Why Data Flow Models?

- Models from Chapter 5 emphasized control
 - Control flow graph, call graph, finite state machines
- We also need to reason about dependence
 - Where does this value of x come from?
 - What would be affected by changing this?
 - ...
- Many program analyses and test design techniques use data flow information
 - Often in combination with control flow
 - Example: “Taint” analysis to prevent SQL injection attacks
 - Example: Dataflow test criteria (Ch.13)

Def-Use Pairs (1)

- A **def-use (du) pair** associates a point in a program where a value is produced with a point where it is used
- **Definition:** where a variable gets a value
 - Variable declaration (often the special value "uninitialized")
 - Variable initialization
 - Assignment
 - Values received by a parameter
- **Use:** extraction of a value from a variable
 - Expressions
 - Conditional statements
 - Parameter passing
 - Returns

Learning objectives

- Understand basics of data-flow models and the related concepts (def-use pairs, dominators...)
- Understand some analyses that can be performed with the data-flow model of a program
 - The data flow analyses to build models
 - Analyses that use the data flow models
- Understand basic trade-offs in modeling data flow
 - variations and limitations of data-flow models and analyses, differing in precision and cost
Def-Use Pairs

... if (...) {
 x = ... ;
 ...
}
 y = ... + x + ...

Definition: x gets a value
Use: the value of x is extracted

Def-Use path

Def-Use Pairs

... if (...) {
 x = ... ;
 ...
}
 y = ... + x + ...

Def-Use Pairs (3)

- A definition-clear path is a path along the CFG from a definition to a use of the same variable without* another definition of the variable between
 - If, instead, another definition is present on the path, then the latter definition kills the former
- A def-use pair is formed if and only if there is a definition-clear path between the definition and the use

*There is an over-simplification here, which we will repair later.

Def-Use Pairs (3)

/** Euclid's algorithm */
public class GCD {
 public int gcd(int x, int y) {
 int tmp; // A: def x, y, tmp
 while (y != 0) { // B: use y
 tmp = x % y; // C: def tmp; use x, y
 x = y; // D: def x; use y
 y = tmp; // E: def y; use tmp
 }
 return x; // F: use x
 }
}

Figure 6.2, page 79

Def-Use Pairs (3)

Definition-Clear or Killing

x = ... // A: def x
q = ...
x = y; // B: kill x, def x
z = ...
y = f(x); // C: use x

Path A..C is not definition-clear
Path B..C is definition-clear

Definition: x gets a new value, old value is killed
Use: the value of x is extracted

Definition: x gets a value
Direct (Direct) Data Dependence Graph

- A direct data dependence graph is:
 - Nodes: as in the control flow graph (CFG)
 - Edges: def-use (du) pairs, labelled with the variable name

![Dependence edges show this x value could be the unchanged parameter or could be set at line D](Figure 6.3, page 80)

Control dependence (1)

- Data dependence: Where did these values come from?
- Control dependence: Which statement controls whether this statement executes?
 - Nodes: as in the CFG
 - Edges: unlabelled, from entry/branching points to controlled blocks

![Control dependence (1)](c 2007 Mauro Pezzè & Michal Young Ch 6, slide 10)

Dominators

- **Pre-dominators** in a rooted, directed graph can be used to make this intuitive notion of "controlling decision" precise.
- Node M dominates node N if every path from the root to N passes through M.
 - A node will typically have many dominators, but except for the root, there is a unique immediate dominator of node N which is closest to N on any path from the root, and which is in turn dominated by all the other dominators of N.
 - Because each node (except the root) has a unique immediate dominator, the immediate dominator relation forms a tree.
- **Post-dominators**: Calculated in the reverse of the control flow graph, using a special "exit" node as the root.

![Dominators (example)](c 2007 Mauro Pezzè & Michal Young Ch 6, slide 11)

- A pre-dominates all nodes; G post-dominates all nodes
- F and G post-dominate E
- G is the immediate post-dominator of B
 - C does not post-dominate B
- B is the immediate pre-dominator of G
 - F does not pre-dominate G
Control dependence (2)

- We can use post-dominators to give a more precise definition of control dependence:
 - Consider again a node N that is reached on some but not all execution paths.
 - There must be some node C with the following property:
 - C has at least two successors in the control flow graph (i.e., it represents a control flow decision);
 - C is not post-dominated by N
 - there is a successor of C in the control flow graph that is post-dominated by N.
 - When these conditions are true, we say node N is control-dependent on node C.
 - Intuitively: C was the last decision that controlled whether N executed.

Control Dependence

Data Flow Analysis

Calculating def-use pairs

- Definition-use pairs can be defined in terms of paths in the program control flow graph:
 - There is an association \((d,u)\) between a definition of variable \(v\) at \(d\) and a use of variable \(v\) at \(u\) iff
 - there is at least one control flow path from \(d\) to \(u\) with no intervening definition of \(v\).
 - \(v_d\) reaches \(u\) (\(v_d\) is a reaching definition at \(u\)).
 - If a control flow path passes through another definition \(e\) of the same variable \(v\), \(v_e\) kills \(v_d\) at that point.
 - Even if we consider only loop-free paths, the number of paths in a graph can be exponentially larger than the number of nodes and edges.
 - Practical algorithms therefore do not search every individual path. Instead, they summarize the reaching definitions at a node over all the paths reaching that node.
Exponential paths
(even without loops)

2 paths from A to B
4 from A to C
8 from A to D
16 from A to E
...
128 paths from A to V

Tracing each path is not efficient, and we can do much better.

DF Algorithm

- An efficient algorithm for computing reaching definitions (and several other properties) is based on the way reaching definitions at one node are related to the reaching definitions at an adjacent node.
- Suppose we are calculating the reaching definitions of node n, and there is an edge (p,n) from an immediate predecessor node p.
 - If the predecessor node p can assign a value to variable v, then the definition v_p reaches n. We say the definition v_p is generated at p.
 - If a definition v_p of variable v reaches a predecessor node p, and if v is not redefined at that node (in which case we say the v_p is killed at that point), then the definition is propagated on from p to n.

Equations of node B (while (y != 0))

- Reach(B) = ReachOut(A) ! ReachOut(E)
- ReachOut(A) = gen(A) = \{x_A, y_A, tmp_A\}
- ReachOut(E) = (Reach(E) \ \{y_E\}) \cup \{y_E\}

Equations of node E (y = tmp)

- Reach(E) = ReachOut(D)
- ReachOut(E) = (Reach(E) \ \{y_A\}) \cup \{y_E\}

This line has two predecessors: Before the loop, end of the loop

Calculation reaching definitions at E in terms of its immediate predecessor D

public class GCD {
 public int gcd(int x, int y) {
 int tmp; // A: def x, y, tmp
 while (y != 0) { // B: use y
 tmp = x % y; // C: def tmp; use x, y
 x = y; // D: def x; use y
 y = tmp; // E: def y; use tmp
 }
 return x; // F: use x
 }
}

This line has two predecessors:
Before the loop, end of the loop

This line has two predecessors:
Before the loop, end of the loop
General equations for Reach analysis

\[\text{Reach}(n) = \bigcup_{m \in \text{pred}(n)} \text{ReachOut}(m) \]

\[\text{ReachOut}(n) = (\text{Reach}(n) \setminus \text{kill}(n)) \cup \text{gen}(n) \]

\[\text{gen}(n) = \{ v_n \mid v \text{ is defined or modified at } n \} \]

\[\text{kill}(n) = \{ v_x \mid v \text{ is defined or modified at } x, x \neq n \} \]

Avail equations

\[\text{Avail}(n) = \bigcap_{m \in \text{pred}(n)} \text{AvailOut}(m) \]

\[\text{AvailOut}(n) = (\text{Avail}(n) \setminus \text{kill}(n)) \cup \text{gen}(n) \]

\[\text{gen}(n) = \{ \text{exp} \mid \text{exp is computed at } n \} \]

\[\text{kill}(n) = \{ \text{exp} \mid \text{exp has variables assigned at } n \} \]

Live variable equations

\[\text{Live}(n) = \bigcup_{m \in \text{succ}(n)} \text{LiveOut}(m) \]

\[\text{LiveOut}(n) = (\text{Live}(n) \setminus \text{kill}(n)) \cup \text{gen}(n) \]

\[\text{gen}(n) = \{ v \mid v \text{ is used at } n \} \]

\[\text{kill}(n) = \{ v \mid v \text{ is modified at } n \} \]

Classification of analyses

- Forward/backward: a node’s set depends on that of its predecessors/successors
- Any-path/all-path: a node’s set contains a value iff it is coming from any/all of its inputs

<table>
<thead>
<tr>
<th></th>
<th>Any-path (\bigcup)</th>
<th>All-paths (\bigcap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward (pred)</td>
<td>Reach</td>
<td>Avail</td>
</tr>
<tr>
<td>Backward (succ)</td>
<td>Live</td>
<td>“inevitable”</td>
</tr>
</tbody>
</table>
Iterative Solution of Dataflow Equations

• Initialize values (first estimate of answer)
 - For “any path” problems, first guess is “nothing” (empty set) at each node
 - For “all paths” problems, first guess is “everything” (set of all possible values = union of all “gen” sets)

• Repeat until nothing changes
 - Pick some node and recalculate (new estimate)

This will converge on a “fixed point” solution where every new calculation produces the same value as the previous guess.

Cooking your own: From Execution to Conservative Flow Analysis

• We can use the same data flow algorithms to approximate other dynamic properties
 - Gen set will be “facts that become true here”
 - Kill set will be “facts that are no longer true here”
 - Flow equations will describe propagation

• Example: Taintedness (in web form processing)
 - “Taint”: a user-supplied value (e.g., from web form) that has not been validated
 - Gen: we get this value from an untrusted source here
 - Kill: we validated to make sure the value is proper

Cooking your own analysis (2)

• Flow equations must be monotonic
 - Initialize to the bottom element of a lattice of approximations
 - Each new value that changes must move up the lattice

• Typically: Powerset lattice
 - Bottom is empty set, top is universe
 - Or empty at top for all-paths analysis

Worklist Algorithm for Data Flow

See figures 6.6, 6.7 on pages 84, 86 of Pezzè & Young

One way to iterate to a fixed point solution.

General idea:

• Initially all nodes are on the work list, and have default values
 - Default for “any-path” problem is the empty set, default for “all-path” problem is the set of all possibilities (union of all gen sets)

• While the work list is not empty
 - Pick any node n on work list; remove it from the list
 - Apply the data flow equations for that node to get new values
 - If the new value is changed (from the old value at that node), then
 • Add successors (for forward analysis) or predecessors (for backward analysis) on the work list
 - Eventually the work list will be empty (because new computed values = old values for each node) and the algorithm stops.
Data flow analysis with arrays and pointers

- Arrays and pointers introduce uncertainty:
 Do different expressions access the same storage?
 - $a[i]$ same as $a[k]$ when $i = k$
 - $a[i]$ same as $b[i]$ when $a = b$ (aliasing)

- The uncertainty is accommodated depending to the kind of analysis
 - Any-path: gen sets should include all potential aliases and kill set should include only what is definitely modified
 - All-path: vice versa

Scope of Data Flow Analysis

- Intraprocedural
 - Within a single method or procedure
 - as described so far
- Interprocedural
 - Across several methods (and classes) or procedures

Cost/Precision trade-offs for interprocedural analysis are critical, and difficult
 - context sensitivity
 - flow-sensitivity

Context Sensitivity

```
foo() {
  sub();
}

bar() {
  sub();
}
```

A context-sensitive (interprocedural) analysis distinguishes sub() called from foo() from sub() called from bar();
A context-insensitive (interprocedural) analysis does not separate them, as if foo() could call sub() and sub() could then return to bar()
Summary

• Data flow models detect patterns on CFGs:
 - Nodes initiating the pattern
 - Nodes terminating it
 - Nodes that may interrupt it
• Often, but not always, about flow of information (dependence)
• Pros:
 - Can be implemented by efficient iterative algorithms
 - Widely applicable (not just for classic "data flow" properties)
• Limitations:
 - Unable to distinguish feasible from infeasible paths
 - Analyses spanning whole programs (e.g., alias analysis) must trade off precision against computational cost