Fault-Based Testing

Learning objectives

- Understand the basic ideas of fault-based testing
 - How knowledge of a fault model can be used to create useful tests and judge the quality of test cases
 - Understand the rationale of fault-based testing well enough to distinguish between valid and invalid uses
- Understand mutation testing as one application of fault-based testing principles

Let’s count marbles ... a lot of marbles

- Suppose we have a big bowl of marbles. How can we estimate how many?
 - I don’t want to count every marble individually
 - I have a bag of 100 other marbles of the same size, but a different color
 - What if I mix them?

Estimating marbles

- I mix 100 black marbles into the bowl
 - Stir well …
- I draw out 100 marbles at random
 - 20 of them are black
- How many marbles were in the bowl to begin with?
Estimating Test Suite Quality

• Now, instead of a bowl of marbles, I have a program with bugs
• I add 100 new bugs
 • Assume they are exactly like real bugs in every way
 • I make 100 copies of my program, each with one of my 100 new bugs
• I run my test suite on the programs with seeded bugs ...
 – ... and the tests reveal 20 of the bugs
 – (the other 80 program copies do not fail)

What can I infer about my test suite?

Basic Assumptions

• We’d like to judge effectiveness of a test suite in finding real faults, by measuring how well it finds seeded fake faults.
• Valid to the extent that the seeded bugs are representative of real bugs
 - Not necessarily identical (e.g., black marbles are not identical to clear marbles); but the differences should not affect the selection
 • E.g., if I mix metal ball bearings into the marbles, and pull them out with a magnet, I don’t learn anything about how many marbles were in the bowl

Mutation testing

• A mutant is a copy of a program with a mutation
• A mutation is a syntactic change (a seeded bug)
 - Example: change \(i < 0 \) to \(i <= 0 \)

• Run test suite on all the mutant programs
• A mutant is killed if it fails on at least one test case

• If many mutants are killed, infer that the test suite is also effective at finding real bugs

What do I need to believe?

• Mutation testing uses seeded faults (syntactic mutations) as black marbles
• Does it make sense? What must I assume?
 • What must be true of black marbles, if they are to be useful in counting a bowl of pink and red marbles?
Mutation testing assumptions

- **Competent programmer hypothesis:**
 - Programs are nearly correct
 - Real faults are small variations from the correct program
 - => Mutants are reasonable models of real buggy programs

- **Coupling effect hypothesis:**
 - Tests that find simple faults also find more complex faults
 - Even if mutants are not perfect representatives of real faults, a test suite that kills mutants is good at finding real faults too

Mutation Operators

- **Syntactic change from legal program to legal program**
 - So: Specific to each programming language. C++ mutations don’t work for Java, Java mutations don’t work for Python

- **Examples:**
 - `crp`: constant for constant replacement
 - for instance: from `(x < 5)` to `(x < 12)`
 - select from constants found somewhere in program text
 - `ror`: relational operator replacement
 - for instance: from `(x <= 5)` to `(x < 5)`
 - `vie`: variable initialization elimination
 - change `int x =5;` to `int x;`

Live Mutants

- **Scenario:**
 - We create 100 mutants from our program
 - We run our test suite on all 100 mutants, plus the original program
 - The original program passes all tests
 - 94 mutant programs are killed (fail at least one test)
 - 6 mutants remain *alive*

- **What can we learn from the living mutants?**

How mutants survive

- **A mutant may be equivalent to the original program**
 - Maybe changing `(x < 0)` to `(x <= 0)` didn’t change the output at all! The seeded “fault” is not really a “fault”.
 - Determining whether a mutant is equivalent may be easy or hard; in the worst case it is undecidable

- **Or the test suite could be inadequate**
 - If the mutant could have been killed, but was not, it indicates a weakness in the test suite
 - But adding a test case for just this mutant is a bad idea. We care about the real bugs, not the fakes!
Variations on Mutation

• Weak mutation
• Statistical mutation

Weak mutation

• Problem: There are lots of mutants. Running each test case to completion on every mutant is expensive
 • Number of mutants grows with the square of program size
• Approach:
 - Execute meta-mutant (with many seeded faults) together with original program
 - Mark a seeded fault as “killed” as soon as a difference in intermediate state is found
 • Without waiting for program completion
 • Restart with new mutant selection after each “kill”

Statistical Mutation

• Problem: There are lots of mutants. Running each test case on every mutant is expensive
 • It’s just too expensive to create N^2 mutants for a program of N lines (even if we don’t run each test case separately to completion)
• Approach: Just create a random sample of mutants
 - May be just as good for assessing a test suite
 • Provided we don’t design test cases to kill particular mutants (which would be like selectively picking out black marbles anyway)

In real life ...

• Fault-based testing is a widely used in semiconductor manufacturing
 - With good fault models of typical manufacturing faults, e.g., “stuck-at-one” for a transistor
 - But fault-based testing for design errors is more challenging (as in software)
• Mutation testing is not widely used in industry
 - But plays a role in software testing research, to compare effectiveness of testing techniques
• Some use of fault models to design test cases is important and widely practiced
Summary

• If bugs were marbles …
 - We could get some nice black marbles to judge the quality of test suites

• Since bugs aren’t marbles …
 - Mutation testing rests on some troubling assumptions about seeded faults, which may not be statistically representative of real faults

• Nonetheless …
 - A model of typical or important faults is invaluable information for designing and assessing test suites