CS4522 Advanced Algorithms

Batch 09, L4S1

Lecture 6: (21 June 2013) Amortized Analysis

N. H. N. D. DE SILVA
DEPT. OF COMPUTER SCIENCE & ENGINEERING
UNIVERSITY OF MORATUWA
Announcement

- Assignment 1 is out
- Due on 28th June
An amortized analysis is any strategy for analyzing a sequence of operations to show that the average cost per operation is small, even though a single operation within the sequence might be expensive.

Even though we’re taking averages, however, probability is not involved!

- An amortized analysis guarantees the average performance of each operation in the worst case.
Amortized Analysis: Why?

- How much does it cost per day to maintain a car? (Not a perfect example)
Amortized Analysis: Why?

- Some days; Almost zero cost!
Amortized Analysis: Why?

- Some days; You need to buy fuel
Amortized Analysis: Why?

- And some days you have to pay a LOT more
Amortized Analysis: Why?

- Dynamic data structures
 - a succession of inserts
 - Removes
 - find/retrieves (or overwrites)
Amortized Analysis: Why?

- A worst-case analysis can be too pessimistic.
 - For both the total cost and the average cost per operation of "maintaining" the structure.
 - Particularly true for self-adjusting structures.
 - Such as?

- Better approach: use amortized analysis which determines an amortized ("time" averaged) cost per operation.
Note the Differences...

- Average-case analysis
 - We average over all possible inputs

- Probabilistic analysis
 - We average over all possible random choices

- Amortized analysis
 - We average over a sequence of operations
 - Assumes worst-case input and typically does not allow random choices
Amortized Analysis: What? (Again)

More accurate analysis for dynamic sets and their operations (than typical analysis)

“amortized”:

- from accounting practice of spreading a large cost (incurred in one time period) over multiple time periods
- These other time periods are related to the reason for incurring the cost
Example: Dynamic Tables

- We don’t know how big table (or array) we might need when computation begins
- **Naïve solution:** allocating largest possible
- **Better solution:**
 - Allocate a small array initially
 - Double its size when we feel it’s too small
 - Need to keep track of the number of elements
Example ... contd

- Generally, doubling the array may mean:
 1. creating a new array of twice the size, and
 2. transferring elements to the new larger array (this can be expensive)

- What is the total cost for inserting n items?
 - Doubling and transferring happens at times
 - Other times, constant time insertion

- If items deleted, table may be contracted
First consider table with only insertions

\textbf{TABLE-INSERT} \((T, y)\)

\begin{itemize}
 \item if \(\text{size}[T] = 0\)
 \begin{itemize}
 \item allocate \(\text{table}[T]\) with 1 slot; \(\text{size}[T] \leftarrow 1\)
 \end{itemize}
 \item if \(\text{num}[T] = \text{size}[T]\)
 \begin{itemize}
 \item allocate \(\text{new_table}\) with \(2 \times \text{size}[T]\)
 \item insert all items in \(\text{table}[T]\) into \(\text{new_table}\)
 \item \(\text{table}[T] \leftarrow \text{new_table}\); \(\text{size}[T] \leftarrow 2 \times \text{size}[T]\)
 \end{itemize}
 \item insert \(y\) into \(\text{table}[T]\)
 \item \(\text{num}[T] \leftarrow \text{num}[T] + 1\)
\end{itemize}
First consider table with only insertions

TABLE-INSERT (T, y)

if size[T] = 0
allocate table[T] with 1 slot; size[T] = 1
if num[T] = size[T]
allocate new_table with 2xsize[T]
insert all items in table[T] into new_table
insert y into table[T]
num[T] = num[T] + 1

size[T] = 0 num[T] = 0
First consider table with only insertions

TABLE-INSERT (T, y)

if $\text{size}[T] = 0$

allocate $\text{table}[T]$ with 1 slot; $\text{size}[T] \leftarrow 1$

if $\text{num}[T] = \text{size}[T]$

allocate new_table with $2 \times \text{size}[T]$

insert all items in $\text{table}[T]$ into new_table

$\text{table}[T] \leftarrow \text{new_table}$; $\text{size}[T] \leftarrow 2 \times \text{size}[T]$

insert y into $\text{table}[T]$

$\text{num}[T] \leftarrow \text{num}[T] + 1$

size[T] = 1 num[T] = 0
First consider table with only insertions

TABLE-INSERT \((T, y)\)

if \(\text{size}[T] = 0\)

allocate table\([T]\) with 1 slot; size\([T]\) \leftarrow 1

if \(\text{num}[T] = \text{size}[T]\)

allocate new\(_{}\)_{}table with 2x\(\text{size}[T]\)

insert all items in table\([T]\) into new\(_{}\)_{}table

\(\text{table}[T] \leftarrow \text{new table};\) size\([T]\) \leftarrow 2x\(\text{size}[T]\)

\(\text{insert } y \text{ into table}[T]\)

\(\text{num}[T] \leftarrow \text{num}[T] + 1\)

size\([T]\) = 1 \quad \text{num}[T] = 0
Example ... contd

First consider table with only insertions

TABLE-INSERT (T, y)
if size[T] = 0
 allocate table[T] with 1 slot; size[T] ← 1
if num[T] = size[T]
 allocate new_table with 2xsize[T]
 insert all items in table[T] into new_table
 table[T] ← new_table; size[T] ← 2xsize[T]
insert y into table[T]
num[T] ← num[T] + 1

size[T] = 1 num[T] = 1
First consider table with only insertions

\[
\text{TABLE-INSERT} \ (T, y) \\
\text{if } \text{size}[T] = 0 \ \\
\text{allocate table}[T] \text{ with 1 slot; size}[T] \leftarrow 1 \\
\text{if } \text{num}[T] = \text{size}[T] \\
\text{allocate new_table with 2xsize}[T] \\
\text{insert all items in table}[T] \text{ into new_table} \\
\text{table}[T] \leftarrow \text{new table; size}[T] \leftarrow 2x\text{size}[T] \\
\text{insert } y \text{ into table}[T] \\
\text{num}[T] \leftarrow \text{num}[T] + 1
\]

size[T] = 1 \quad \text{num}[T] = 1
First consider table with only insertions

TABLE-INSERT \((T, y)\)

- if \(\text{size}[T] = 0\)
 - allocate \(\text{table}[T]\) with 1 slot; \(\text{size}[T] \leftarrow 1\)
 - if \(\text{num}[T] = \text{size}[T]\)
 - allocate new_table with \(2 \times \text{size}[T]\)
 - insert all items in \(\text{table}[T]\) into new_table
 - \(\text{table}[T] \leftarrow \text{new table}; \text{size}[T] \leftarrow 2 \times \text{size}[T]\)
 - insert \(y\) into \(\text{table}[T]\)
 - \(\text{num}[T] \leftarrow \text{num}[T] + 1\)

\(\text{size}[T] = 1\) \(\text{num}[T] = 1\)
Example ...contd

First consider table with only insertions

TABLE-INSERT \((T, y)\)

if size\([T]\) = 0

allocate table\([T]\) with 1 slot; size\([T]\) $\leftarrow 1$

if num\([T]\) = size\([T]\)

allocate new_table with 2xsize\([T]\)

insert all items in table\([T]\) into new_table

table\([T]\) \leftarrow new_table; size\([T]\) \leftarrow 2xsize\([T]\)

insert \(y\) into table\([T]\)

num\([T]\) \leftarrow num\([T]\) + 1

size\([T]\) = 1 num\([T]\) = 1
Example ...contd

First consider table with only insertions

\[
\text{TABLE-INSERT} (T, y) \\
\text{if } \text{size}[T] = 0 \\
\quad \text{allocate } \text{table}[T] \text{ with 1 slot; } \text{size}[T] \leftarrow 1 \\
\text{if } \text{num}[T] = \text{size}[T] \\
\quad \text{allocate new_table with 2xsize}[T] \\
\quad \text{insert all items in table}[T] \text{ into new_table} \\
\quad \text{table}[T] \leftarrow \text{new table; } \text{size}[T] \leftarrow 2\times\text{size}[T] \\
\text{insert } y \text{ into table}[T] \\
\text{num}[T] \leftarrow \text{num}[T] + 1
\]

size[T] = 2 \quad \text{num}[T] = 1
First consider table with only insertions

TABLE-INSERT (T, y)

if size[T] = 0
 allocate table[T] with 1 slot; size[T] ← 1
if num[T] = size[T]
 allocate new_table with 2xsize[T]
 insert all items in table[T] into new_table
 table[T] ← new_table; size[T] ← 2xsize[T]
insert y into table[T]
num[T] ← num[T] + 1

size[T] = 2 num[T] = 1
First consider table with only insertions

TABLE-INSERT (T, y)

if size[T] = 0
 allocate table[T] with 1 slot; size[T] \leftarrow 1
if num[T] = size[T]
 allocate new_table with 2xsize[T]
 insert all items in table[T] into new_table
 table[T] \leftarrow new_table; size[T] \leftarrow 2xsize[T]
 insert y into table[T]
 num[T] \leftarrow num[T] + 1

size[T] = 2 \quad num[T] = 2
Example ...contd

Cost of inserting:
• 1st Element (A) = 1
• 2nd Element (B) = 2
• 3rd Element (C) = 3
• 4th Element (D) = 1

Copying A; Inserting B
Copying A, B; Inserting C
Cost of inserting:
- 1st Element (A) = 1
- 2nd Element (B) = 2 → Copying A ; Inserting B
- 3rd Element (C) = 3 → Copying A,B ; Inserting C
- 4th Element (D) = 1
- 5th Element (E) = 5 → Copying A,B,C,D ; Inserting D

Pattern?
Example ...contd

Consider a sequence of n insertions

- Initially empty table
- What is the cost c_i of i-th insert operation?
 - $c_i = 1$ if table is not full
 - $c_i = i$ if table is full (1 insertion + $i - 1$ items copied)
- For n insertions, worst-case operation is $O(n)$; so $O(n^2)$ for total running time
 - Is this correct, or tight enough?
 - Not really, as expanding table is infrequent
Example ...contd

Consider a sequence of n insertions (...contd)

Total cost for n insertions can be proved to be in $O(n)$
Example ...contd

- Consider a sequence of n insertions (...contd)
- Expansion at i-th operation if $i-1$ is power of 2

$$c_i = \begin{cases} i & \text{if } i - 1 \text{ is an exact power of 2} \\ 1 & \text{otherwise} \end{cases}$$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$size_i$</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>c_i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>
Example ...contd

- Consider a sequence of \(n \) insertions (...contd)
 - Expansion at \(i \)-th operation if \(i-1 \) is power of 2

\[
c_i = \begin{cases}
 i & \text{if } i - 1 \text{ is an exact power of 2} \\
 1 & \text{otherwise}
\end{cases}
\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>size(i)</td>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>(c_i)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(c_i)</td>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Example ...contd

- Consider a sequence of \(n \) insertions (...contd)
- Total cost of \(n \) insertions is therefore

\[
\sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j < n + 2n = 3n
\]

Amortized cost of a single operation is 3

Thus, the average cost of each dynamic-table operation is \(\Theta(n)/n = \Theta(1) \).
Amortized analysis: What? (3rd Time!)

- An amortized analysis is any strategy for analyzing a sequence of operations to show that the average cost per operation is small, even though a single operation within the sequence might be expensive.

- Even though we’re taking averages, however, probability is not involved!
 - An amortized analysis guarantees the average performance of each operation in the worst case.
Techniques

3 most common techniques
1. Aggregate analysis method
2. Accounting method
3. Potential method

- CLRS book discuss these 3 using 2 e.g.
 - A stack with `multipop` operation
 - A binary counter counting up from 0
1. Aggregate Analysis

- Show for all \(n \), a sequence of \(n \) operations takes total worst-case \(T(n) \) time.
- In the worst-case, the amortized (average) cost per operation is \(\frac{T(n)}{n} \).
 - The same cost applies to each operation.
 - There can be several types of operations.
- This is the method shown in previous Example (insertions into dynamic table).
2. Accounting Method

- Assign differing charges to different operations
 - Some charged more/less than actual cost
 - Amount we charge is called its amortized cost
 - When amortized cost exceeds actual cost, difference assigned to objects in data structure as credit
 - Credit can be later used to pay for operations whose amortized cost is less than actual cost
2. Accounting Method

...contd

- Amortized cost of an operation split
 - between actual cost, and
 - credit that is either deposited or used up
- [note the difference from aggregate method]
Accounting method

• Charge \(i \) th operation a fictitious *amortized cost* \(\hat{c}_i \), where 1 pays for 1 unit of work (i.e., time).
• This fee is consumed to perform the operation.
• Any amount not immediately consumed is stored in the *bank* for use by subsequent operations.
• The bank balance must not go negative! We must ensure that

\[
\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \hat{c}_i
\]

for all \(n \).
• Thus, the total amortized costs provide an upper bound on the total true costs.
Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the ith insertion.

- $\$1$ pays for the immediate insertion.
- $\$2$ is stored for later table doubling.

When the table doubles, $\$1$ pays to move a recent item, and $\$1$ pays to move an old item.

Example:

```
$0 \, $0 \, $0 \, $0 \, $2 \, $2 \, $2 \, $2$  overflow
```

```
[Yellow blocks]
```

```
[Yellow blocks]
```

```
[Yellow blocks]
```
Accounting analysis of dynamic tables

Charge an amortized cost of $c_i = 3$ for the ith insertion.
- 1 pays for the immediate insertion.
- 2 is stored for later table doubling.

When the table doubles, 1 pays to move a recent item, and 1 pays to move an old item.

Example:

```
$0$ $0$ $0$ $0$ $0$ $0$ $0$
```

overflow
Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = 3$ for the ith insertion.

- 1 pays for the immediate insertion.
- 2 is stored for later table doubling.

When the table doubles, 1 pays to move a recent item, and 1 pays to move an old item.

Example:

```
  $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $2$ $2$ $2$
```
Accounting analysis (continued)

Key invariant: Bank balance never drops below 0. Thus, the sum of the amortized costs provides an upper bound on the sum of the true costs.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>$size_i$</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>c_i</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>\hat{c}_i</td>
<td>2*</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$bank_i$</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Okay, so I lied. The first operation costs only $2, not $3.
3. Potential Method

- Represents the prepaid work as “potential energy” (or “potential”)
- Can be released to pay for future operations
- Potential is associated with the data structure as a whole
- In contrast: in accounting method, pre-paid work as credit is associated with specific objects in the data structure
3. Potential Method ...

- Start with an initial data structure D_0
- Perform n operations
- For each $i=1, 2, \ldots, n$
 - c_i is the actual cost
 - D_i is the data structure that results after applying i-th operation to data structure D_{i-1}
- A potential function Φ maps each data structure D_i to a real number $\Phi(D_i)$
 - It is the potential associated with data structure D_i
The amortized cost \(\langle c_i \rangle \) of the \(i \)-th operation w.r.t potential function \(\Phi \) is

\[
\langle c_i \rangle = c_i + \Phi(D_i) - \Phi(D_{i-1})
\]

That is, the actual cost plus the increase in potential due to the operation.

The total amortized cost for \(n \) operations can be computed by taking summation over \(n \).
3. Potential Method (contd)

\[\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \]

potential difference \(\Delta \Phi_i \)

- If \(\Delta \Phi_i > 0 \), then \(\hat{c}_i > c_i \). Operation \(i \) stores work in the data structure for later use.

- If \(\Delta \Phi_i < 0 \), then \(\hat{c}_i < c_i \). The data structure delivers up stored work to help pay for operation \(i \).
The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$

Summing both sides.
3. Potential Method...contd

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$

The series telescopes.
3. Potential Method ...contd

The total amortized cost of n operations is

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$

$$\geq \sum_{i=1}^{n} c_i \quad \text{since } \Phi(D_n) \geq 0 \text{ and } \Phi(D_0) = 0.$$
Define the potential of the table after the \(i \)th insertion by \(\Phi(D_i) = 2i - 2^{[\lg i]} \). (Assume that \(2^{[\lg 0]} = 0 \).)

Note:
- \(\Phi(D_0) = 0 \),
- \(\Phi(D_i) \geq 0 \) for all \(i \).

Example:

\[
\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
0 & 0 & 0 & 0 & 2 & 2
\end{array}
\]

\(\Phi = 2 \cdot 6 - 2^3 = 4 \) (accounting method)
The amortized cost of the ith insertion is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

$$= \begin{cases}
 i & \text{if } i - 1 \text{ is an exact power of 2,} \\
 1 & \text{otherwise;}
\end{cases}$$

$$+ (2i - 2^{\lfloor \log i \rfloor}) - (2(i-1) - 2^{\lfloor \log (i-1) \rfloor})$$

$$= \begin{cases}
 i & \text{if } i - 1 \text{ is an exact power of 2,} \\
 1 & \text{otherwise;}
\end{cases}$$

$$+ 2 - 2^{\lfloor \log i \rfloor} + 2^{\lfloor \log (i-1) \rfloor}.$$
3. Potential Method ...contd

Case 1: $i-1$ is an exact power of 2

\[
\hat{c}_i = i + 2 - 2 \left\lfloor \log_2 i \right\rfloor + 2 \left\lfloor \log_2 (i-1) \right\rfloor \\
\hat{c}_i = i + 2 - 2(i-1) + (i-1) \\
\hat{c}_i = i + 2 - 2i + 2 + i - 1 \\
\hat{c}_i = 3
\]
3. Potential Method ...contd

Case 2: $i-1$ is not an exact power of 2

\[
\hat{C}_i = 1 + 2 - 2^\left\lfloor \log i \right\rfloor + 2^\left\lfloor \log (i-1) \right\rfloor
\]

\[
\hat{C}_i = 1 + 2 - (i-1) + (i-1)
\]

\[
\hat{C}_i = 1 + 2 - i + 1 + i - 1
\]

\[
\hat{C}_i = 3
\]
3. Potential Method ...contd

Therefore, n insertions cost $\Theta(n)$ in the worst case.

Exercise: Fix the bug in this analysis to show that the amortized cost of the first insertion is only 2.
Discussion

- Refer to 2 slidesets
 - 6-page note titled “Lecture 7 Amortized Analysis” from CMU (Online)
 - 42-slide presentation by Demaine and Leiserson of MIT (Online. Most of them were discussed in this presentation)

- Also read
 - Slides by Kevin Wayne at Princeton
 - Analysis of splay trees and other trees (Online)
Application: Splay Trees

- Review
 - Binary trees that are not balanced
 - Individual operations can take linear time
 - As operations are performed, tree tends to balance itself
 - In the long run, the amortized complexity is $O(lg n)$ per operation
 - See handout last week on Splay Trees
Other applications

- To analyze
 - Binomial heaps, Fibonacci heaps
 - Dictionaries and dynamic tables
 - KMP algorithm on string matching
 - Some graph algorithms
 - Several others....
Conclusion

- Amortized analysis
 - Introduction, why?
 - Examples, techniques

- Next class
 - Part 2: randomized algorithms
References

- Amortized Analysis [CLRS Chapter 17]
- The lecture slides are based on the slides prepared by Prof. Sanath Jayasena for this class in previous years.
- Presentation by Demaine and Leiserson of MIT