Announcement

- **Assignment 2** is due on 18th of November
- Worth 5\%
Today’s Outline

• Flow Networks & Maximum Flow
 – Flow networks
 – Residual networks, augmenting paths, cuts
 – \textit{Max-flow min-cut theorem}
 – Ford-Fulkerson method
Flow Networks: Intro

• A digraph can be viewed as a flow network
• Can answer questions about material flows from a source (produce) to a sink (consume)
• Produce and consume at same rate
• Flow of material at a point in the system is the rate at which material moves
Flow Networks: Intro

• Examples
 – liquids flowing through pipes
 – parts through assembly lines
 – current through electrical wires
 – information through communication networks

• An edge ~ a conduit for material
 – Has a stated \textit{capacity} (e.g., 200 gallons/hour of liquid, 20 amperes of current)
Flow Networks: Intro

• Vertices are conduit junctions
 – Material flows, without collecting in vertices
 – (except source and sink)

• Flow conservation at vertices
 – Rate at which material enters a vertex = rate at which it leaves the vertex
 – (same as Kirchhoff’s Current Law)
Flow Networks: Intro

• *Maximum flow problem* (in simple form)

 – What is the greatest rate at which material can be sent (shipped) from the source to the sink without violating any capacity constraints?

• Can be solved by efficient algorithms
Definitions etc.

• **Flow network** \(G=(V,E) \) is a directed graph
 – each edge \((u,v) \) in \(E \) has a nonnegative **capacity** \(c(u,v) \geq 0 \)
 – if \((u,v) \) is not in \(E \) then we assume \(c(u,v)=0 \)
 – two special vertices, source, \(s \), and sink, \(t \)
 – assume every vertex is on some \(s-t \) path

• Example: CLRS, Fig 26.1(a)
Example

Fig 26.1 (a) in CLRS
Definitions etc.

- Let $G=(V,E)$ be a flow network with capacity function c, source s and sink t.
- A flow in G is a real-valued function $f: V \times V \rightarrow \mathbb{R}$ that satisfies 3 properties:
 1. For all $u, v \in V$, $f(u,v) \leq c(u,v)$ - capacity constraint.
 2. For all $u, v \in V$, $f(u,v) = -f(v,u)$ - skew symmetry.
 3. For all $u \in V-\{s,t\}$,
 $$\sum_{v \in V} f(u, v) = 0$$ - flow conservation.
Definitions etc.

• The *net flow* from vertex \(u \) to vertex \(v \) is the quantity \(f(u,v) \) which can be +ve or –ve.

• The *value* of a flow \(f \) is

\[
|f| = \sum_{v \in V} f(s,v)
\]

(total net flow out of \(s \))

• In the *maximum-flow problem*, given \(G \) with \(s \) and \(t \), we wish to find a flow of maximum value from \(s \) to \(t \).
Network Flow: An Example

Fig 26.1 (b) in CLRS
A flow with value $|f| = 19$
Multiple Sources, Sinks?

• What if there are > 1 sources and sinks?
 – E.g., company with m factories n warehouses
• Can reduce to an ordinary maximum-flow problem
 – Can add a supersource and a supersink
 – E.g., Fig. 26.2, p. 648 in CLRS
 – Can prove the two problems are equivalent
Multiple Sources, Sinks?

Fig 26.2 in CLRS
Ford-Fulkerson Method

- Solves the maximum-flow problem
 - Involves several implementations/algorithms
- Depends on 3 (broad) ideas
 - Residual networks
 - Augmenting paths
 - Cuts
- And the max-flow min-cut theorem
Ford-Fulkerson Method

• Iterative method
 – Initialize \(f(u,v)=0 \) for all \(u, v \) in \(V \)
 – At each iteration, increase the flow by finding an augmenting path
 • (an \(s-t \) path along which we can push more flow)
 – Then augment the flow along this path
 – Repeat until no augmenting path is found
Ford-Fulkerson Method

FORD-FULKERSON-METHOD(G,s,t)

initialize flow f to 0

while there exists an augmenting path p
 augment flow f along p

return f

• Upon termination, yields a maximum flow
Residual Networks

• Given a flow network and a flow, the residual network consists of edges that can admit more net flow

• More formally
 – Suppose flow network \(G=(V,E) \), \(s, t \) are given
 – Let \(f \) be a flow in \(G \) and \(u, v \) be vertices in \(V \)
 – Additional net flow we can push from \(u \) to \(v \) before exceeding capacity \(c(u,v) \) is the residual capacity of \((u,v) \) given by
 \[
 c_f(u,v) = c(u,v) - f(u,v)
 \]
Residual Networks

• Example
 – If $c(u,v)=16$ and $f(u,v)=11$ then we can ship
 $c_f(u,v)=5$ more units of flow

• When the net flow is $-ve$, $c_f(u,v)> c(u,v)$
 – Example: If $c(u,v)=16$ and $f(u,v)= -4$ then
 $c_f(u,v)=20$
 – This means: push 4 units $u \rightarrow v$ to cancel the 4 units net flow from $v \rightarrow u$, then push 16 more
Residual Networks

• Given a flow network $G=(V,E)$ and a flow f, the \textit{residual network} of G induced by f is $G_f=(V,E_f)$ where

$$E_f = \{(u,v) \in V \times V : c_f(u,v) > 0\}$$

– Each edge of the residual network (residual edge) can admit a positive net flow
– Example: Fig. 26.3(b) on p. 652 in CLRS
Example Residual Network

Network ➔

Residual Network ➔
Residual Networks

• Important property (Lemma 26.2 in CLRS)
 – Let $G=(V,E)$, s, t be a flow network and f be a flow in G
 – Let G_f be the residual network induced by f
 – Let f^* be a flow in G_f
 – Then the flow sum $f+f^*$ is a flow in G with value $|f+f^*| = |f|+|f^*|$

• Shows how a flow in G_f relates to one in G
Augmenting Paths

- Given a flow network $G=(V,E)$ and a flow f, an **augmenting path** p is a simple path from s to t in the residual network G_f
 - Each edge (u,v) on the augmenting path admits some additional positive net flow from u to v without violating the capacity constraint
- Example
 - Fig. 26.3(b) on p. 652 in CLRS
Example Augmenting Path

Network

Residual network with augmenting path shaded

Nov 2012

N. H. N. D. de Silva
Augmenting Paths

- **Residual capacity** $c_f(p)$ of an augmenting path p is the maximum amount of net flow that we can ship along the edges of p

 $$c_f(p) = \min \{ c_f(u,v) : (u, v) \text{ is on } p \}$$
Augmenting Paths

- Important properties (Lemma 26.3 and Corollary 26.4 in CLRS)
 - Let $G=(V,E)$ be a flow network, f a flow in G
 - If f_p is a flow defined on an augmenting path p of a residual network G_f of G
 - If we add f_p to f, we get another flow in G whose value is closer to the maximum

- Example:
 - Fig. 26.3(c) on p. 652 in CLRS
Is there an augmenting path? → No
What does it mean? → Max flow attained
“Cuts” of Flow Networks

• A cut (S,T) of flow network $G=(V,E)$ is a partition of V into S and $T=V-S$ such that the source s is in S and the sink t is in T.

• If f is a flow, then the net flow across the cut (S,T) is $f(S,T)$ and the capacity of the cut (S,T) is $c(S,T)$.
“Cuts” of Flow Networks

- If \((S, T)\) is a cut in a flow network then
 - the **net flow** \(f(S, T)\) across the cut \((S, T)\) is
 \[
 f(S, T) = \sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u)
 \]
 - the **capacity** \(c(S, T)\) across the cut \((S, T)\) is
 \[
 c(S, T) = \sum_{u \in S} \sum_{v \in T} c(u, v)
 \]

What is a **minimum cut**?
Example

Fig 26.4 in CLRS

Net flow across the cut is $f(S, T) = 19$

Capacity across the cut is $c(S, T) = 26$
Example – Minimum Cut

Max possible flow through the cut = $12 + 7 + 4 = 23$
Network has a capacity of at most 23
This is a minimum cut
“Cuts” of Flow Networks

• Property (Lemma 26.5)
 – Let f be a flow in a flow network G and let (S,T) be a cut of G. Then the net flow across (S,T) is $f(S,T) = |f|$.

• Corollaries
 – The value of a flow is the net flow into the sink.
 – The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G.
The net flow across any cut is the same and equal to the flow of the network $|f| = 23$
Max-flow Min-cut Theorem

• If f is a flow in a flow network $G=(V,E)$ with source s and sink t, then the following are equivalent
 – f is a maximum flow in G
 – The residual network G_f contains no augmenting paths
 – $|f| = c(S,T)$ for some cut (S,T) of G
Basic Ford-Fulkerson Alg.

\begin{algorithm}
\textbf{FORD-FULKERSON}(G, s, t)
\begin{algorithmic}
1 \textbf{for each edge} \((u, v) \in E[G]\)
2 \hspace{1em} \textbf{do} \hspace{1em} f[u, v] \leftarrow 0
3 \hspace{1em} f[v, u] \leftarrow 0
4 \textbf{while} \hspace{1em} \text{there exists a path} \hspace{1em} p \hspace{1em} \text{from} \hspace{1em} s \hspace{1em} \text{to} \hspace{1em} t \hspace{1em} \text{in the residual network} \hspace{1em} G_f
5 \hspace{1em} \textbf{do} \hspace{1em} c_f(p) \leftarrow \min \{c_f(u, v) : (u, v) \text{ is in } p\}
6 \hspace{1em} \textbf{for each edge} \hspace{1em} (u, v) \hspace{1em} \text{in} \hspace{1em} p
7 \hspace{3em} \textbf{do} \hspace{3em} f[u, v] \leftarrow f[u, v] + c_f(p)
8 \hspace{3em} f[v, u] \leftarrow -f[u, v]
\end{algorithmic}
\end{algorithm}
Example

Original Network

Flow Network

Resulting Flow = 4
Example

Flow Network

Resulting Flow = 4

Residual Network

augmenting path

Resulting Flow = 11

Flow Network

Nov 2012

N. H. N. D. de Silva
Example

Flow Network

Residual Network

Flow Network

Resulting Flow = 11

Resulting Flow = 19
Example

Flow Network

Residual Network

Flow Network

Resulting Flow = 19

augmenting path

Resulting Flow = 23
Example

Resulting Flow = 23

No augmenting path:
Maxflow=23

Residual Network
Analysis

\textsc{ford-fulkerson}(G, s, t)
1 for each edge \((u, v) \in E[G]\)
2 \hspace{1em} do \(f[u, v] \leftarrow 0\)
3 \hspace{1em} \(f[u, v] \leftarrow 0\)
4 \hspace{1em} while there exists a path \(p\) from \(s\) to \(t\) in the residual network \(G_f\)
5 \hspace{1em} do \(c_f(p) \leftarrow \min \{c_f(u, v) : (u, v) \text{ is in } p\}\)
6 \hspace{1em} for each edge \((u, v)\) in \(p\)
7 \hspace{1em} do \(f[u, v] \leftarrow f[u, v] + c_f(p)\)
8 \hspace{1em} \(f[v, u] \leftarrow -f[u, v]\)

\(O(E)\)
Analysis

• If capacities are all integer, then each augmenting path raises $|f|$ by ≥ 1
• If max flow is f^*, then need $\leq |f^*|$ iterations
 – Running time is $O(E |f^*|)$
 – This is not polynomial in input size
 – Depends on $|f^*|$, which is not a function of $|V|$ or $|E|$
Additional Material

• On network flows, Ford-Fulkerson method and applications
 – Prof. Kincaid’s slides:
 – Slide set 1, Slide set 2

• Read, explore further for
 – Improvements over Ford-Fulkerson approach
 • Edmonds-Karp algorithm
 • Push-relabel algorithm
Conclusion

• We discussed
 – Flow networks
 – Residual networks, augmenting paths, cuts
 – *Max-flow min-cut theorem*
 – Ford-Fulkerson method

• End of discussion on Graph algorithms

• Next time
 – Computational geometry
References

• The lecture slides are based on the slides prepared by Prof. Sanath Jayasena for this class in previous years.

• CLRS book, 2e, Part VI: Graph Algorithms
 – Chapter 26: Maximum Flow

• Other references
 – Prof. Kincaid: http://www.math.wm.edu/~rrkinc/
 – Prof. James Elder
 http://elderlab.yorku.ca/~elder/teaching/cse3101/