
Laboratory Project for a Software Quality Class

March 29, 2015

Abstract

This document reports the experience of a laboratory course on software quality and
is written primarily for instructors as a reference for similar activities. The project aims
to teach students the main problems of testing and analyzing software systems and some
solutions and tools to cope with the problems.

Contents

1 Target software 3

2 Tools 4

3 Activities and results 6
3.1 Expert judgment . 6
3.2 Combinatorial Testing . 6
3.3 Random testing . 6
3.4 Structural coverage . 7
3.5 Failure and faults . 7
3.6 Refining the test suites . 7
3.7 Structural coverage of the new test suite . 7
3.8 Mutation score . 8
3.9 Identifying failure and faults . 8

4 Final considerations 10

1

Executive summary

This document reports the organisation and lessons learned of a laboratory project, and is
written primarily for instructors as a reference experience for similar activities. The material
and the results are available for inspection and use.

The laboratory project aims to teach students the main problems of testing and analyzing
software systems and some solutions and tools to cope with the problems.

Here we report the work done in a laboratory course by 9 master students attending in
parallel a course on software quality based on our book. The project was scheduled on 10 weeks
with a two hours working time in class per week and 2-4 additional hours of off-line group work
for a total of 50-55 hours of work.

The task was to experiment with different techniques to test a software system (graphstream)
seeded with 8 realistic faults that we describe in details in Section 1.

The laboratory was organized as follows:

1. Students were asked to derive test cases based on expert judgement. We gave the stu-
dents the documentation and asked them to derive a set of test cases. This serves as a
baseline. Students can compare this first test suite with the ones generated with system-
atic approaches to understand the differences between the techniques experienced in the
laboratory.

2. Students were asked to derive test cases with a combinatorial approach (category parti-
tion). This serves to start learning both the difficulty of using a combinatorial approach
and the advantages with respect to an expert judgment approach [TOOL USED: GenPair,
Feed4JUnint]

3. Students were asked to generate test suites randomly. The goal is to understand the
effectiveness of random test case generators [TOOL USED: Randoop]

4. Students were asked to compute structural coverage for the different test suites. The goal
is to understand the relation between functional and structural approaches and to evaluate
the differences between different test suites from the coverage viewpoint [TOOL USED:
EclEmma]

5. Students were asked to identify failures and faults. In this phase, students are asked to
identify failures and locate faults using the test suites obtained in the different ways. The
goal is to understand the effectiveness of the different approaches and build awareness of
the oracle problem.

6. Students were asked to refine the test suites. In this phase, we divided the students in
two groups and we asked a group to refine the expert judgment test suite and the other
to refine the category partition suite. The test suites generated in the first iteration give
the student the baseline to understand the difficulty of generating a good test suite and of
applying a systematic approach, in our case category partition. [TOOL USED: GenPair,
Feed4JUnint]

7. Students were asked to recompute structural coverage, and compare the results with the
previous ones. The goal is to check the improvements that derive from the additional
experience of the students with the test case generation techniques in terms of structural
coverage [TOOL USED: EclEmma]

8. Students were asked to compute mutation score. The goal is to give students the op-
portunity to learn difficulties and advantages of mutation analysis and compare mutation
analysis with structural coverage [TOOL USED: Pitclipse]

9. Students were asked to identify failures and faults. The goal is to learn about the relation
between mutation score, structural coverage and effectiveness of the test suites, and to
compare the test suites according to their ability of revealing failures and providing support
to locate faults.

2

The students were asked to document both the test cases and the test suites, following the
standard proposed in the book. In the next section, we present the details of the work with
references to the artifacts that include documentation of the test cases, original test cases in
JUnit, and reports from the different tools about coverage, motivation score, etc.

In Section 4 we summarize the results of the work and provide some suggestions for the
instructors.

1 Target software

For the project we choosed the GraphStream Java library (“core” package, release 1.2), an
open source project that provides APIs to generate, modify and analyze graphs. For detailed
informations about this software refer to its official website at http://graphstream-project.org.

The original source code used in the project can be found here, and the library APIs docu-
mentation can be found here.

During the project we focused on the following subset of the library:

• SingleGraph (org.graphstream.graph.implementations.SingleGraph)

• MultiGraph (org.graphstream.graph.implementations.MultiGraph)

• Path (org.graphstream.graph.Path)

In these classes we seeded 8 faults inspiring from real faults found in bug repositories. The
source code of the faulty library can be found here. The following list enumerates the faults
showing the class they belong to, the original version of the code (ORIG) and the faulty version
(FAULT).

1. Path.java

ORIG

172 d += (Double) l.getAttribute(characteristic, Number.class);

FAULT

172 d = (Double) l.getAttribute(characteristic, Number.class);

2. AdjacencyListGraph.java

ORIG

115 if (initialNodeCapacity < DEFAULT NODE CAPACITY)
116 initialNodeCapacity = DEFAULT NODE CAPACITY;
117 if (initialEdgeCapacity < DEFAULT EDGE CAPACITY)
118 initialEdgeCapacity = DEFAULT EDGE CAPACITY;

FAULT These lines have been deleted.

3. AdjacencyListGraph.java

ORIG

181 if (initialNodeCapacity < DEFAULT NODE CAPACITY)
182 initialNodeCapacity = DEFAULT NODE CAPACITY;
183 if (initialEdgeCapacity < DEFAULT EDGE CAPACITY)
184 initialEdgeCapacity = DEFAULT EDGE CAPACITY;

FAULT These lines have been deleted.

4. AbstractGraph.java

ORIG

3

http://graphstream-project.org
https://github.com/graphstream/gs-core
http://graphstream-project.org/doc/API/

370 if (fromNode == null || toNode == null)

FAULT

370 if (fromNode == null)

5. AbstractGraph.java

ORIG

776 if (!edgeIt.hasNext())
777 return;

FAULT these lines have been deleted.

6. OneAttributeElement.java

ORIG

191 if (attributes.size() >= 1)

FAULT

191 if (attributes.size() >= 0)

7. Multinode.java

ORIG

71 && (type != O EDGE || etype != I EDGE))

FAULT

71 || (type != O EDGE || etype != I EDGE))

8. GraphFactory.java

ORIG

56 completeGraphClass = ‘‘org.graphstream.graph.implementations.’’

FAULT

56 completeGraphClass = ‘‘org.graphstream.graph.implementations’’

2 Tools

Understanding the importance of automation through the use of tools was one of the main goals
of the project, During the laboratory classes the students have used several tools to support the
various phases. The tools used in the project are:

Genpairs: to generate test case specifications using the category partition approach

Description Genpairs is a combinatorial test vector generator.

Input: A specification file in a format based loosely on category partition test specifica-
tions as originally described by Ostrand and Balcer, and as presented in the book by
Pezzè & Young, chapter 11.

Output: Either a table or a CSV file containing the generated combinations.

Link: The tool, the input syntax, and the several possible options can be found here.

Comments: The students reported some inconsistent results in case of values with mul-
tiple properties.

4

Alternative tools: A set of alternative tools, both commercial and free, can be found
at: http://www.pairwise.org/tools.asp

Feed4JUnit: to execute parameterized unit test library

Description Feed4Junit executes parameterized unit tests automatically. This tool can
be used to speed up the generation of test cases with similar structure but different
inputs.

Input: Either a CSV or an Excel file that contains the parameter values, and a parame-
terized JUnit test case.

Link: http://databene.org/feed4junit.html

Comments: The students reported several problems in the setup of the tool.

Alternative tools: https://code.google.com/p/junitparams/

Randoop: to generate test cases randomly

Description Randoop generates test input for Java randomly. The user can define a
deadline to limit the amount of time the tool should run or the number of test cases
it should create. It runs the test cases on all the classes.

Input: A class or a set of classes.

Output: A set of test cases.

Link: http://randoop.googlecode

Comments: The students reported random crashes in Eclipse when the tool was executed
with a time limit greater than 60 seconds.

Alternative tools: EvoSuite

EclEmma: to measure structural coverage

Description EclEmma is an Eclipse plugin that computes structural coverage.

Input: A set of JUnit test cases.

Output: An HTML report with both statement and branch coverage.

Link: http://www.eclemma.org

Comments: No particular problem or limitation reported.

Alternative tools: http://ecobertura.johoop.de/, http://codecover.org/

Pitclipse: to perform mutation analysis

Description Pitclipse is an Eclipse plugin to perform mutation analysis.

Input: A set of test cases.

Output: An HTML report with per class mutation score.

Link: http://pitest.org

Comments: Pitclipse is not compatible with Feed4JUnit. Moreover, the tool has several
major issues, such as lack of isolation among test case executions.

Alternative tools: Jumble, Javalanche, Major

5

http://www.pairwise.org/tools.asp
http://databene.org/feed4junit.html
https://code.google.com/p/junitparams/
http://randoop.googlecode
http://www.evosuite.org/
http://www.eclemma.org
http://ecobertura.johoop.de/
http://codecover.org/
http://pitest.org
http://jumble.sourceforge.net/
http://www.javalanche.org/
http://mutation-testing.org/

3 Activities and results

In the following we report the results of the activities performed in the project. The references
point to the detailed results that are grouped in a directory doc for the documentation and a
directory test for the test cases. The documentation is a set of html documents reporting the
documentation of the test suite (TS) and of the single test case (TC) in the format suggested
in the book. The test cases are Junit test cases.

3.1 Expert judgment

We divided the team in three groups,and we asked each group to derive test cases for the classes
and methods under test. We merged the derived test cases in a single test suite (removing
duplicated test cases). The final test suite includes 28 test cases (Table 1).

The results of this activity can be found here.

Number of generated test cases
Classes Methods Group 1 Group 2 Group 3 Merged

SingleGraph

constructor 1 0 1 1
addNode 2 1 1 3
addEdge 4 1 3 6
degree 1 0 0 1
removeNode 1 1 0 1
removeEdge 1 1 0 1

MultiGraph

constructor 2 0 1 2
addNode 0 1 1 2
addEdge 1 2 3 4
removeNode 1 1 0 1
removeEdge 1 1 0 1

Path

constructor 1 0 1 1
setRoot 1 0 1 1
addNode 1 0 1 1
addEdge 1 0 1 1
removeLoops 1 0 0 1

Table 1: Test cases generated with expert judgment.

3.2 Combinatorial Testing

The students worked all together to identify categories, values and constraints according to the
category partition approach. Students used Genpairs to automatically derive new test cases
from the categories.

The students learned that Genpairs does not always handle the constraints in the proper way,
thus, they manually removed the infeasible combinations. The students focused on the classes
SingleGraph and MultiGraph, ignoring the class Path (Table 2). The results of this activity can
be found here.

3.3 Random testing

The students used Randoop to randomly generate test cases for the classes under test. They
generated 4527 test cases. Most of the generated test cases were not runnable because of a bug
in Randoop, but the remising were still too many to be inspected manually.

The results of this activity can be found here.

6

Classes Methods Number of generated test cases

SingleGraph
addNode 8
addEdge 17
removeNode 9

MultiGraph
addNode 0
addEdge 9
removeNode 0

Path
popNode 0
removeLoop 0

Table 2: Test cases generated with category partition.

3.4 Structural coverage

The students calculated statement and branch coverage of the generated test suites with EclEmma
(Table 3). The results of this activity can be found here.

Coverage

Unit
Expert Category Partition Random

Statement Branches Statement Branches Statement Branches
AbstractGraph 29 26 27 34 86 80
AbstractElement 4 1 5 3 75 70
AdjacencyListNode 38 29 16 10 74 60
AbstractNode 4 0 4 0 10 0
AdjacencyListGraph 65 25 35 17 100 100
MultiNode 51 17 30 11 61 22
AbstractEdge 42 31 38 44 45 44
SingleNode 87 59 45 23 94 86
MultiGraph 100 n.a. 79 n.a. 100 n.a.
SingleGraph 100 n.a. 100 n.a. 100 n.a.
AdjacencyListNode 0 0 0 0 89 79
SingleNodeTwoEdges 100 n.a. 100 n.a. 100 n.a.
Path 43 53 0 0 43 53
IdAlreadyUsedException 0 n.a. 71 n.a. 71 n.a.

Table 3: Structural coverage of the different test suites.

3.5 Failure and faults

The students were asked to execute the test suites ti identify failures and the corresponding
faults. At this stage they did not identify any fault.

3.6 Refining the test suites

We divided the students in two groups, and we asked a group to refine the expert judgment test
suite and the other to refine the category partition suite. This led to new test cases (Tables 4
and 5).

The results of this activity can be found here (combinatorial testing) and here (expert judge-
ment).

3.7 Structural coverage of the new test suite

The students computed the structural coverage of the new test suites (Table 6).
The results of this activity can be found here.

7

Classes Methods Number of generated test cases

SingleGraph

constructor 1
addNode 3
addEdge 6
getDegree 1
removeNode 1
removeEdge 1
getArray 2
hasVector 2
hasNumber 2
hasLabel 1
clear 1
getEdgeSet 2
getNodeSet 2
addAttribute 3
removeAttribute 1
clearAttributes 1
setAttribute 1
changeAttribute 1
getEdge 2
getEdgeBetween 1
getNode 3
getEdgeIterator 2
getNodeIterator 2

MultiGraph

constructor 2
addNode 2
addEdge 4
removeNode 1
removeEdge 1

Path

constructor 1
setRoot 5
addNode 8
addEdge 8
removeLoops 1
getACopy 2
push 2
pop 2

AbstractGraph

addNode 7
addEdge 16
removeNode 8
removeEdge 14
factory 2
attributes 11
step 3

Table 4: New expert judgment test suite.

3.8 Mutation score

The students calculated the mutation score with Pitclipse.
The results of this activity can be found here.

3.9 Identifying failure and faults

The students identified failures and faults in the code using their test suites. They identified
two out of the eight seeded faults and 6 additional faults present in in the software.

8

Classes Methods Number of generated test cases

SingleGraph

addNode 7
addEdge 29
removeNode 5
removeEdge 36
constructor 17

MultiGraph
addNode 0
addEdge 9
removeNode 9

Path
popNode 0
removeLoop 0

Table 5: New category partition test suite.

Coverage

Unit
Expert Category Partition Randoop

Stmt. Branches Stmt. Branches Stmt. Branch
AbstractGraph 87 82 58 65 86 80
AbstractElement 46 28 5 2 75 70
AdjacencyListNode 55 40 65 52 74 60
AbstractNode 11 0 4 0 10 0
AdjacencyListGraph 89 92 82 75 100 100
MultiNode 51 17 30 11 61 22
AbstractEdge 83 38 58 50 45 44
SingleNode 92 73 90 86 94 86
MultiGraph 100 n.a. 100 n.a. 100 n.a.
SingleGraph 100 n.a. 100 n.a. 100 n.a.
AdjacencyListNode 100 100 89 79 89 79
SingleNodeTwoEdges 100 n.a. 100 n.a. 100 n.a.
Path 91 91 0 0 43 53
IdAlreadyUsedException 71 n.a. 71 n.a. 71 n.a.

Table 6: Structural coverage of the new category partition test suites.

Unit Mutation Score
AbstractGraph 53%
AbstractElement 12%
AdjacencyListNode 22%
AbstractNode 2%
AdjacencyListGraph 51%
MultiNode 0%
AbstractEdge 47%
SingleNode 39%
MultiGraph 0%
SingleGraph 100%
AdjacencyListNode 0%
SingleNodeTwoEdges 0%
Path 0%
IdAlreadyUsedException 0%

Table 7: Mutation score percentage by class.

The faults they identified and the methods they used to identify them (either Expert opinion
(EO) or Category partition (CP)) are summarized in Table 8.

9

Class Description Discovered by Bug No.

SingleGraph

Modifiable edge set EO
Modifiable node set EO
Removing a node from a different graph CP
Removing an edge from a different graph CP
Default values of capacity of edges and arrays CP
Removing an edge exception CP

AbstractGraph Removing a zero degree node EO and CP 5
Path Counting the weight of the path EO 1

Table 8: Discovered faults.

4 Final considerations

The first activities (generating test cases according to expert judgment and using category
partition) indicate that the students were not good testers and that using category partition is
more difficult than expected. The test suites were quite small and the identified categories and
values were not covering all cases. The limits of the generated test suites were confirmed in the
third and fifth step, resulting in a suboptimal mutation score, but most important not able to
reveal any of the seeded faults.

The experience with automatic random generation of test cases (activity 4) resulted in an
enormous amount of test case unable to identify any of the seeded faults, with results difficult
to analyze and the notification of a lot of uninteresting faults.

The experience with category partition increased the awareness of the requirements about
generating test cases, and the second suite generated following expert judgment was much
more thorough that the first one. Similarly, an open discussion on how to improve the use of
category partition produced much better results, as indicated by the last three steps, coverage
and mutation score increased, but more notably they were able to reveal some real failures with
both expert and category test suites due both to the thoroughness of the test cases and the
effectiveness of test oracles. In particular, the test suite generated using category partition was
able to reveal most of the seeded faults, more than the test suite generated by experts and in
both cases more than the test suite generated randomly.

During the project the students were able to understand the difficulty of test activities and
the involved costs, were able to appreciate a systematic approach and the limits of random
testing, and could see the oracle problem.

The use of tools has been important. Not all tools behaved as expected and some cre-
ated small problems, nevertheless the students could clearly see that automation is absolutely
important for a thorough testing.

10

	Target software
	Tools
	Activities and results
	Expert judgment
	Combinatorial Testing
	Random testing
	Structural coverage
	Failure and faults
	Refining the test suites
	Structural coverage of the new test suite
	Mutation score
	Identifying failure and faults

	Final considerations

