CS4460 Advanced Algorithms
Batch 08, L4S2

Lecture 6: (19 October 2012)
Amortized Analysis

N. H. N. D. de Silva
Dept. of Computer Science & Eng
University of Moratuwa
Announcement

• Assignment 1 is out
• Due on 24th October
Amortized Analysis: What?

An *amortized analysis* is any strategy for analyzing a sequence of operations to show that the average cost per operation is small, even though a single operation within the sequence might be expensive.

Even though we’re taking averages, however, probability is not involved!

- An amortized analysis guarantees the average performance of each operation in the *worst case*.
Amortized Analysis: Why?

• How much does it cost per day to maintain a car? (Not a perfect example)
Amortized Analysis: Why?

• Some days; Almost zero cost!
Amortized Analysis: Why?

- Some days; You need to buy fuel
Amortized Analysis: Why?

• And some days you have to pay a LOT more
Amortized Analysis: Why?

• Dynamic data structures
 – a succession of inserts
 – Removes
 – find/retrieves (or overwrites)
Amortized Analysis: Why?

– a worst-case analysis can be *too pessimistic*
 • For both the total cost and the average cost per operation of "maintaining" the structure
– particularly true for self-adjusting structures
 • Such as?
• Better approach: use *amortized analysis* which determines an amortized ("time" averaged) cost per operation
Note the Differences…

• Average-case analysis
 – We average over all possible inputs

• Probabilistic analysis
 – We average over all possible random choices

• Amortized analysis
 – We average over a sequence of operations
 – Assumes worst-case input and typically does not allow random choices
Amortized Analysis: What? (Again)

• More accurate analysis for dynamic sets and their operations (than typical analysis)
• “amortized”:
 – from accounting practice of spreading a large cost (incurred in one time period) over multiple time periods
 – These other time periods are related to the reason for incurring the cost
Example: Dynamic Tables

• We don’t know how big table (or array) we might need when computation begins

• Naïve solution: allocating largest possible

• Better solution:
 – Allocate a small array initially
 – Double its size when we feel its too small
 – Need to keep track of the number of elements
Example ...contd

• Generally, doubling the array may mean:
 1. creating a new array of twice the size, and
 2. transferring elements to the new larger array (this can be expensive)

• What is the total cost for inserting \(n \) items?
 – Doubling and transferring happens at times
 – Other times, constant time insertion

• If items deleted, table may be contracted
Example ... contd

• First consider table with only insertions

TABLE-INSERT (T, y)
if size[T] = 0
allocate table[T] with 1 slot; size[T] ← 1
if num[T] = size[T]
allocate new_table with 2xsize[T]
insert all items in table[T] into new_table
expensive

table[T] ← new_table; size[T] ← 2xsize[T]
insert y into table[T]
um[T] ← num[T] + 1
First consider table with only insertions

\[\text{TABLE-INSERT}(T, y)\]

1. If size[T] = 0
 - Allocate table[T] with 1 slot; size[T] ← 1
2. If num[T] = size[T]
 - Allocate new_table with 2xsize[T]
 - Insert all items in table[T] into new_table
 - table[T] ← new_table; size[T] ← 2xsize[T]
3. Insert y into table[T]
4. num[T] ← num[T] + 1

size[T] = 0 num[T] = 0
Example ...contd

• First consider table with only insertions

TABLE-INSERT \((T, y)\)

1. \(\text{if } \text{size}[T] = 0\)
 - \(\text{allocate table}[T] \text{ with 1 slot; size}[T] \leftarrow 1\)

2. \(\text{if } \text{num}[T] = \text{size}[T]\)
 - \(\text{allocate new_table with } 2 \times \text{size}[T]\)
 - \(\text{insert all items in table}[T] \text{ into new_table}\)
 - \(\text{table}[T] \leftarrow \text{new_table}; \text{size}[T] \leftarrow 2 \times \text{size}[T]\)

3. \(\text{insert } y \text{ into table}[T]\)
4. \(\text{num}[T] \leftarrow \text{num}[T] + 1\)

\(\text{size}[T] = 1 \quad \text{num}[T] = 0\)
Example

• First consider table with only insertions

TABLE-INSERT (T, y)
 if size[T] = 0
 allocate table[T] with 1 slot; size[T] ← 1
 if num[T] = size[T]
 allocate new_table with 2xsize[T]
 insert all items in table[T] into new_table
 table[T] ← new_table; size[T] ← 2xsize[T]

 insert y into table[T]
 num[T] ← num[T] + 1

size[T] = 1 num[T]=0
• First consider table with only insertions

TABLE-INSERT (T, y)

 if size[T] = 0
 allocate table[T] with 1 slot; size[T] ← 1
 if num[T] = size[T]
 allocate new_table with 2xsize[T]
 insert all items in table[T] into new_table
 table[T] ← new_table; size[T] ← 2xsize[T]

insert y into table[T]
num[T] ← num[T] + 1

size[T] = 1 num[T]=1
• First consider table with only insertions

TABLE-INSERT (T, y)
 if size[T] = 0
 allocate table[T] with 1 slot; size[T] ← 1
 if num[T] = size[T]
 allocate new_table with 2xsize[T]
 insert all items in table[T] into new_table
 table[T] ← new table; size[T] ← 2xsize[T]
 insert y into table[T]
 num[T] ← num[T] + 1

size[T] = 1 num[T] = 1
• First consider table with only insertions

TABLE-INSERT (T, y)
if size[T] = 0
 allocate table[T] with 1 slot; size[T] = 1
if num[T] = size[T]
 allocate new_table with 2xsize[T]
 insert all items in table[T] into new_table
 table[T] <- new_table; size[T] <- 2xsize[T]
insert y into table[T]
num[T] <- num[T] + 1

size[T] = 1 num[T] = 1
Example \[\ldots\text{contd}\]

- First consider table with only insertions

\[
\text{TABLE-INSERT (T, y)}
\]

\[
\begin{align*}
\text{if size}[T] & = 0 \\
\text{allocate table}[T] \text{ with 1 slot; size}[T] & \leftarrow 1 \\
\text{if num}[T] & = \text{size}[T] \\
\text{allocate new_table with 2xsize}[T] \\
\text{insert all items in table}[T] \text{ into new_table} \\
\text{table}[T] & \leftarrow \text{new table}; \text{size}[T] \leftarrow 2\times\text{size}[T] \\
\text{insert } y \text{ into table}[T] \\
\text{num}[T] & \leftarrow \text{num}[T] + 1
\end{align*}
\]

\[
\text{size}[T] = 1 \quad \text{num}[T]=1
\]
• First consider table with only insertions

TABLE-INSERT (T, y)

if size[T] = 0
 allocate table[T] with 1 slot; size[T] ← 1
if num[T] = size[T]
 allocate new_table with 2xsize[T]
 insert all items in table[T] into new_table
 table[T] ← new_table; size[T] ← 2xsize[T]
insert y into table[T]
num[T] ← num[T] + 1

size[T] = 2 num[T] = 1
Example \(\ldots\) contd

- First consider table with only insertions

\[
\text{TABLE-INSERT } (T, y) \\
\text{\hspace{1cm} if size}[T] = 0 \\
\hspace{2cm} \text{allocate table}[T] \text{ with 1 slot; size}[T] \leftarrow 1 \\
\hspace{1cm} \text{if num}[T] = \text{size}[T] \\
\hspace{2cm} \text{allocate new_table with 2xsize}[T] \\
\hspace{2cm} \text{insert all items in table}[T] \text{ into new_table} \\
\hspace{2cm} \text{table}[T] \leftarrow \text{new table; size}[T] \leftarrow 2x\text{size}[T] \\
\hspace{1cm} \text{insert } y \text{ into table}[T] \\
\hspace{1cm} \text{num}[T] \leftarrow \text{num}[T] + 1
\]

size[T] = 2 \hspace{0.5cm} \text{num}[T]=1
Example \(\ldots\) contd

- First consider table with only insertions

\[
\text{TABLE-INSERT} (T, y) \\
\quad \text{if } \text{size}[T] = 0 \\
\quad \quad \text{allocate table}[T] \text{ with 1 slot; size}[T] \gets 1 \\
\quad \text{if } \text{num}[T] = \text{size}[T] \\
\quad \quad \text{allocate new_table with 2xsize}[T] \\
\quad \quad \text{allocate new_table with 2xsize}[T] \\
\quad \quad \text{insert all items in table}[T] \text{ into new_table} \\
\quad \quad \text{table}[T] \gets \text{new table}; \text{size}[T] \gets 2\times\text{size}[T] \\
\quad \text{insert } y \text{ into table}[T] \\
\quad \quad \text{num}[T] \gets \text{num}[T] + 1
\]

size\([T]\) = 2 \quad \text{num}[T] = 2
Example ...contd

Cost of inserting:
• 1st Element (A) = 1
• 2nd Element (B) = 2 \rightarrow Copying A ; Inserting B
• 3rd Element (C) = 3 \rightarrow Copying A,B ; Inserting C
• 4th Element (D) = 1
Cost of inserting;

• 1st Element (A) = 1
• 2nd Element (B) = 2 → Copying A; Inserting B
• 3rd Element (C) = 3 → Copying A,B; Inserting C
• 4th Element (D) = 1
• 5th Element (E) = 5 → Copying A,B,C,D; Inserting D

Pattern?
Example …contd

• Consider a sequence of n insertions
 – Initially empty table
 – What is the cost c_i of i-th insert operation?
 • $c_i = 1$ if table is not full
 • $c_i = i$ if table is full (1 insertion + $i - 1$ items copied)
 – For n insertions, worst-case operation is $O(n)$; so $O(n^2)$ for total running time
 • Is this correct, or tight enough?
 • Not really, as expanding table is infrequent
Example (contd)

• Consider a sequence of n insertions (contd)
 – Total cost for n insertions can be proved to be in $O(n)$
Example ...contd

- Consider a sequence of \(n \) insertions (...contd)
 - Expansion at \(i\)-th operation if \(i-1 \) is power of 2
 \[
 c_i = \begin{cases}
 i & \text{if } i - 1 \text{ is an exact power of 2} \\
 1 & \text{otherwise}
 \end{cases}
 \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{size}_i)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>(c_i)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>
Consider a sequence of n insertions (…contd)

– Expansion at i-th operation if $i-1$ is power of 2

$$c_i = \begin{cases} i & \text{if } i - 1 \text{ is an exact power of } 2 \\ 1 & \text{otherwise} \end{cases}$$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$size_i$</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>c_i</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Consider a sequence of \(n \) insertions (…contd)

- Total cost of \(n \) insertions is therefore

\[
\sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j
\]

\[
< n + 2n = 3n
\]

Amortized cost of a single operation is 3

Thus, the average cost of each dynamic-table operation is \(\Theta(n)/n = \Theta(1) \).
Amortized analysis: What? (3rd Time!)

• An amortized analysis is any strategy for analyzing a sequence of operations to show that the average cost per operation is small, even though a single operation within the sequence might be expensive.

• Even though we’re taking averages, however, probability is not involved!
 • An amortized analysis guarantees the average performance of each operation in the worst case.
Techniques

• 3 most common techniques
 1. Aggregate analysis method
 2. Accounting method
 3. Potential method

– CLRS book discuss these 3 using 2 e.g.
 – A stack with **multipop** operation
 – A binary counter counting up from 0
1. Aggregate Analysis

• Show for all \(n \), a sequence of \(n \) operations takes total worst-case \(T(n) \) time

• In the worst-case, the amortized (average) cost per operation is \(T(n)/n \)
 – The same cost applies to each operation
 – There can be several types of operations

• This is the method shown in previous Example (insertions into dynamic table)
2. Accounting Method

• Assign differing charges to different operations
 – Some charged more/less than actual cost
 – Amount we charge is called its *amortized cost*
 – When amortized cost exceeds actual cost, difference assigned to objects in data structure as *credit*
 – *Credit* can be later used to pay for operations whose amortized cost is less than actual cost
2. Accounting Method ...contd

• Amortized cost of an operation split
 – between actual cost, and
 – credit that is either deposited or used up

• [note difference with aggregate method]
Accounting method

- Charge ith operation a fictitious amortized cost \hat{c}_i, where $\$1$ pays for 1 unit of work (i.e., time).
- This fee is consumed to perform the operation.
- Any amount not immediately consumed is stored in the bank for use by subsequent operations.
- The bank balance must not go negative! We must ensure that
 \[\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \hat{c}_i \]
 for all n.
- Thus, the total amortized costs provide an upper bound on the total true costs.
Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = $3 for the ith insertion.

- 1 pays for the immediate insertion.
- 2 is stored for later table doubling.

When the table doubles, 1 pays to move a recent item, and 1 pays to move an old item.

Example:

```
$0 \ 0 \ 0 \ 0 \ 0 \ 2 \ 2 \ 2 \ 2 \ overflow
```

```
Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = $3 for the $i$th insertion.

• $1$ pays for the immediate insertion.
• $2$ is stored for later table doubling.

When the table doubles, $1$ pays to move a recent item, and $1$ pays to move an old item.

Example:
Accounting analysis of dynamic tables

Charge an amortized cost of $\hat{c}_i = \$3$ for the $i$th insertion.

- $\$1$ pays for the immediate insertion.
- $\$2$ is stored for later table doubling.

When the table doubles, $\$1$ pays to move a recent item, and $\$1$ pays to move an old item.

Example:

$0 \quad 0 \quad 2 \quad 2 \quad 2$
Accounting analysis (continued)

**Key invariant:** Bank balance never drops below 0. Thus, the sum of the amortized costs provides an upper bound on the sum of the true costs.

<table>
<thead>
<tr>
<th>i</th>
<th>size_(i)</th>
<th>c_(i)</th>
<th>(\hat{c}_i)</th>
<th>bank_(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2*</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

*Okay, so I lied. The first operation costs only $2, not $3.*
3. Potential Method

- Represents the prepaid work as “potential energy” (or “potential”)
  - Can be released to pay for future operations
- Potential is associated with the data structure as a whole
  - In contrast: in accounting method, pre-paid work as credit is associated with specific objects in the data structure
3. Potential Method

- Start with an initial data structure $D_0$
  - Perform $n$ operations
  - For each $i=1, 2, \ldots, n$
    - $c_i$ is the actual cost
    - $D_i$ is the data structure that results after applying $i$-th operation to data structure $D_{i-1}$
  - A *potential function* $\Phi$ maps each data structure $D_i$ to a real number $\Phi(D_i)$
    - It is the *potential* associated with data structure $D_i$
3. Potential Method

• The *amortized cost* $\langle c_i \rangle$ of the $i$-th operation w.r.t potential function $\Phi$ is

$$\langle c_i \rangle = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

– That is, the actual cost plus the increase in potential due to the operation
– The total amortized cost for $n$ operations can be computed by taking summation over $n$
3. Potential Method

\[ \hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) \]

*potential difference* \( \Delta \Phi_i \)

- If \( \Delta \Phi_i > 0 \), then \( \hat{c}_i > c_i \). Operation \( i \) stores work in the data structure for later use.
- If \( \Delta \Phi_i < 0 \), then \( \hat{c}_i < c_i \). The data structure delivers up stored work to help pay for operation \( i \).
3. Potential Method...contd

The total amortized cost of $n$ operations is

$$
\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))
$$

Summing both sides.
3. Potential Method

The total amortized cost of \( n \) operations is

\[
\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))
\]

\[
= \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)
\]

The series telescopes.
3. Potential Method ...contd

The total amortized cost of $n$ operations is

$$
\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} \left( c_i + \Phi(D_i) - \Phi(D_{i-1}) \right)
$$

$$
= \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)
$$

$$
\geq \sum_{i=1}^{n} c_i \quad \text{since } \Phi(D_n) \geq 0 \text{ and } \Phi(D_0) = 0.
$$
3. Potential Method ... contd

Define the potential of the table after the $i$th insertion by $\Phi(D_i) = 2i - 2^{\lfloor \log i \rfloor}$. (Assume that $2^{\lfloor \log 0 \rfloor} = 0$.)

**Note:**
- $\Phi(D_0) = 0$,
- $\Phi(D_i) \geq 0$ for all $i$.

**Example:**

\[
\Phi = 2 \cdot 6 - 2^3 = 4
\]

(\begin{array}{cccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\$0 & \$0 & \$0 & \$0 & \$2 & \$2 \\
\end{array}
accounting method)
The amortized cost of the $i$th insertion is

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

$$= \begin{cases} 
    i & \text{if } i - 1 \text{ is an exact power of } 2, \\
    1 & \text{otherwise};
\end{cases}$$

$$+ \left( 2i - 2^{\lfloor \log i \rfloor} \right) - \left( 2(i-1) - 2^{\lfloor \log (i-1) \rfloor} \right)$$

$$= \begin{cases} 
    i & \text{if } i - 1 \text{ is an exact power of } 2, \\
    1 & \text{otherwise};
\end{cases}$$

$$+ 2 - 2^{\lfloor \log i \rfloor} + 2^{\lfloor \log (i-1) \rfloor}.$$
3. Potential Method ...contd

Case 1: \( i-1 \) is an exact power of 2

\[
\hat{C}_i = i + 2 - 2^{\lfloor \log_2 i \rfloor} + 2^{\lfloor \log_2 (i-1) \rfloor}
\]

\[
\hat{C}_i = i + 2 - 2(i - 1) + (i - 1)
\]

\[
\hat{C}_i = i + 2 - 2i + 2 + i - 1
\]

\[
\hat{C}_i = 3
\]
3. Potential Method ...contd

Case 2: \( i-1 \) is not an exact power of 2

\[ \hat{C}_i = 1 + 2 - 2^{\lfloor \lg i \rfloor} + 2^{\lfloor \lg (i-1) \rfloor} \]

\[ \hat{C}_i = 1 + 2 - (i - 1) + (i - 1) \]

\[ \hat{C}_i = 1 + 2 - i + 1 + i - 1 \]

\[ \hat{C}_i = 3 \]
Therefore, \( n \) insertions cost \( \Theta(n) \) in the worst case.

**Exercise:** Fix the bug in this analysis to show that the amortized cost of the first insertion is only 2.
Discussion

• Refer to 2 slidesets
  – 6-page note titled “Lecture 7 Amortized Analysis” from CMU (Online)
  – 42-slide presentation by Demaine and Leiserson of MIT (Online. Most of them were discussed in this presentation)

• Also read
  – Slides by Kevin Wayne at Princeton
    • Analysis of splay trees and other trees (Online)
Application: Splay Trees

• Review
  – Binary trees that are not balanced
  – Individual operations can take linear time
  – As operations are performed, tree tends to balance itself

• In the long run, the amortized complexity is $O(\lg n)$ per operation

• See handout(?) last week on Splay Trees
Other applications

• To analyze
  – Binomial heaps, Fibonacci heaps
  – Dictionaries and dynamic tables
  – KMP algorithm on string matching
  – Some graph algorithms
  – Several others….
Conclusion

• Amortized analysis
  – Introduction, why?
  – Examples, techniques

• Next class
  – Part 2: randomized algorithms
References

• Amortized Analysis [CLRS Chapter 17]
• The lecture slides are based on the slides prepared by Prof. Sanath Jayasena for this class in previous years.
• Presentation by Demaine and Leiserson of MIT