClassB objB;

// 2. instantiate TSpecificFunctor objects
// a ) functor which encapsulates pointer to object and to member of TClassA
TSpecificFunctor<TClassA> specFuncA(&objA, TClassA::Display);

// b) functor which encapsulates pointer to object and to member of TClassB
TSpecificFunctor<TClassB> specFuncB(&objB, &TClassB::Display);

// 3. make array with pointers to TFunctor, the base class, and initialize it
TFunctor* vTable[] = { &specFuncA, &specFuncB };

// 4. use array to call member functions without the need of an object
vTable[0]->Call ("TClassA: :Display called!"); // via function "Call"
(¥vTable[1])  ("TClassB::Display called!"); // via operator "()"

cout << endl << "Hit Enter to terminate!" << endl;
cin.getQ;
return O;
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