
(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 1

Program Analysis

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 2

Learning objectives

•!Understand how automated program analysis

complements testing and manual inspection

–! Most useful for properties that are difficult to test

•!Understand fundamental approaches of a few

representative techniques

–! Lockset analysis, pointer analysis, symbolic testing,
dynamic model extraction: A sample of

contemporary techniques across a broad spectrum

–! Recognize the same basic approaches and design
trade-offs in other program analysis techniques

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 3

Why Analysis

•! Exhaustively check properties that are difficult

to test

–! Faults that cause failures

•!rarely

•!under conditions difficult to control

–! Examples

•!race conditions

•!faulty memory accesses

•! Extract and summarize information for

inspection and test design

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 4

Why automated analysis

•!Manual program inspection

–! effective in finding faults difficult to detect with
testing

–! But humans are not good at

•!repetitive and tedious tasks

•!maintaining large amounts of detail

•!Automated analysis

–! replace human inspection for some class of faults

–! support inspection by

•!automating extracting and summarizing information

•!navigating through relevant information

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 5

Static vs dynamic analysis

•! Static analysis

–! examine program source code

•!examine the complete execution space

•!but may lead to false alarms

•!Dynamic analysis

–! examine program execution traces

•!no infeasible path problem

•!but cannot examine the execution space exhaustively

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 6

Concurrency faults

•! Concurrency faults
–! deadlocks: threads blocked waiting each other on a lock

–! data races: concurrent access to modify shared resources

•! Difficult to reveal and reproduce

–! nondeterministic nature does not guarantee repeatibility

•! Prevention

–! Programming styles

•! eliminate concurrency faults by restricting program constructs

•! examples

–! do not allow more than one thread to write to a shared item

–! provide programming constructs that enable simple static checks
(e.g., Java synchronized)

•! Some constructs are difficult to check statically
•! example

–! C and C++ libraries that implement locks

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 7

Memory faults

•!Dynamic memory access and allocation faults

–! null pointer dereference

–! illegal access

–! memory leaks

•!Common faults

–! buffer overflow in C programs

–! access through dangling pointers

–! slow leakage of memory

•! Faults difficult to reveal through testing

–! no immediate or certain failure

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 8

Example

} else if (c == '%') {

 int digit_high = Hex_Values[*(++eptr)];

 int digit_low = Hex_Values[*(++eptr)];

•! fault

–! input string terminated by an hexadecimal digit

–! scan beyond the end of the input string and corrupt
memory

–! failure may occur much after the execution of the
faulty statement

•!hard to detect

–! memory corruption may occur rarely

–! lead to failure more rarely

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 9

Memory Access Failures

(explicit deallocation of memory - C,C++)

•! Dangling pointers: deallocating memory accessible through pointers

•! Memory leak: failing to deallocate memory not accessible any more

–! no immediate failure

–! may lead to memory exhaustion after long periods of execution

•! escape unit testing

•! show up only in integration, system test, actual use

•! can be prevented by using

–! program constructs

•! saferC (dialect of C used in avionics applications) limited use of dynamic
memory allocation -> eliminates dangling pointers and memory leaks
(restriction principle)

–! analysis tools

•! Java dynamic checks for out-of-bounds indexing and null pointer dereferences
(sensitivity principle)

–! Automatic storage deallocation (garbage collection)

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 10

Symbolic Testing

•! Summarize values of variables with few

symbolic values

–! example: analysis of pointers misuse

•!Values of pointer variables: null, notnull, invalid, unknown

•!other variables represented by constraints

•!Use symbolic execution to evaluate conditional

statements

•!Do not follow all paths, but

–! explore paths to a limited depth

–! prune exploration by some criterion

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 11

Path Sensitive Analysis

•! Different symbolic states from paths to the same location

•! Partly context sensitive
 (depends on procedure call and return sequences)

•! Strength of symbolic testing

 combine path and context sensitivity
•! detailed description of how a particular execution sequence leads to

a potential failure

•! very costly

•! reduce costs by memoizing entry and exit conditions

–! limited effect of passed values on execution

–! explore a new path only when the entry condition differs from previous

ones

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 12

Summarizing Execution Paths

•! Find all program faults of a certain kind

–! no prune exploration of certain program paths
(symbolic testing)

–! abstract enough to fold the state space down to a

size that can be exhaustively explored

•! Example:

analyses based on finite state machines (FSM)

–! data values by states

–! operations by state transitions

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 13

Pointer Analysis

•! Pointer variable represented by a machine with three
states:
–! invalid value

–! possibly null value

–! definitely not null value

•! Deallocation triggers transition from non-null to invalid

•! Conditional branches may trigger transitions

–! E.g., testing a pointer for non-null triggers a transition from
possibly null to definitely non-null

•! Potential misuse

–! Deallocation in possibly null state

–! Dereference in possibly null

–! Dereference in invalid states

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 14

Merging States

•! Flow analysis

merge states obtained along different execution paths

–! conventional data flow analysis: merge all states encountered
at a particular program location

–! FSM: summarize states reachable along all paths with a set of

states

•! Finite state verification techniques

never merge states (path sensitive)

–! procedure call and return:

•! complete path- and context-sensitive analysis ! too expensive

•! throwing away all context information ! too many false alarms

•! symbolic testing: cache and reuse (entry, exit) state pairs

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 15

Buffer Overflow
…
int main (int argc, char *argv[]) {

 char sentinel_pre[] = "2B2B2B2B2B";

 char subject[] = "AndPlus+%26%2B+%0D%";

 char sentinel_post[] = "26262626";

 char *outbuf = (char *) malloc(10);

 int return_code;

 printf("First test, subject into outbuf\n");

 return_code = cgi_decode(subject, outbuf);

 printf("Original: %s\n", subject);

 printf("Decoded: %s\n", outbuf);

 printf("Return code: %d\n", return_code);

 printf("Second test, argv[1] into outbuf\n");

 printf("Argc is %d\n", argc);

 assert(argc == 2);

 return_code = cgi_decode(argv[1], outbuf);

 printf("Original: %s\n", argv[1]);

 printf("Decoded: %s\n", outbuf);

 printf("Return code: %d\n", return_code);

}…

Output parameter

of fixed length

Can overrun the

output buffer

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 16

Dynamic Memory Analysis (with Purify)

[I] Starting main
[E] ABR: Array bounds read in printf {1 occurrence}
 Reading 11 bytes from 0x00e74af8 (1 byte at 0x00e74b02 illegal)
 Address 0x00e74af8 is at the beginning of a 10 byte block
 Address 0x00e74af8 points to a malloc'd block in heap 0x00e70000
 Thread ID: 0xd64
...
[E] ABR: Array bounds read in printf {1 occurrence}
 Reading 11 bytes from 0x00e74af8 (1 byte at 0x00e74b02 illegal)
 Address 0x00e74af8 is at the beginning of a 10 byte block
 Address 0x00e74af8 points to a malloc'd block in heap 0x00e70000
 Thread ID: 0xd64
...
[E] ABWL: Late detect array bounds write {1 occurrence}
 Memory corruption detected, 14 bytes at 0x00e74b02
 Address 0x00e74b02 is 1 byte past the end of a 10 byte block at 0x00e74af8

 Address 0x00e74b02 points to a malloc'd block in heap 0x00e70000

 63 memory operations and 3 seconds since last-known good heap state
 Detection location - error occurred before the following function call
 printf [MSVCRT.dll]
...
 Allocation location
 malloc [MSVCRT.dll]
...
[I] Summary of all memory leaks... {482 bytes, 5 blocks}

...
[I] Exiting with code 0 (0x00000000)
 Process time: 50 milliseconds
[I] Program terminated ...

Identifies

the problem

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 17

Memory Analysis

Unallocated

(unwritable and unreadable)
allocate

Allocated and uninitialized

(writable, but unreadable)

Allocated and initialized

(readable and writable)
deallocate

deallocate

initialize

•! Instrument program to trace memory access

–! record the state of each memory location

–! detect accesses incompatible with the current state

•! attempts to access unallocated memory

•! read from uninitialized memory locations

–! array bounds violations:

•! add memory locations with state unallocated before and after each array

•! attempts to access these locations are detected immediately

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 18

Data Races

•!Testing: not effective

(nondeterministic interleaving of threads)

•! Static analysis:

computationally expensive, and approximated

•!Dynamic analysis:

can amplify sensitivity of testing to detect

potential data races

–! avoid pessimistic inaccuracy of finite state verification

–! Reduce optimistic inaccuracy of testing

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 19

Dynamic Lockset Analysis

•! Lockset discipline: set of rules to prevent data races
–! Every variable shared between threads must be protected by a

mutual exclusion lock

–! ….

•! Dynamic lockset analysis detects violation of the locking
discipline
–! Identify set of mutual exclusion locks held by threads when

accessing each shared variable

–! INIT: each shared variable is associated with all available locks

–! RUN: thread accesses a shared variable

•! intersect current set of candidate locks with locks held by the thread

–! END: set of locks after executing a test = set of locks always held
by threads accessing that variable

•! empty set for v = no lock consistently protects v

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 20

Simple lockset analysis: example

Thread Program trace Locks held Lockset(x)

{} {lck1, lck2}

thread A lock(lck1)

{lck1}

x=x+1

{lck1}

unlock(lck1}

{}

tread B lock{lck2}

{lck2}

x=x+1

{}

unlock(lck2}

{}

INIT:all locks for x

lck1 held

Intersect with
locks held

lck2 held

Empty intersection
 potential
 race

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 21

Handling Realistic Cases

•! simple locking discipline violated by

–! initialization of shared variables without holding a lock

–! writing shared variables during initialization without locks

–! allowing multiple readers in mutual exclusion with single writers

read/write/first thread

Virgin

write

Shared

Shared-Modified
read/new thread

write/new thread

write

Exclusive

read

Delay analysis

till after initialization
(second thread) Multiple writers

report violations

Multiple readers

single writer
do not report violations

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 22

Extracting Models from Execution

•! Executions reveals information about a program

•!Analysis

–! gather information from execution

–! synthesize models that characterize those executions

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 23

Example: AVL tree
private AvlNode insert(Comparable x, AvlNode t){

 if(t == null)

 t = new AvlNode(x, null, null);

 else if(x.compareTo(t.element) < 0){

 t.left = insert(x, t.left);

 if(height(t.left) - height(t.right) == 2)

 if(x.compareTo(t.left.element) < 0)

 t = rotateWithLeftChild(t);

 else

 t = doubleWithLeftChild(t);

 }else if(x.compareTo(t.element) > 0){

 t.right = insert(x, t.right);

 if(height(t.right) - height(t.left) == 2)

 if(x.compareTo(t.right.element) > 0)

 t = rotateWithRightChild(t);

 else

 t = doubleWithRightChild(t);

 } else

 ; // Duplicate; do nothing

 t.height = max(height(t.left), height(t.right)) + 1;

 return t;

}

Behavior model
at the end of
insert:

father > left
father < right
diffHeight one of
 {-1,0,1}

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 24

Automatically Extracting Models

•! Start with a set of predicates

–! generated from templates

–! instantiated on program variables

–! at given execution points

•!Refine the set by eliminating predicates

violated during execution

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 25

Predicate templates
over one variable

constant x=a

uninitialized x=uninit

small value set x={a,b,c}

over a single numeric variable

in a range x!a,x"b,a"x"b

nonzero x#0

modulus x=a(mod b)

nonmodulus x#a(mod b)

over the sum of two numeric variables

linear relationship y=ax+b

ordering
relationship

x"y,x<y,x=y,x#y

…

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 26

Executing AVL tree

private static void testCaseSingleValues() {
 AvlTree t = new AvlTree();
 t.insert(new Integer(5));
 t.insert(new Integer(2));
 t.insert(new Integer(7));
}

private static void testCaseRandom(int nTestCase) {
 AvlTree t = new AvlTree();

 for (int i = 1; i < nTestCase; i++) {
 int value=(int)Math.round(Math.random()*100);
 t.insert(new Integer(value));
 }
}

The model depends
on the test cases

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 27

Derived Models

model for testCaseSingleValues model for testCaseRandom

father one of {2, 5, 7} father >= 0

left == 2 left >= 0

right == 7 father > left

leftHeight == rightHeight father < right

rightHeight == diffHeight left < right

leftHeight == 0 fatherHeight >= 0

rightHeight == 0 leftHeight >= 0

fatherHeight one of {0, 1} rightHeight >= 0

fatherHeight > leftHeight

fatherHeight > rightHeight

fatherHeight > diffHeight

rightHeight >= diffHeight

diffHeight one of {-1,0,1}

leftHeight - rightHeight + diffHeight == 0

limited validity
of the test case:

the tree is perfectly
balanced

elements are
inserted correctly

the tree
is balanced

additional information:
all elements are

non-negative

useless (redundant)
information

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 28

Model and Coincidental Conditions

•!Model:

–! not a specification of the program

–! not a complete description of the program behavior

–! a representation of the behavior experienced so far

•! conditions may be coincidental

–! true only for the portion of state space explored so far

–! estimate probability of coincidence as the number of

times the predicate is tested

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 29

Example of Coincidental Probability

father >= 0 probability of coincidence:

 0.5 if verified by a single execution

 0.5n if verified by n executions.

threshold of 0.05

 two executions with father =7

 father = 7 valid

 father >= 0 not valid (high coincidental probability)

 two additional execution with father positive

 father = 7 invalid

 father >= 0 valid

father >= 0 valid for testCaseRandom (300 occurences)
not for testCaseSingleValues (3 occurences)

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 30

Using Behavioral Models

•!Testing

–! validate tests thoroughness

•!Program analysis

–! understand program behavior

•!Regression testing

–! compare versions or configurations

•!Testing of component-based software

–! compare components in different contexts

•!Debugging

–! Identify anomalous behaviors and understand causes

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 31

Summary

•!Program analysis complements testing and

inspection

–! Addresses problems (e.g., race conditions, memory

leaks) for which conventional testing is ineffective

–! Can be tuned to balance exhaustiveness, precision,
and cost (e.g., path-sensitive or insensitive)

–! Can check for faults or produce information for
other uses (debugging, documentation, testing)

•!A few basic strategies

–! Build an abstract representation of program states
by monitoring real or simulated (abstract) execution

