
Chapter 2

A Framework for Test and
Analysis

The purpose of software test and analysis is either to assess software qualities or else
to make it possible to improve the software by finding defects. Of the many kinds of
software qualities, those addressed by the analysis and test techniques discussed in this
book are the dependability properties of the software product.

There are no perfect test or analysis techniques, nor a single “best” technique for
all circumstances. Rather, techniques exist in a complex space of trade-offs, and of-
ten have complementary strengths and weaknesses. This chapter describes the nature
of those trade-offs and some of their consequences, and thereby a conceptual frame-
work for understanding and better integrating material from later chapters on individual
techniques.

It is unfortunate that much of the available literature treats testing and analysis
as independent or even as exclusive choices, removing the opportunity to exploit their
complementarities. Armed with a basic understanding of the trade-offs and of strengths
and weaknesses of individual techniques, one can select from and combine an array of
choices to improve the cost-effectiveness of verification.

2.1 Validation and Verification

While software products and processes may be judged on several properties ranging
from time-to-market to performance to usability, the software test and analysis tech-
niques we consider are focused more narrowly on improving or assessing dependabil-
ity.

Assessing the degree to which a software system actually fulfills its requirements,
in the sense of meeting the user’s real needs, is called validation. Fulfilling require- ∆ validation

ments is not the same as conforming to a requirements specification. A specification is
a statement about a particular proposed solution to a problem, and that proposed solu-
tion may or may not achieve its goals. Moreover, specifications are written by people,
and therefore contain mistakes. A system that meets its actual goals is useful, while a

15

Sample of Pezzè & Young, Software Testing and Analysis 
© 2008 John Wiley & Sons, all rights reserved



16 A Framework for Test and Analysis

Actual Needs and 
Constraints

System Test

Integration Test

Module Test

User Acceptance (alpha, beta test)

R
ev

ie
w

Analysis / 
Review

Analysis / 
Review

User review of external behavior as it is 
determined or becomes visible

Unit/
Components

Subsystem 
Design/Specs Subsystem

System 
Specifications

System 
Integration

Delivered 
Package

Validation

Verification 

Le
ge

nd

Unit/Component 
Specs

Figure 2.1: Validation activities check work products against actual user requirements,
while verification activities check consistency of work products.

system that is consistent with its specification is dependable.1∆ dependable

“Verification” is checking the consistency of an implementation with a specifica-∆ verification

tion. Here, “specification” and “implementation” are roles, not particular artifacts. For
example, an overall design could play the role of “specification” and a more detailed
design could play the role of “implementation”; checking whether the detailed design
is consistent with the overall design would then be verification of the detailed design.
Later, the same detailed design could play the role of “specification” with respect to

1A good requirements document, or set of documents, should include both a requirements analysis and
a requirements specification, and should clearly distinguish between the two. The requirements analysis
describes the problem. The specification describes a proposed solution. This is not a book about requirements
engineering, but we note in passing that confounding requirements analysis with requirements specification
will inevitably have negative impacts on both validation and verification.

Sample of Pezzè & Young, Software Testing and Analysis 
© 2008 John Wiley & Sons, all rights reserved



Validation and Verification 17

source code, which would be verified against the design. In every case, though, ver-
ification is a check of consistency between two descriptions, in contrast to validation
which compares a description (whether a requirements specification, a design, or a
running system) against actual needs.

Figure 2.1 sketches the relation of verification and validation activities with respect
to artifacts produced in a software development project. The figure should not be inter-
preted as prescribing a sequential process, since the goal of a consistent set of artifacts
and user satisfaction are the same whether the software artifacts (specifications, design,
code, etc.) are developed sequentially, iteratively, or in parallel. Verification activities
check consistency between descriptions (design and specifications) at adjacent levels
of detail, and between these descriptions and code.2 Validation activities attempt to
gauge whether the system actually satisfies its intended purpose.

Validation activities refer primarily to the overall system specification and the final
code. With respect to overall system specification, validation checks for discrepancies
between actual needs and the system specification as laid out by the analysts, to en-
sure that the specification is an adequate guide to building a product that will fulfill its
goals. With respect to final code, validation aims at checking discrepancies between
actual need and the final product, to reveal possible failures of the development process
and to make sure the product meets end-user expectations. Validation checks between
the specification and final product are primarily checks of decisions that were left open
in the specification (e.g., details of the user interface or product features). Chapter 4
provides a more thorough discussion of validation and verification activities in partic-
ular software process models.

We have omitted one important set of verification checks from Figure 2.1 to avoid
clutter. In addition to checks that compare two or more artifacts, verification includes
checks for self-consistency and well-formedness. For example, while we cannot judge
that a program is “correct” except in reference to a specification of what it should do,
we can certainly determine that some programs are “incorrect” because they are ill-
formed. We may likewise determine that a specification itself is ill-formed because it
is inconsistent (requires two properties that cannot both be true) or ambiguous (can be
interpreted to require some property or not), or because it does not satisfy some other
well-formedness constraint that we impose, such as adherence to a standard imposed
by a regulatory agency.

Validation against actual requirements necessarily involves human judgment and
the potential for ambiguity, misunderstanding, and disagreement. In contrast, a speci-
fication should be sufficiently precise and unambiguous that there can be no disagree-
ment about whether a particular system behavior is acceptable. While the term testing
is often used informally both for gauging usefulness and verifying the product, the
activities differ in both goals and approach. Our focus here is primarily on dependabil-
ity, and thus primarily on verification rather than validation, although techniques for
validation and the relation between the two is discussed further in Chapter 22.

Dependability properties include correctness, reliability, robustness, and safety.
Correctness is absolute consistency with a specification, always and in all circum-
stances. Correctness with respect to nontrivial specifications is almost never achieved.

2This part of the diagram is a variant of the well-known “V model” of verification and validation.

Sample of Pezzè & Young, Software Testing and Analysis 
© 2008 John Wiley & Sons, all rights reserved



18 A Framework for Test and Analysis

Reliability is a statistical approximation to correctness, expressed as the likelihood
of correct behavior in expected use. Robustness, unlike correctness and reliability,
weighs properties as more and less critical, and distinguishes which properties should
be maintained even under exceptional circumstances in which full functionality can-
not be maintained. Safety is a kind of robustness in which the critical property to be
maintained is avoidance of particular hazardous behaviors. Dependability properties
are discussed further in Chapter 4.

2.2 Degrees of Freedom

Given a precise specification and a program, it seems that one ought to be able to
arrive at some logically sound argument or proof that a program satisfies the specified
properties. After all, if a civil engineer can perform mathematical calculations to show
that a bridge will carry a specified amount of traffic, shouldn’t we be able to similarly
apply mathematical logic to verification of programs?

For some properties and some very simple programs, it is in fact possible to obtain
a logical correctness argument, albeit at high cost. In a few domains, logical correct-
ness arguments may even be cost-effective for a few isolated, critical components (e.g.,
a safety interlock in a medical device). In general, though, one cannot produce a com-
plete logical “proof” for the full specification of practical programs in full detail. This
is not just a sign that technology for verification is immature. It is, rather, a conse-
quence of one of the most fundamental properties of computation.

Even before programmable digital computers were in wide use, computing pioneer
Alan Turing proved that some problems cannot be solved by any computer program.undecidability

The universality of computers — their ability to carry out any programmed algorithm,
including simulations of other computers — induces logical paradoxes regarding pro-
grams (or algorithms) for analyzing other programs. In particular, logical contradic-
tions ensue from assuming that there is some program P that can, for some arbitrary
program Q and input I, determine whether Q eventually halts. To avoid those log-halting problem

ical contradictions, we must conclude that no such program for solving the “halting
problem” can possibly exist.

Countless university students have encountered the halting problem in a course
on the theory of computing, and most of those who have managed to grasp it at all
have viewed it as a purely theoretical result that, whether fascinating or just weird, is
irrelevant to practical matters of programming. They have been wrong. Almost every
interesting property regarding the behavior of computer programs can be shown to
“embed” the halting problem, that is, the existence of an infallible algorithmic check
for the property of interest would imply the existence of a program that solves the
halting problem, which we know to be impossible.

In theory, undecidability of a property S merely implies that for each verification
technique for checking S, there is at least one “pathological” program for which that
technique cannot obtain a correct answer in finite time. It does not imply that verifica-
tion will always fail or even that it will usually fail, only that it will fail in at least one
case. In practice, failure is not only possible but common, and we are forced to accept
a significant degree of inaccuracy.

Sample of Pezzè & Young, Software Testing and Analysis 
© 2008 John Wiley & Sons, all rights reserved



Degrees of Freedom 19

Typical 
testing 
technique

Perfect verification of 
arbitrary properties by 

logical proof or 
exhaustive testing 

(infinite effort)

Theorem proving:
Unbounded effort to 

verify general properties

Model Checking:
Decidable but possibly 
intractable checking of 

simple temporal properties

Data flow 
analysis

Precise analysis of 
simple syntactic 

properties

Simplified
properties

Pessimistic 
inaccuracy

Optimistic
inaccuracy

Figure 2.2: Verification trade-off dimensions

Sample of Pezzè & Young, Software Testing and Analysis 
© 2008 John Wiley & Sons, all rights reserved



20 A Framework for Test and Analysis

Program testing is a verification technique and is as vulnerable to undecidability
as other techniques. Exhaustive testing, that is, executing and checking every possible
behavior of a program, would be a “proof by cases,” which is a perfectly legitimate way
to construct a logical proof. How long would this take? If we ignore implementation
details such as the size of the memory holding a program and its data, the answer is
“forever.” That is, for most programs, exhaustive testing cannot be completed in any
finite amount of time.

Suppose we do make use of the fact that programs are executed on real machines
with finite representations of memory values. Consider the following trivial Java class:

1 class Trivial{
2 static int sum(int a, int b) { return a + b; }
3 }

The Java language definition states that the representation of an int is 32 binary
digits, and thus there are only 232 × 232 = 264 ≈ 1021 different inputs on which the
method Trivial.sum() need be tested to obtain a proof of its correctness. At one nanosec-
ond (10−9 seconds) per test case, this will take approximately 1012 seconds, or about
30,000 years.

A technique for verifying a property can be inaccurate in one of two directions (Fig-
ure 2.2). It may be pessimistic, meaning that it is not guaranteed to accept a program∆ pessimistic

even if the program does possess the property being analyzed, or it can be optimistic∆ optimistic

if it may accept some programs that do not possess the property (i.e., it may not detect
all violations). Testing is the classic optimistic technique, because no finite number
of tests can guarantee correctness. Many automated program analysis techniques for
properties of program behaviors3 are pessimistic with respect to the properties they are
designed to verify. Some analysis techniques may give a third possible answer, “don’t
know.” We can consider these techniques to be either optimistic or pessimistic depend-
ing on how we interpret the “don’t know” result. Perfection is unobtainable, but one
can choose techniques that err in only a particular direction.

A software verification technique that errs only in the pessimistic direction is called
a conservative analysis. It might seem that a conservative analysis would always be
preferable to one that could accept a faulty program. However, a conservative analysis
will often produce a very large number of spurious error reports, in addition to a few
accurate reports. A human may, with some effort, distinguish real faults from a few
spurious reports, but cannot cope effectively with a long list of purported faults of
which most are false alarms. Often only a careful choice of complementary optimistic
and pessimistic techniques can help in mutually reducing the different problems of the
techniques and produce acceptable results.

In addition to pessimistic and optimistic inaccuracy, a third dimension of compro-
mise is possible: substituting a property that is more easily checked, or constraining
the class of programs that can be checked. Suppose we want to verify a property S,
but we are not willing to accept the optimistic inaccuracy of testing for S, and the only

3Why do we bother to say “properties of program behaviors” rather than “program properties?” Because
simple syntactic properties of program text, such as declaring variables before they are used or indenting
properly, can be decided efficiently and precisely.

Sample of Pezzè & Young, Software Testing and Analysis 
© 2008 John Wiley & Sons, all rights reserved



Degrees of Freedom 21

A Note on Terminology
Many different terms related to pessimistic and optimistic inaccuracy appear in the

literature on program analysis. We have chosen these particular terms because it is
fairly easy to remember which is which. Other terms a reader is likely to encounter
include:

Safe: A safe analysis has no optimistic inaccuracy; that is, it accepts only correct
programs. In other kinds of program analysis, safety is related to the goal of
the analysis. For example, a safe analysis related to a program optimization is
one that allows that optimization only when the result of the optimization will be
correct.

Sound: Soundness is a term to describe evaluation of formulas. An analysis of a
program P with respect to a formula F is sound if the analysis returns True only
when the program actually does satisfy the formula. If satisfaction of a formula
F is taken as an indication of correctness, then a sound analysis is the same as a
safe or conservative analysis.

If the sense of F is reversed (i.e., if the truth of F indicates a fault rather than cor-
rectness) then a sound analysis is not necessarily conservative. In that case it is
allowed optimistic inaccuracy but must not have pessimistic inaccuracy. (Note,
however, that use of the term sound has not always been consistent in the soft-
ware engineering literature. Some writers use the term unsound as we use the
term optimistic.)

Complete: Completeness, like soundness, is a term to describe evaluation of formu-
las. An analysis of a program P with respect to a formula F is complete if the
analysis always returns True when the program actually does satisfy the formula.
If satisfaction of a formula F is taken as an indication of correctness, then a com-
plete analysis is one that admits only optimistic inaccuracy. An analysis that is
sound but incomplete is a conservative analysis.

Sample of Pezzè & Young, Software Testing and Analysis 
© 2008 John Wiley & Sons, all rights reserved



22 A Framework for Test and Analysis

available static analysis techniques for S result in such huge numbers of spurious error
messages that they are worthless. Suppose we know some property S′ that is a suffi-
cient, but not necessary, condition for S (i.e., the validity of S′ implies S, but not the
contrary). Maybe S′ is so much simpler than S that it can be analyzed with little or
no pessimistic inaccuracy. If we check S′ rather than S, then we may be able to pro-
vide precise error messages that describe a real violation of S′ rather than a potential
violation of S.

Many examples of substituting simple, checkable properties for actual properties
of interest can be found in the design of modern programming languages. Consider,
for example, the property that each variable should be initialized with a value before its
value is used in an expression. In the C language, a compiler cannot provide a precise
static check for this property, because of the possibility of code like the following:

1 int i, sum;
2 int first=1;
3 for (i=0; i<10; ++i) {
4 if (first) {
5 sum=0; first=0;
6 }
7 sum += i;
8 }

It is impossible in general to determine whether each control flow path can be
executed, and while a human will quickly recognize that the variable sum is initialized
on the first iteration of the loop, a compiler or other static analysis tool will typically
not be able to rule out an execution in which the initialization is skipped on the first
iteration. Java neatly solves this problem by making code like this illegal; that is, the
rule is that a variable must be initialized on all program control paths, whether or not
those paths can ever be executed.

Software developers are seldom at liberty to design new restrictions into the pro-
gramming languages and compilers they use, but the same principle can be applied
through external tools, not only for programs but also for other software artifacts. Con-
sider, for example, the following condition that we might wish to impose on require-
ments documents:

(1) Each significant domain term shall appear with a definition in the glossary of
the document.

This property is nearly impossible to check automatically, since determining whether
a particular word or phrase is a “significant domain term” is a matter of human judg-
ment. Moreover, human inspection of the requirements document to check this require-
ment will be extremely tedious and error-prone. What can we do? One approach is to
separate the decision that requires human judgment (identifying words and phrases as
“significant”) from the tedious check for presence in the glossary.

(1a) Each significant domain term shall be set off in the requirements document
by the use of a standard style term. The default visual representation of the

Sample of Pezzè & Young, Software Testing and Analysis 
© 2008 John Wiley & Sons, all rights reserved



Varieties of Software 23

term style is a single underline in printed documents and purple text in on-line
displays.

(1b) Each word or phrase in the term style shall appear with a definition in the
glossary of the document.

Property (1a) still requires human judgment, but it is now in a form that is much
more amenable to inspection. Property (1b) can be easily automated in a way that
will be completely precise (except that the task of determining whether definitions
appearing in the glossary are clear and correct must also be left to humans).

As a second example, consider a Web-based service in which user sessions need not
directly interact, but they do read and modify a shared collection of data on the server.
In this case a critical property is maintaining integrity of the shared data. Testing for
this property is notoriously difficult, because a “race condition” (interference between
writing data in one process and reading or writing related data in another process) may
cause an observable failure only very rarely.

Fortunately, there is a rich body of applicable research results on concurrency con-
trol that can be exploited for this application. It would be foolish to rely primarily on
direct testing for the desired integrity properties. Instead, one would choose a (well-
known, formally verified) concurrency control protocol, such as the two-phase locking
protocol, and rely on some combination of static analysis and program testing to check
conformance to that protocol. Imposing a particular concurrency control protocol sub-
stitutes a much simpler, sufficient property (two-phase locking) for the complex prop-
erty of interest (serializability), at some cost in generality; that is, there are programs
that violate two-phase locking and yet, by design or dumb luck, satisfy serializability
of data access.

It is a common practice to further impose a global order on lock accesses, which
again simplifies testing and analysis. Testing would identify execution sequences in
which data is accessed without proper locks, or in which locks are obtained and re-
linquished in an order that does not respect the two-phase protocol or the global lock
order, even if data integrity is not violated on that particular execution, because the
locking protocol failure indicates the potential for a dangerous race condition in some
other execution that might occur only rarely or under extreme load.

With the adoption of coding conventions that make locking and unlocking actions
easy to recognize, it may be possible to rely primarily on flow analysis to determine
conformance with the locking protocol, with the role of dynamic testing reduced to
a “back-up” to raise confidence in the soundness of the static analysis. Note that the
critical decision to impose a particular locking protocol is not a post-hoc decision that
can be made in a testing “phase” at the end of development. Rather, the plan for
verification activities with a suitable balance of cost and assurance is part of system
design.

2.3 Varieties of Software

The software testing and analysis techniques presented in the main parts of this book
were developed primarily for procedural and object-oriented software. While these

Sample of Pezzè & Young, Software Testing and Analysis 
© 2008 John Wiley & Sons, all rights reserved



24 A Framework for Test and Analysis

“generic” techniques are at least partly applicable to most varieties of software, partic-
ular application domains (e.g., real-time and safety-critical software) and construction
methods (e.g., concurrency and physical distribution, graphical user interfaces) call for
particular properties to be verified, or the relative importance of different properties,
as well as imposing constraints on applicable techniques. Typically a software system
does not fall neatly into one category but rather has a number of relevant characteristics
that must be considered when planning verification.

As an example, consider a physically distributed (networked) system for scheduling
a group of individuals. The possibility of concurrent activity introduces considerations
that would not be present in a single-threaded system, such as preserving the integrity
of data. The concurrency is likely to introduce nondeterminism, or else introduce an
obligation to show that the system is deterministic, either of which will almost certainly
need to be addressed through some formal analysis. The physical distribution may
make it impossible to determine a global system state at one instant, ruling out some
simplistic approaches to system test and, most likely, suggesting an approach in which
dynamic testing of design conformance of individual processes is combined with static
analysis of their interactions. If in addition the individuals to be coordinated are fire
trucks, then the criticality of assuring prompt response will likely lead one to choose a
design that is amenable to strong analysis of worst-case behavior, whereas an average-
case analysis might be perfectly acceptable if the individuals are house painters.

As a second example, consider the software controlling a “soft” dashboard display
in an automobile. The display may include ground speed, engine speed (rpm), oil pres-
sure, fuel level, and so on, in addition to a map and navigation information from a
global positioning system receiver. Clearly usability issues are paramount, and may
even impinge on safety (e.g., if critical information can be hidden beneath or among
less critical information). A disciplined approach will not only place a greater empha-
sis on validation of usability throughout development, but to the extent possible will
also attempt to codify usability guidelines in a form that permits verification. For ex-
ample, if the usability group determines that the fuel gauge should always be visible
when the fuel level is below a quarter of a tank, then this becomes a specified property
that is subject to verification. The graphical interface also poses a challenge in effec-
tively checking output. This must be addressed partly in the architectural design of the
system, which can make automated testing feasible or not depending on the interfaces
between high-level operations (e.g., opening or closing a window, checking visibility
of a window) and low-level graphical operations and representations.

Summary

Verification activities are comparisons to determine the consistency of two or more
software artifacts, or self-consistency, or consistency with an externally imposed cri-
terion. Verification is distinct from validation, which is consideration of whether soft-
ware fulfills its actual purpose. Software development always includes some validation
and some verification, although different development approaches may differ greatly
in their relative emphasis.

Precise answers to verification questions are sometimes difficult or impossible to

Sample of Pezzè & Young, Software Testing and Analysis 
© 2008 John Wiley & Sons, all rights reserved



Varieties of Software 25

obtain, in theory as well as in practice. Verification is therefore an art of compromise,
accepting some degree of optimistic inaccuracy (as in testing) or pessimistic inaccu-
racy (as in many static analysis techniques) or choosing to check a property that is only
an approximation of what we really wish to check. Often the best approach will not be
exclusive reliance on one technique, but careful choice of a portfolio of test and anal-
ysis techniques selected to obtain acceptable results at acceptable cost, and addressing
particular challenges posed by characteristics of the application domain or software.

Further Reading

The “V” model of verification and validation (of which Figure 2.1 is a variant) appears
in many software engineering textbooks, and in some form can be traced at least as
far back as Myers’ classic book [Mye79]. The distinction between validation and ver-
ification as given here follow’s Boehm [Boe81], who has most memorably described
validation as “building the right system” and verification as “building the system right.”

The limits of testing have likewise been summarized in a famous aphorism, by
Dijkstra [Dij72] who pronounced that “Testing can show the presence of faults, but
not their absence.” This phrase has sometimes been interpreted as implying that one
should always prefer formal verification to testing, but the reader will have noted that
we do not draw that conclusion. Howden’s 1976 paper [How76] is among the earliest
treatments of the implications of computability theory for program testing.

A variant of the diagram in Figure 2.2 and a discussion of pessimistic and optimistic
inaccuracy were presented by Young and Taylor [YT89]. A more formal characteriza-
tion of conservative abstractions in static analysis, called abstract interpretation, was
introduced by Cousot and Cousot in a seminal paper that is, unfortunately, nearly un-
readable [CC77]. We enthusiastically recommend Jones’s lucid introduction to abstract
interpretation [JN95], which is suitable for readers who have a firm general background
in computer science and logic but no special preparation in programming semantics.

There are few general treatments of trade-offs and combinations of software test-
ing and static analysis, although there are several specific examples, such as work in
communication protocol conformance testing [vBDZ89, FvBK+91]. The two-phase
locking protocol mentioned in Section 2.2 is described in several texts on databases;
Bernstein et al. [BHG87] is particularly thorough.

Exercises

2.1. The Chipmunk marketing division is worried about the start-up time of the new
version of the RodentOS operating system (an (imaginary) operating system of
Chipmunk). The marketing division representative suggests a software require-
ment stating that the start-up time shall not be annoying to users.

Explain why this simple requirement is not verifiable and try to reformulate the
requirement to make it verifiable.

Sample of Pezzè & Young, Software Testing and Analysis 
© 2008 John Wiley & Sons, all rights reserved



26 A Framework for Test and Analysis

2.2. Consider a simple specification language SL that describes systems diagrammat-
ically in terms of functions, which represent data transformations and correspond
to nodes of the diagram, and flows, which represent data flows and correspond
to arcs of the diagram.4 Diagrams can be hierarchically refined by associating a
function F (a node of the diagram) with an SL specification that details function
F . Flows are labeled to indicate the type of data.

Suggest some checks for self-consistency for SL.

2.3. A calendar program should provide timely reminders; for example, it should
remind the user of an upcoming event early enough for the user to take action,
but not too early. Unfortunately, “early enough” and “too early” are qualities
that can only be validated with actual users. How might you derive verifiable
dependability properties from the timeliness requirement?

2.4. It is sometimes important in multi-threaded applications to ensure that a se-
quence of accesses by one thread to an aggregate data structure (e.g., some kind
of table) appears to other threads as an atomic transaction. When the shared
data structure is maintained by a database system, the database system typically
uses concurrency control protocols to ensure the atomicity of the transactions it
manages. No such automatic support is typically available for data structures
maintained by a program in main memory.

Among the options available to programmers to ensure serializability (the illu-
sion of atomic access) are the following:

• The programmer could maintain very coarse-grain locking, preventing any
interleaving of accesses to the shared data structure, even when such inter-
leaving would be harmless. (For example, each transaction could be encap-
sulated in an single synchronized Java method.) This approach can cause a
great deal of unnecessary blocking between threads, hurting performance,
but it is almost trivial to verify either automatically or manually.

• Automated static analysis techniques can sometimes verify serializability
with finer-grain locking, even when some methods do not use locks at all.
This approach can still reject some sets of methods that would ensure seri-
alizability.

• The programmer could be required to use a particular concurrency con-
trol protocol in his or her code, and we could build a static analysis tool
that checks for conformance with that protocol. For example, adherence
to the common two-phase-locking protocol, with a few restrictions, can be
checked in this way.

• We might augment the data accesses to build a serializability graph struc-
ture representing the “happens before” relation among transactions in test-
ing. It can be shown that the transactions executed in serializable manner
if and only if the serializability graph is acyclic.

4Readers expert in Structured Analysis may have noticed that SL resembles a simple Structured Analysis
specification

Sample of Pezzè & Young, Software Testing and Analysis 
© 2008 John Wiley & Sons, all rights reserved



Varieties of Software 27

Compare the relative positions of these approaches on the three axes of verifi-
cation techniques: pessimistic inaccuracy, optimistic inaccuracy, and simplified
properties.

2.5. When updating a program (e.g., for removing a fault, changing or adding a func-
tionality), programmers may introduce new faults or expose previously hidden
faults. To be sure that the updated version maintains the functionality provided
by the previous version, it is common practice to reexecute the test cases de-
signed for the former versions of the program. Reexecuting test cases designed
for previous versions is called regression testing.

When testing large complex programs, the number of regression test cases may
be large. If updated software must be expedited (e.g., to repair a security vul-
nerability before it is exploited), test designers may need to select a subset of
regression test cases to be reexecuted.

Subsets of test cases can be selected according to any of several different criteria.
An interesting property of some regression test selection criteria is that they do
not to exclude any test case that could possibly reveal a fault.

How would you classify such a property according to the sidebar of page 21?

Sample of Pezzè & Young, Software Testing and Analysis 
© 2008 John Wiley & Sons, all rights reserved




