The Complexity of Symmetry-Breaking Formulas

Eugene M. Luks*
Department of Computer Science
University of Oregon
Eugene, OR 97403
luks@cs.uoregon.edu

Amitabha Roy*
Department of Computer Science
Boston College
Chestnut Hill, MA 02167
aroy@cs.bc.edu

Keywords: symmetry-breaking, lex-leader formulas, symmetry in search.

Abstract

Symmetry-breaking formulas for a constraint-satisfaction problem are
satisfied by exactly one member (e.g., the lexicographic leader) from each
set of “symmetrical points” in the search space. Thus, the incorporation
of such formulas can accelerate the search for a solution without sacrificing
satisfiability. We study the computational complexity of generating lex-
leader formulas. We show, even for abelian symmetry groups, that the
number of essential clauses in the “natural” lex-leader formula could be
exponential. Furthermore, we show the intractability (NP-hardness) of
finding any expression of lex-leadership without reordering the variables,
even for elementary abelian groups with orbits of size 3. Nevertheless,
using techniques of computational group theory, we describe a reordering
relative to which we construct small lex-leader formulas for abelian groups.

1 Introduction

The exploitation of symmetries to facilitate search is a standard tool in combi-
natorics (see, e.g., [17, 5, 12]) and has, more recently, been applied with some
success to constraint-satisfaction problems [4, 7, 3, 1]. In particular, in [7],
Crawford and Ginsberg along with the present authors proposed a novel use

*The authors are pleased to acknowledge partial support via NSF grant CCR9820945

of symmetries that coordinates easily with any existing search technology. In-
troducing the concept of symmetry-breaking formulas, they proposed the use
of symmetries to restrict the underlying problem. These additional constraints
are satisfied by exactly one member (“the lexicographic leader”) of each set of
symmetric points' in the search space. Thus, instead of having to reformulate
each advance in search technology, this method can be used as a preprocessor
to any constraint solver. The technique was extended and successfully applied
to practical planning problems by Joslin and Roy [14].

The symmetry-breaking approach operates as follows. Let T be the input
constraint-satisfaction problem and let G be a group of permutations of the
variables known to preserve models of T'. One constructs a set S of constraints
that are satisfied only by the lexical leader in each G-orbit in the search space.
In considering the augmented problem T A S, the search algorithm will auto-
matically restrict to those lex-leaders, thus pruning the search.

The central theme of this paper is the efficiency of constructing a suitable
lex-leader S.

In previous investigations [7], a “natural” lex-leader formula Ay, (G) (see
Section 3 herein) was proposed, namely, a truth assignment X on the variables
is a lex-leader if and only if

Yge G: X > g(X)

(where g(X) represents the effect on the truth assignment of the permutation
of the variables; a formal definition appears in Section 3). The efficacy of this
formula was successfully demonstrated on selected problems involving small
groups. Although Ap.+(G) required enumeration of clauses for all group ele-
ments, it was pointed out that one expects considerable redundancy amongst
these and so the formula might be brought down to manageable size by “prun-
ing” redundant clauses (see examples in Section 3). However, we now describe
symmetry groups for which A4t (G) cannot be pruned below exponential size
(see Section 6.1). Indeed, this can happen even within a rudimentary class of
abelian permutation groups operating on the set () of variables: groups in the
class have orbits of size < 2 and are, thereby, identifiable with vector spaces
over the 2-element field.

Our approach now is to avoid group enumeration by substituting a formula
that expresses “g € G”. This in itself is not difficult. However, we then need to
reformulate what seems an instance of nonsatisfiability

—3g: (g € G) A (X <g(X))]

as an instance of satisfiability. We do this first for the above “vector spaces”,
exploiting the fact that nonsolvability of a linear system can be expressed as
solvability of a “dual” linear system. As a result, we write (in Section 7.4) a
lex-leader formula A(G) of size O(n?) for such groups (n = |Q]).

1 A search space “point” is a string that records truth assignments to the boolean variables

An additional obstacle arises in extending A(G) to general abelian groups.
Via a sharpening of a result of [2] and [7], we show that even if the orbits
have size as large as 3, testing lex-leadership of points (i.e., strings) is coNP-
complete (Section 6.2). Hence, it is unlikely that the property can be captured
in a polynomial-size formula. However, it seems that the problem is sensitive
to the ordering of the variables. We go on to show that, for any abelian G, one
can find an ordering of Q) with respect to which we construct a suitable A(G)
of size O (n®u(logn)) (here p(logn) is a lower-order term capturing the cost of
arithmetic on numbers with O(logn) digits).

The construction of succinct A(G) makes essential use of the duality of sub-
groups of abelian groups (equivalent to the isomorphism of the group with its
character group) (Section 7.1). This device is needed to express membership
in a subgroup which is defined initially by its dual subgroup (Section 7.5). Tt
is also critical in generalizing the result for Zs and converting the assertion of
nounsolvability of a linear system over some Z,. (where p is prime) to the as-
sertion of solvability of a linear system (Section 7.2); this is again a necessary
translation en route to an interpretation as satisfiability of a boolean formula.

In Section 8, we comment on the extendability of the results to nonabelian
groups.

2 Definitions and Notations

For a group G, we write H < G to indicate that H is a subgroup of G. The
group consisting of all permutations of a set 2, called the symmetric group on
Q, is denoted by Sym(Q); a permutation group is a subgroup of Sym(Q) for a
specified 2.

We say that G acts on € if there is a homomorphism ¢ : G — Sym(Q).
Suppose G acts on . For w € Q and g € G, the image of w under ¢(g) is
denoted by w9. The orbit of w under G is w“ = {w9| g € G}. The restriction of
G on the orbit A, denoted by G2, is called an orbit constituent of G. The group
G is said to be transitive on) if Q is itself an orbit of G. The point stabilizer of
w is the subgroup G, = {g € G|w?9 = w}. The point-wise stabilizer of A C
is G(a) = NseaGs. A group G acts regularly on Q if G, = 1 for all w € Q.

We have particular need to deal with permutation groups G for which every
orbit has size < 2. Note, in particular, such G is necessarily an elementary
abelian 2-group, that is, a direct product of cyclic groups of order 2. These
groups are characterizable as well as the additive groups of vector spaces over
the 2-element field.

We write G = (S) to indicate that set S C G generates the group G. For
computation, permutation groups are input (and output) via generators. Thus,
subgroups of Sym(2) have succinct descriptions since they have generating sets
of size O(|Q?]) [8]; in particular, we may assume that a group is specified in
space that is polynomial in ||. We refer to any standard text (e.g., [13]) for
basic facts about groups. For permutation groups, we refer to [8]. See [19] for
background on polynomial-time computation in permutation groups.

Suppose @ ={1,2,...,n} and G < Sym(f) (this will be the usual situation
herein). For 0 < i < n, let Q; denote {1,2,...,i} and G; = G(q,). Let 2¢
denote the set of functions from Q to {0,1} (equivalently, 2% is the set of all
n-bit strings). Then G acts on 2 via X ~ 9X for g € G, X € 2% where
(9X)(i) = X(i9).2 (The orbits of the action of G on 2 will be of particular
concern to us.) For any X € 22 and 0 < i < n, let X; be the restriction of
X to €; (considering X as a string, X; is an i-tuple consisting of the first i
coordinates). There is a natural lexicographic (dictionary) order on 2%: X <Y
it X #Y and X (i) < Y (i) for the least i such that X; # Y;. The lex-leader in
an orbit is the lexically largest string.

A propositional variable can take on two values, true or false (we write 0 for
false, 1 for true). Let L be a set of propositional variables. Literals are variables
in L or negations of variables in L. A clause is a disjunction of distinct literals
in L. A theory is a conjunction of clauses. A truth assignment for a set of
variables L is a function X : L — {0,1}. In the usual way, X extends by the
semantics of propositional logic to a function on the set of theories over L and
by abuse of notation, we will continue to denote the extended function by X.
A truth assignment X of L is called a model of a theory T if X(T') = 1.

The propositional satisfiability problem or SAT is the following decision prob-
lem: given a theory, decide whether it has a model. This is a canonical example
of an NP-complete problem [10].

Let T be a theory. A sub-collection S of clauses of T is said to be a pruning
of T'if the conjunction A _g s, is logically equivalent to 7. A particular clause
of T is said to be non-prunable if it belongs to all prunings of 7. A clause A (or
a collection of clauses) is said to prune a clause B in T if A (or the conjunction
of the collection of clauses) logically implies B. We remark that non-prunability
is a very stringent requirement on a clause: if any subcollection of clauses of T'
is logically equivalent to T', it must include the non-prunable clauses.

3 The “Natural” Lex-Leader Formula

We formalize the notion of lex-leader formulas in the context of a permutation
group acting on the set of variables and develop the “natural” formula of this
type.

Let Q = {1,2,...,n} be an ordered set, equipped with a total order p, and
let G < Sym(f2). Our goal is to write a formula A(G, p) in propositional logic
that is true of only one member of each G-orbit in 2%; we may consider that
member to be canonical. In this paper, we choose the canonical member to be
the lexical leader in the orbit, i.e., a function X such that for all Y # X in
the same orbit, Y < X. Thus, a lez-leader formula for G is a boolean formula
A(G, p) defined over n variables, whose models are lex-leaders in their orbits. If
the ordering p of 2 is clear from the context (e.g., when an ordering is explicitly

2Tt is natural to write this as a “left action”, e.g., we have 9192X = 91(924), whereas
expressing the image of X under g; by X9 would lead to the awkward relation X9192 =
(ng)91 .

defined or when it is the natural integer total order in {1,2, ...n}) we drop it
from the notation and refer to a lex-leader formula as A(G).

In subsequent sections, we will allow A(G, p) to be defined over a larger set
of variables and require that the projection of its models in a fixed set of n
coordinates (e.g., the variables of a theory T" where G acts as symmetries of T,
see Section 4) are lex-leaders in their G-orbits. However, the first formula that
comes to mind involves only the given variables.

By the definition of lexicographical order, for any X,Y € 2, the assertion
X >Y is captured in the boolean formula

N (X =Yio = X(i) > Y ()
1<i<n
With this convention, 11 is the lex-leader in the set {00,01,10,11}. Observe
that X (¢) > Y (4) is just a mnemonic for the boolean expression Y (i) — X (7).
We wish to assert that X > 9X, for all g € G. With this in mind, we let
C(g,1) denote the formula

(“X)ic1 = Xic1 = X(4) > (“X)(9)
(the X will be understood in our use of C(g,1)). Note that C(g,7) expands to

[(X(1) = XAIAX(2) = X 2N --AX (i=1) = X(((=1)7)] = X (1) > X(29)

4

Thus, we construct the “natural” lex-leader formula, Ap,t(G), where

Anat(Gvﬂ) = /\ /\C(g/l) (1)

geGi=1

As before, if the order p is clear from the context, we drop it from the
notation and refer to the natural lex-leader formula Ap ¢ (G).

Equation (1) could have duplicate clauses. For example, consider G =
Sym({1,2,3}). Then C((12),1) =C((1 2 3),1) = (X (1) > X(2)) which means
that the clause X (1) > X(2) appears twice in Equation (1). Notice that the
group elements (1 2) and (1 2 3) both belong to the same right coset of G.

The above intuition allows us to eliminate duplicate clauses as follows: For
each i, we include the clause C(g,7) for just one g in each coset of G mod G;.
This approach can still leave us with Z;:Ol |G/Git1]| clauses (which could be
of exponential size in general groups). So the question remains: can we prune
Apat (G) further? In some cases, we can: for example, the clause

C((1,3),1) = (X(1) = X(3))
logically implies the clause
C((1,2,3),2) ={(X(1) = X(2)) = X(2) = X(3)}

so that, in the presence of the former, the latter can be dropped.

Here are some more substantial examples of pruning.

Example (Symmetric Group)

Let G = Sym(Q?) where Q = {1,2,...,n}. Observe that the lex-leaders of
29 under the action of G are those assignments where all 1's appear before all
0’s, i.e., these are assignments X such that X (i) > X(i+1)foralll1 <i<n-1.
Thus a lex-leader formula for G is

AN (X)) > X(i+1) (2)

1<i<n—1

It is easy to see that one can prune A4t (G) to Formula (2). Since the for-
mula in Equation (1) involves a conjunction over every group element, Ap 4+ (G)
starts out with at least n! clauses. First observe that C'(g,) is trivial if 19 < (in
fact, this remains true regardless of the group). So we need only consider clauses
C(g,1) where 1Y > i. Any such nontrivial clause C(g,1) is pruned by a clause of
the form C(h, i) where h is the transposition (¢ 9). This removes all clauses but
those of the form X (i) > X (j) fori < j. This means that there are O(n?) clauses
in Ap,t(G) after pruning. But we can further prune even further by replacing
any 3 clauses of the form (X (1) > X (7)) A (X(j) > X (k)) A (X(9) > X (k)) by
(X (i) > X(j)) A (X(J) > X(k)). This prunes Ap,+(G) to Formula (2).

Example (Full Vector Space)

Let G = (g;|1 <i<mn/2) <Sym(2) where Q = {1,2,3,...,n} have orbits
{2i—1,2i} where 1 < i < n/2, where we assume n is even. Also (2i—1)9% = 2/—1
(which means that (2i)% = 2i)if j # i and (2j —1)% = 2 (and (2§)% = 2j—1).
So G = Z;ﬂ where g € G ¢ vy € Z where vy(i) = 1 iff (20 — 1)9 = 24. Since
|G| = 27/2, Apat (G) has exponential size (before pruning). We now show that
Apat(G) can be pruned to the following formula:

N (X(2i-1) > X(20). (3)

1<i<n/2

To see why, consider any C'(g,i) for 1 <i < n. Observe that C(g, 1) is trivial
(and can be pruned from Ap,¢(G)) when i is even. It is also trivial when i
is odd and ¢ = 4. So assume i is odd (= 2j — 1) and (25 — 1)9 = 2j. The
consequent of C(g,2j — 1) is X(2j — 1) > X(2j) and so C(g,2j — 1) is pruned
by the clause C(g;,2j — 1) = (X(2j — 1) > X(2j)). Thus clauses of the form
X(25 —1) > X(29) for 1 < j < n/2, are the only clauses that remain, pruning
Apat(G) to Formula (3).

Such examples lead one to hope that, even when A4t (G) is of exponential
size in ||, one could prune it to polynomial size by removing redundant clauses.
However, we shall see that this is not the case even for groups with orbits of
size 2 (Theorem 5.1).

4 Symmetry-Breaking Formulas

Let T be a theory over an n variable set L. A permutation g € Sym(L) is said
to be an automorphism (also called a “symmetry”) of the theory T' if g maps
models of T to models and non-models to non-models. The set of all symmetries
of a theory is easily seen to form a group: this group is called the “symmetry
group” of the theory, denoted by Aut(7T). Our input will be T' and a specified
subgroup G of Aut(T). The goal of symmetry-breaking is to use the presence of
this group to find models of T efficiently.

We remark that this is a slight departure from the methodology of [7] which
explicitly computed the group of syntactic symmetries of an input theory 7' and
always used this precise group. A syntactic symmetry is a permutation of the
variables that maps the set of clauses to itself.

In this paper, we make no assumptions on how we obtain the input group
G. The group G could possibly include symmetries that are not syntactic; for
example, G could contain permutations that the user knows are symmetries
because of some domain-specific knowledge. On the other hand, syntactic sym-
metries can reveal hidden structure in the input problem: e.g., in [14], where the
authors considered transportation planning problems, structural symmetries in-
volved intricate switching of packages and destinations which were not obvious
from a priori knowledge of the problem domain.

Remark: Although not addressed in this paper, the problem of finding syntac-
tic symmetries of T is interesting in its own right. This problem is equivalent
to the graph isomorphism problem (ISO) [6], whose complexity is a classic open
problem in computer science: there are no polynomial-time algorithms known
to solve ISO but there is evidence that it is not NP-complete, see, e.g., [16]) and
it is rarely difficult in practice.

The group G < Aut(T') induces an equivalence relation on the set of truth
assignments of L, wherein X is equivalent to Y if Y = 9X for some g € G; thus,
the equivalence classes are precisely the orbits of G on the set of assignments.
Note, further, that any orbit either contains only models of T" or contains no
models of 7. This indicates why symmetries should reduce search: we can
determine whether 7" has a model by visiting each equivalence class rather than
visiting each truth assignment.

We illustrate this with an example:

Exzample: Let T be aVE bVE aVbVe, aVhandlet G = {((ab). It is
clear that (a b) € Aut(T), in fact it is a syntactic symmetry. The two models
of T are (1,0,0) and (0,1,0) (where the first, second and third coordinates are
true/false values of a,b and ¢ respectively). Clearly, this permutation maps
models to models. We can “break” this symmetry by adding the clause b — a
which eliminates one of the models, (0,1,0), leaving us with only one model

from the orbit. Thus the symmetry-breaking formula for 7" is (b — a).

In general, we introduce an ordering on the set of variables, and use it to
construct a lexicographic order on the set of assignments. We will then add

a formula that is true of only the lexically largest model under this ordering,
within each orbit.®> Equation (1) is an example of such a formula.

The size of the lex-leader formulas we obtain for abelian groups is O(n®u(logn))
where n is the size of the permutation domain (Theorem 5.4). We remark that
n is not necessarily the size of the input problem. If the input is a boolean
formula, then n is the number of variables and the size of the formula could
possibly be much larger than O(n3). At the same time, the symmetry group
may not act on all n points, so the bound we obtain for abelian groups might
be overly pessimistic. Another option might be to break symmetries partially
by writing lex-leaders for only some orbits of assignments.

It is also worth noting that that the problem of finding A(G) for an arbitrary
abelian G < Sym(Q) does arise from consideration of some boolean formula T
Specifically, the action of any such G can be extended to some polynomial-size
Q0 O Q such that G = Aut(T'), where T is defined on the variables . With
respect to an ordering of () that begins with 2, the lex-leader approach to finding
a symmetry-breaking formula includes finding a suitable A(G) for the given 2
action.

Since we allow an arbitrary group of symmetries as input, the symmetry
breaking formula depends only the group and not on the input theory. Because
of this, we may ignore the presence of the input theory and focus on the size of
lex-leader formulas for various groups. As a result, Theorems 5.1, 5.2, 5.3 and
5.4 make no mention of theories.

5 Statement of Results

We now summarize our results in the following theorems. Proofs are included
in subsequent sections.

Theorem 5.1 There are an infinite number of pairs G,QQ, where G < Sym(Q),
such that the number of non-prunable clauses in Ayt (G, p) is c™ for all possible
orderings p of Q, where ¢ is a constant > 1 and n = |Q|. In fact, these groups
G have orbits of size < 2 and are, therefore, elementary abelian 2-groups.

Nevertheless, we show:

Theorem 5.2 Let G < Sym(Q) have orbits of size < 2. Then, for any ordering
p of Q, one can find a lex-leader formula A(G, p) of size O(n?).

However, we also prove that unless P = NP, there is no polynomial-time
algorithm that computes a lex-leader formula for an arbitrary group G (even
for abelian G):

3We note that this is surely not the only way to create symmetry-breaking formulas. One
can break symmetries by adding any formula that is true of one member of each equivalence
class.

Theorem 5.3 The problem of testing whether a 0/1 string X is the lex-leader
in its G-orbit is coNP-complete. This is the case even if G is abelian with orbits
of size 3.

We remark that a slightly weaker result with orbits of size 4 can be deduced
from [2] (Proposition 3.1). A result of this form was also noted in [7] (Theorem
3.2) but the groups were nonabelian and the orbits unbounded. In that case the
groups were explicitly constructed as the automorphisms of specified theories.
It is possible, though less convenient in this case, to show how the group class
underlying Theorem 5.3 arises as automorphism groups.

Finally, we show that the hardness suggested by Theorem 5.3 can be cir-
cumvented by a careful choice of variable ordering. We prove:

Theorem 5.4 For abelian groups G < Sym(Q), one can find an ordering p of
Q and a lex-leader formula A(G,p) of size O(n® u(logn)) (| = n) where u(r)
is the time to multiply two r-digit integers.

Proofs appear as follows: Theorem 5.1 in Section 6.1, Theorem 5.2 in Sec-
tion 7.4, Theorem 5.3 in Section 6.2, Theorem 5.4 in Section 7.5.

6 Hardness of Lex-Leader Formulas

In this section, we study obstructions to the construction of certain lex-leader
formulas. We show an exponential lower bound to the “natural” formula Ay, (G)
(Section 6.1) even for groups with orbits of size 2. We also show that, in general,
determining lex-leadership with respect to given orders is NP-hard (Section 6.2)
even for abelian groups with orbits of size 3. The reader should contrast these
results to the positive results described in Theorems 5.2, 5.4.

6.1 Exponential Lower Bounds for the “Natural” Formula

In this subsection, we exhibit an exponential lower bound on the size of the
naive lex-leader formula, A4t (G), proving Theorem 5.1.

Given 2 = {1,2,...,n}, G = (S) < Sym(f), recall from Equation (1) that
the formulas associated with g € G are C(g,1i):

[(OX)ii1 = Xia] = [X(i) > (°X)(@)], fori=1,....n (4)

We now consider the case when n is even and the orbits of G are {2i — 1, 27}
for 1 < i < n/2. Then G is an elementary abelian 2-group (every element
in G has order 2) and G can be identified with a subspace of Z% as follows:
every permutation ¢ in G corresponds to a vector v, in Z;/Q such that v, (i) =
1iff (2i —1)9 = 2i, where 1 < i < n/2 and v,(i) is the ith coordinate of v,.
So the group G = (S) corresponds to the vector subspace V < ZZ/Q where
{vs] s € S} is now a set of basis vectors of V.

Equation (4) is necessarily trivially true when 9 = . Because G has orbits
of size 2, it is also a true when i is even: suppose i is even and 9 # i. Then
this means 19 =i — 1 and (i — 1)? = 4. This, in turn, means that the antecedent
of (4) implies (X (¢ — 1) = X(i)). The consequent is X (i) > X (i — 1). If the
antecedent is true, the consequent is trivially true and the whole expression is
satisfied. If the antecedent is false, the whole expression is again true. Thus we
need to consider clauses of the form C(g,2i — 1), when (2i —1)9 # 2i — 1 (which
forces (20 — 1)9 = 24). (A very similar argument shows that the clause C(g,1)
is trivial for all g € G and i such that 9 < i for any group G.)

If i is odd and 9 # i, then the expression [(¢X);—1 = X;_1] reduces to
equality of X over the 2-element orbits where g moves points. Thus we may
rewrite Equation (4) for C(g,2i — 1) to get

{ A {X(2k1):X((2k1)9)}}—>X(2z'1)2X((2z‘1)9)

1<k<i—1

We say that C(g,2i — 1) is nontrivial if (2i — 1)9 # 2i — 1.
Thus we can prune Ap,t(G) to Apat(G) defined by the following equation:

Knat(G) = /\ /\ C(g,2i —1) (5)
9€G 1<i<n)2

(26—1)9#2i—1

We will now show that there are groups G for which the number of non-
prunable clauses of Ap4t(G) have exponential size.

For g € G, 1 <i < n/2, let v,; € Z} be the projection of v, in the first i
coordinates, i.e., vy ;(j) = 1 iff (2j —1)9 = 25 for 1 < j < 4. Observe that if
C(g,2i — 1) is nontrivial then v, (i) = 1. For v,w € Z%, let v < w iff v(i) < w(i)
for all 1 < 4 < k. In other words, the order < is the lattice-theoretic order
defined by set inclusion. For 1 < i < n/2, define

Vi= {Ug,i € V|Ug(i) =1}.

Vi is also a lattice under the partial order defined by set-theoretic inclusion
(inherited from Z3). Note by definition, the zero vector is not in V;.

Lemma 6.1 Let C(g1,2i1 — 1) and C(ga,2i2 — 1) be two non-trivial clauses in

Apat(G). Then C(g1,2i1 — 1) prunes C(g2,2i2 — 1) iff i1 = i2 and vy, ;s = Vg,
where 1 = 17 = 1.

Proof: The “only-if” direction is easy to prove. We now prove the non-trivial
direction.

(=) Suppose i1 # is. We exhibit an X which makes C(g1,2i7 — 1) true and
C(g2,2is — 1) false, contradicting the hypothesis. Define I} = {l | vy, 4, (1) =1}
and Ir = {l | vg,,;,(I) = 1}. Note that iy € I; and iy € L.

10

We define X as follows:

X(2k—1)=0, X(2k)=0 ifke L k+i
X(2ip—1)=0, X(2iy) =1
X2k—1)=1, X(2k) =0 ifk¢gl
Every coordinate not in Iy or I is set to 0 in X. The clause C(go,2i2 — 1) is
false under this X. We show that if iy # iy and I} € I,, the clause C(g1,141) is
true, contradicting the hypothesis.

The antecedent of C(g;,2i; — 1) for j € {1,2} is

N X(2k-1)=X(2k)
ke l;\{i;}

and the consequent of C(g;,2i; — 1) for j € {1,2} is
X(2i;— 1) > X(2i;).

If 41 # iy, the consequent of C(g1,2i; — 1) ,i.e., X (2i1 —1) > X (24) is true
because either i; ¢ I, in which case X (2i; — 1) = 1,X(2i;) =0 or iy € L7 in
which case X (2i; —1) =0, X(2i;) = 0 since i; € I\ {i2}. Hence in either case,
C(g1,2i1 — 1) is true.

Suppose i1 = i but Iy ¢ I,. (Note that this is equivalent to vy, ; A
Ug,,i where i = i3 = iy) Then there is some [€ I; \ I, such that the term
X (21—1) = X (21) appears in the antecedent of C'(¢g1,2i; —1). So the antecedent
of C(g1,2i1 — 1) is false. Hence C(g1,2i; — 1) is true. O

In general, it is possible that a clause in A4t (G) for an arbitrary group G,
cannot be pruned away by a single other clause but some conjunction of clauses
prunes it. For groups under consideration, we show that this not possible.

Lemma 6.2 Let C = {C(¢1,2i; — 1),C(g2,2ia — 1),...,C(gg,2ix, — 1)} be a
collection of clauses such that their conjunction

N\ C

cgec

prunes a clause C(g,2i — 1) then each C € C prunes C(g,2i —1).

Proof: Let I = {l|v,:(l) = 1} and assign X as follows. For all [€ I,l # i
let X (20 —1) = 0,X(2) = 0 and X (2 — 1) = 0, X(2i) = 1. For all | & I let
X(21 —1) =1,X(2]) = 0. Observe that C(g,2i — 1) is false for this X. If for
1 < j <k, we have i; # i, then X makes C(g;,2i; — 1) true. Hence we must
have i; = i for each 1 < j < k. If i; = i but vy, ; A vy,;, then C(g;,2i; — 1) is
true. However X makes C(g,17) false. Hence it must be the case that for each
g, ij =i and vy, ; < vy;. Now Lemma 6.1 implies that C(g;,2i; — 1) prunes
C(g,2i —1). O

The following lemma gives a combinatorial interpretation to logical prun-
ability in Ap,¢(G):

11

Lemma 6.3 A non-trivial clause C(g,2i — 1) in /N\nat(G) is non-prunable iff
Vg, 15 mintmal in V;.

Proof: (<) The clause C(g,2i — 1) is prunable if there is some set of clauses
C(gi;,2i;—1) in Knat(G) which prunes it. Lemma 6.2 implies that this means
that C(g;;,2i; — 1) prunes C(g,2i — 1) for each j. Lemma 6.1 now implies that
ij=tand w = vy ;< Vg

The reverse direction follows from Lemma 6.1. O

In particular, Lemma 6.3 provides a bijection between the non-prunable
clauses in Ap,¢ (G) and the minimal elements of the lattice V;. Define min(V;) =
{veV)|VYweV,w=<v—v=uw},ie, min(V;) is the set of minimal elements
of V;. We can thus conclude

Proposition 6.1 Let G =2V < Z3. The number of non-prunable formulas in
Apat(G) is 327, [min(V;)].

Henceforth, we will work with these groups in their vector space representa-
tion, i.e., as subspaces of Z3 for some n. Our goal will be to exhibit subspaces
of Z% with exponentially large | min(V},)| — these will represent groups with an
exponential number of distinct non-prunable clauses.

We define the subspace V = V(n) < Z32""! as follows. For S C {1,...,n}
let vs € V(n) < Z3""! be defined as follows:

1 itie s
, vs(i—mn)+|S| mod2 ifn+1<i<2n
vs(i) = |S| mod2 ifi=2n+1
0 otherwise

In other words, vg has the incidence vector of S in the first n coordinates,
either a copy of the same incidence vector in the next n coordinates (if |S| is
even) or the incidence vector of the complement of S in the next n coordinates
(if |S| is odd). The last coordinate of vg is the “parity check” bit of S.

Set

Vin)={vs] SC{1,...,n}}.

Lemma 6.4 Any vector vs € V with |S| odd is minimal in V \ {0}.

Proof: Suppose vs: € V be such that vs < vg and S’ # S and S’ # 0. This
necessarily implies that S’ C S. If |S’| is even, then S’ C S (looking at the
last n + 1 coordinates). This means that S’ = ((a contradiction). If [S'| is
odd and S" # S, then vg: < vg implies S’ C S when you consider the first n
coordinates and S C S’ when you consider the last n+1 coordinates. So S = S’,
a contradiction. O

12

Lemma 6.5 For any ordering of coordinates,
| min(Va,iq)| > 2" 2%

Proof: The set of vectors M = {vg| S C {1,2,...,n},|S|is odd } remains
minimal in V irrespective of the ordering of coordinates. Thus in any ordering
of coordinates, min(Vay,+1) = M N Va,41. Since at least half of the vectors in M
have 1’s in the (2n + 1)-th coordinate, min(Vay,41) > |M|/2. Since M| =271,
we have the desired result. O

Observe that as long as the orbits of G in Q all have size 2 then we only
need to consider C'(g,4) where i is the first element in its orbit and the position
of the second element is not relevant. Hence for the corresponding group G =
G(n) < Sym(Q) (where |Q| = 4n + 2 and G(n) = V(n) < Z3""') the number
of non-prunable clauses is at least 2”2 for any ordering of the variables. Thus
we have a proof of Theorem 5.1.

Remark [Sperner spaces]: We have seen that Ap.¢(G) cannot be pruned
below an exponential size when GG corresponds to a vector space with an expo-
nential number of minimal vectors. This would be the case if the vector space
were such that all non-zero vectors were incomparable (in the inclusion order).
This suggested to us a concept of Sperner spaces. These are subspaces of Z%
such that, for all non-zero vectors v,w € V, v < w — v = w. The terminology
stems from a relation to the Sperner families (see [9]) of extremal set theory.
These structures have also arisen in the study of statistical designs ([15], [21]).
In a future paper ([20]), we further investigate the combinatorics of Sperner
spaces. We show, in particular, that with high probability a random subspace
of Z% is Sperner. This indicates an abundance of groups satisfying the conclu-
sion of Theorem 5.1. We also show that testing whether a group is a Sperner
space is coNP-complete.

6.2 Order Sensitivity of Lex-Leader Formulas

Since a lex-leader formula for G < Sym(Q) has to assume that (2 is ordered, it is
conceivable that the size of the lex-leader formula could vary widely depending
on what ordering was chosen for 2. This is because the complexity of finding
lex-leaders is dependent on the input ordering. While this problem is solvable
in polynomial time for even solvable (and beyond) groups when we assume an
ordering of the permutation domain, it is NP-hard (and not known to be in NP)
for elementary abelian 3-groups for some orderings of the permutation domain,
as asserted in Theorem 5.3.

Proof of Theorem 5.3

We show that testing whether there exists g € G such that 9X > X is NP-
complete. This is clearly equivalent to the original problem. This is done via a
reduction from Exact 3-Cover [10]:

13

Problem: Exact 3-Cover

Input: A set T and a collection O of 3-element subsets of ©.

Question: Is there a sub-collection ©" C © such that I' = [J;c g 0.

Given an instance (I',©) of Exact 3-Cover, we construct a linearly ordered set
Q, G < Sym(Q), and a string X on) as follows.

Q: Let A be the set of unordered pairs of elements of ', and let ¥ =
{{6.0'} 6,0 € ©, 6N O £ (j}, the set of unordered pairs of intersecting triples.
Let ® =TUAUWY. Set 2 :={1,2,3} x &, fix any linear ordering of ® and order
Q) lexicographically (so that i x ® precedes j x ® if i < 7).

G: First let s denote the 3-cycle (1,2,3). For § € O, we define gy € Sym()
so that

(i,w)% = { (Z:S:::‘g‘.,w) forwel'uw
(¢° ,w) forwe A

(so the nontrivial orbits of gg are 3-cycles). Set G = ({gs | 0 € O}).
X: Let X take the value 1 on {1,3} x ® and 0 on {2} x ®.

Suppose that ©' C © is a perfect cover of I' and set g := [[;.o, 9o. We show
that 9X takes the value 1 on @ x 1: fory € I, |[yN#| = 1 for exactly one § € O’ so
that (1,w)? = (3,w) and 9X(1,w) = X(3,w) = 1; for ¢ € TUT, |¢pNb| < 1 for all
6 € O so that (1,v)9 is either (1,%) or (3,%) and, in either case X (1,v) = 1;
ford € A, Y e [0N0] = 2, s0 again, 9X (1,0) = X (3,0) = 1. But 9X also takes
the value 1 on some elements of ® x 2 since, for v € T, 9X(2,7) = X(1,7) = L.
Hence 9X precedes X in lexicographical order.

Conversely, suppose that 9X precedes X for some g € GG. Let such g =
H;Zl go,- We may assume no #; appears > 3 times in this product, else we
could drop out those three occurrences. No 6; could appear twice, otherwise for
v € 60;, 9X(1,7) = X(2,7) = 0, in which case X would precede 9X. Now set
O :={bi}1<i<,. 1f0,0' € ©',6N0O" = 0, since otherwise) = {#,6'} € ¥ and so
(1,%) would be moved by both g, and gy forcing 9X(1,¢) = X(2,¢) = 0. To
show that @' is a cover, fix a € §; and let 5 € T be arbitrary and let 6 = {a, };
sincea € 0Nbh, Y ;<. 10N0;| > 1, but equality cannot hold since that would
imply X (1,8) = X(2,d) = 0 in which case X would precede 9X; hence 3 € 6;
for some 7. O

7 Lex-Leader Formulas for Abelian Groups

In this section, we show how to write succinct lex-leader formulas for abelian
groups. Let G < Sym(f2) be abelian. We reorder the orbits of G so that points
in the same orbit appear consecutively. Let us suppose that there are r orbits.
For an assignment X € 29, let X¢iy (X)) denote its projection in the i-th orbit
(resp. first i orbits).

To express lex-leadership of X, we wish to assert that for each 1 < ¢ < r,

-3g: (g€ G) N (“Xpi—y = X)) A (X > Xiy) (6)

14

We show that for abelian groups, we can express the condition (9X[;_;; =
X[i—1]) as a system of equations, using a duality result (described in Section 7.1).
Similarly, the conditions (¢ € G) and (YXy;3 > Xy;p) can be expressed as a
system of linear equations over an appropriately defined module. When we
consider a subspace of Z3 as our group G, this module is, not surprisingly, a
vector space over Z,. Thus Equation (6) asserts the non-existence of a solution
to a set of linear equations. We first show in Section 7.3 how one can express
the nonsolvability of a system of equations defined modulo arbitrary m as the
satisfiability of a succinct boolean formula.

7.1 Duality

At a few critical points, it is necessary to exploit a well-known duality of abelian
groups. We refer to [13, Section 13.2] or [18, Section 1.9] for background.

Suppose G = Zpm, & -+ ® Zm,. The character group of G, denoted by
G*, can viewed as the (additive) group of homomorphisms G — Z,,, where
m = lem(myq, ..., my), the exponent of G [18]. The group G* is then isomorphic
to G.

For computational purposes, it is convenient to fix a (non-canonical) isomor-
phism between G and G* via a bilinear form on G. Namely, for 1 <i < k, let z;
be a fixed generator of Z,,,. Then, for h = Z;ﬁ:l bizi, g = Zk c;z; we define

i=1
hm
h-g= Z Ebici mod m.
i=1

Thus, if ¢ € G*, we can take b; € 7 such that mﬂibi = ¢(z;) (such b; exists
since m;@(z;) = ¢(m;z;) = 0) so that h = Zle biz; satisfies h - g = ¢(g) for all
g € G. It follows that the map h — Fj, where F}(g9) = h - ¢ identifies G with
G*. Furthermore, if we define, for H < G, H* = {g € G | F,(H) = 0}, then we
have the well-known result

Lemma 7.1 For H< G, H'' = H.

Hence, given a generating set {>.. ajiz;}jes for H, then Y. t;2; € H iff
Zi ajl-tl- = 0 mod m for] e J.

We use this fundamental result in two ways.

First, given a permutation group H by generators, one can compute a gener-
ating set for H' in polynomial time. This essentially involves solving a system
of equations. This is used in Section 7.4 and Section 7.5, when we wish to
express membership of a permutation h in H by specifying that it has to be
annihilated by the generators of the dual H+.

But we also consider instances where H is initially known only as the sub-
group that fixes a string X but, fortunately, G is a small (listable) group. In this
case, we can express membership in H by asserting orthogonality to all those
elements of G that fix X. This is used in Section 7.5 when we wish to express
membership of a permutation ¢ in the subgroup K fixing a string X, again, via

15

a system of equations expressing that ¢ is annihilated by the permutations in
K+

7.2 Nonsolvability as Solvability

An essential ingredient in our ability to write succinct lex-leader formulas for
abelian groups is that we can express the nonsolvability system of linear equa-
tions Az = bmod p¢ (p prime) as the solvability of another system of linear
equations mod p¢. The following (folklore) lemma reduces nonsolvability to
solvability:

Lemma 7.2 The system of equations Ax = b mod p¢ (p is prime) is not solv-
able iff the system

[Ab]"y =(0,0,...,0,p°)" mod p*
s solvable.

Proof: The system is solvable iff b is in subgroup H of Zj. generated by the
columns of A (where r is the number of rows in A). This is the case iff b € H++
(as in Section 7.1). Hence the system is nonsolvable iff there is some z € Z].
such that 2 € H* but z - b # 0 mod p°. By taking a multiple of such x if
necessary, we have [A b]"2 = (0,0,...,p")" mod p°. O

Remark:

i) A more general result can be stated that relates the nonsolvability of
Az = bmod m (where m is any positive integer) to the solvability of any
system in a collection of linear systems A,z = b, mod p° for each prime
p|m where p° is the largest power of p dividing m.

ii) This reduction of nonsolvability to solvability is a polynomial time reduc-
tion and in particular, the size of the system [A b]Ty = (0,0,...,p* ") mod
pfis (n+1) xnif Az =0bmod p® was an n X n system.

7.3 Solvability as Boolean Satisfiability

In this section, we show how to express (non)solvability of a system of equations
modulo m as the satisfiability of a succinct boolean formula.

Let u(r) denote the time to multiply two r-bit integers. Since division has
the same complexity as multiplication, we can assume that we can add, subtract,
multiply and divide r-bit integers in u(r) time. It is well-known (e.g., see von
zur Gathen[11], chapter 8) that u(r) = O(rlogrloglogr).

We prove the following theorem:

Theorem 7.3 Let Az = bmod m be a system of equations where A is an xn
matriz. Then one can find a boolean formula ¢(A,b) of size O(n? u(logm))
which is satisfiable iff £ is not solvable.

16

Theorem 7.3 is first shown in the special case when the equations are defined
over Zy. Let € = (e1,¢€2,...,€,) be an n-bit vector from Z%. Also, let b € Zo.
Let E (= E(e, b)) denote the equation Y ;" €;x; = b.

Lemma 7.4 One can construct a boolean formula ¢ of size ©(n) which is sat-

isfiable iff E is solvable.

Proof: Observe that E is solvable iff the equations p; = €1z, p; = pi—1 + €5
for 2 <i<n-1and b = uy,—1 + €z, are simultaneously solvable where
i1 < i < n—1 are new variables. This system is solvable iff the boolean
formula,

(11 & (e Aar)) A /\ (ki = (pia ® (€0 A i) A (0 (1 @ (€0 A 20)))

is satisfiable (@ refers to the exclusive-or operator). O

Given a system of equations, we can now apply the construction in Lemma 7.4
to each equation.

Proposition 7.1 Let Ax = b be a system of equations over Zo where A is an
m X n matriz. Then one can find a boolean formula ¢(A,b) of size @(mn) which
1s satisfiable iff Az = b is solvable.

We have seen in Lemma 7.2 (also see remark following Lemma) that we can
express the nonsolvability of a system Az = bmod 2 as the solvability of the
system [Ab]Ty = (0,0,...,1)” mod 2. So now Proposition 7.1 implies that one

’

can find a boolean formula expressing nonsolvability of Ax = b mod 2.

Proposition 7.2 Let Ax = b be a system of equations over Z» (where A is an

m X n matriz). Then one can find a boolean formula, ¢p(A,b), of size ©(mn),
which is satisfiable iff Ax = b is not solvable.

Remark: The ability to write a system of equations which is solvable iff Az = b
is not solvable allowed us to express nonsolvability as solvability. Since we want
a boolean formula which is satisfiable iff Az = b is not solvable, we remind the
that reader that it does not suffice to put a negation sign in front of ¢(A4, b) (the
“solvability” formula of Proposition 7.1).

We now prove Theorem 7.3. We first develop machinery, akin to Proposi-
tion 7.1 for vector spaces, to represent arithmetic mod m as satisfiability of a
boolean formula.

Recall that a boolean circuit C' is a directed acyclic graph (DAG) whose
vertices are labeled with the names of Boolean connectives A, V, = (the logic
gates) or variables (inputs). Each boolean circuit computes a boolean function
f:40,1}™ — {0, 1}" that is a mapping from the values of its m input variables
to the values of its n outputs. The size of a circuit s(C) is the number of
logic gates. We also assume that the fan-in of a circuit (the in-degree of any
vertex) is at most 2. To take care of trivialities, we make the assumptions that
s(C) = Q(m) and m = O(n).

The following lemma is folklore and is easy to prove:

17

Lemma 7.5 Let C be a circuit computing a boolean function f(x1,xa,...Ty) =
(y1,Y2,---,Yn). Then one can construct a boolean formula F(C) of size O(s(C))
defined over x1,Ta, ... Tm,Y1,Y2, .- Yn (and additional variables) whose models
are such that the value of (y1,y2,...ym) s flar,aa,...) where «; is the
value of x; in the model.

Recall that u(n) is the time to multiply two n-bit integers (equivalently, u(n)
is the size of a circuit that computes the product of the integers). It is well-
known ([22]) that all primitive operations (addition, subtraction, multiplication,
division) of n-bit integers can be done by circuits of size O(u(n)).

Let € = (€1,€9,...,€,) be an n-bit vector from Z”,. Also, let b € Z,,. Let
E (= E(e,b)) denote the equation Y. | €z, = b over Z,.

Lemma 7.6 One can construct a boolean formula ¢ of size O(n p(logm)) which
1s satisfiable iff E is solvable.

Proof: FE is solvable iff the following system of equations is solvable:

i =€x;, 1 <i<n

Y1 = M1,
Yi="%i-1+p,2<1<n-—-1
b:7n71+un

For each equation above, let the right-hand side represent a function com-
puted by a circuit C' (this circuit does computation modulo m) and assume
Y1,Y2, - - Ylogm] are the output bits for C. Let the variable on the left-hand
side be w, represented by bits x1,z2,...,Z0gm). Then we write a formula
F(C) N A\;(z; = y;) equivalent to this particular equation where F(C) is as
described in Lemma 7.5. The conjunction of formulas for each equation is our
desired ¢. Correctness and size estimates are easy to prove. O

The next lemma now follows.

Lemma 7.7 Let Ax = b be a system of equations over L, where A is an n X n
matriz. Then one can construct a boolean formula ¢(A,b) of size

O(n? u(log m)
which is satisfiable iff Ax = b is solvable.

We can now write a boolean formula expressing nonsolvability over Z,.,
which proves Theorem 7.3.

Lemma 7.8 Let & : Ax = bmod p® be a system of equations where A is anxn
matriz. Then one can construct a boolean formula ¢(A,b) of size O(n? u(logp®))
which is satisfiable iff £ is not solvable.

18

Proof: Lemma 7.2 reduces nonsolvability of £ to solvability of the system [A bTy =
(0,0,...,p~1)T. Hence £ is solvable iff ¢(A4,b) = ¢([A b]",(0,0,...,p"1)7T) is
satisfiable. The bound now follows. O

A useful technique in writing lex-leader formulas for abelian groups is the
ability to rewrite a system of equations, where each equation is defined over a
possibly different modulus, to an equivalent system (or systems) of equations
over a uniform modulus.

Let & refer to the following r X s system of equations:

Z A(Z, 5)x; = by mod m;
1<j<s

for integers m; < n for some n and 1 <i <r.

We now show how to express the (non)solvability of £ as the (non)solvability
of a set of systems of equations (each defined over a uniform small prime power
modulus).

Lemma 7.9 One can write O(n/logn) systems of equations £, for each prime
p|lm; for some i, such that £ is solvable iff each such system &, is solvable.
Furthermore, each system &, is defined over Zpye for some integer e such that
p° < n, and has O(r) equations in O(s) unknowns.

Proof: Each equation), ;. A(7, j)z; = b mod m; is solvableiff 3, -, A(i, j)x; =
b; mod p°i is solvable for each prime p such that p® | m; and p%*! { m;. Thus
by the Chinese remainder theorem, £ is solvable iff each of the systems of equa-
tions &, : Zlgjgs A(t,7)z; = bymod p®,1 < ¢ < r is solvable for each such
prime p | m; for some 1 < ¢ < r. Note that £, might contain fewer than r equa-
tions, since it might be the case that e; = 0 for some ¢ and so we can remove
the trivial equation), A(i,j)z; = b mod 1 from &,. It might also have
fewer than s variables, if certain variables only appear with coefficients which
are powers of p&i.

We can further rewrite &£, as a system of equations, where each equation is
defined modulo p® where e = max{e;}. To do this we multiply both sides of
each equation }-, ., A(i,j)z; = b; mod p* (where we now can assume that

e; #Z 0) by p°~¢ to get the equivalent equation:

> P AL j)xy = pt b mod pf

1<j<s

We thus get a equivalent system of equations &, defined over Z,. by applying
the above transformation to each equation in &,.

Observe that the number of systems &, is O(n/logn) (by the Prime Number
Theorem, [23, ch 10]) since for some i, p|m; and m; < n. a

Lemma 7.8 exhibits a boolean formula Ep of size O(rs u(log p€)) = O(rs u(logn))
(since p¢ < n) which is satisfiable iff £, is not solvable (where, recall, p(r) is the
time to multiply two r-bit integers).

Thus we have the following lemma:

19

Lemma 7.10 Let £ be the following r X s system of equations:

1<j<s

for integers m; < n for some n and 1 < @ < r. Then one can construct a
boolean formula ¢ of size O(rs(n/logn)u(logn)) which is satisfiable iff £ is not
solvable.

Proof: The formula is
V6,
P

Since the number of primes < n/logn, the size of this formula is O(n/logn x
rsu(logn)). O

Remark: As we noted in proof to Lemma 7.9, the system £, obtained from &
by taking remainders mod p¢ may end up with far fewer than the original s vari-
ables. This might lead to substantial savings in the size of the resulting boolean
formula. If we assume that for each p, £, has O(r) equations and N,, variables,
then the size of Ep is rNyu(logp®). As a result, the size of ¢ in Lemma 7.10
becomes » 7 rNpu(logp®) where I = {p| p is prime and p | m; for some i} is
the set of primes to consider. This leads to an order of magnitude savings in
the size of the lex-leader formula for abelian groups, where ZpGI N, is small
(much smaller than the pessimistic estimate of O(ns/logn)).

7.4 Groups with Orbits of Size 2

In this section, we show how one can use linear algebra to write short lex-leader
formulas for G when G is a subspace of ZZ, thus proving Theorem 5.2 .

Let G < Sym(Q) be as described in Section 6.1, i.e., G = W < Z;/Q be a
group acting on n points [n] = {1,2,...,n} where the orbits of G are the sets
{2i — 1,2¢} for each 1 < i < n/2 (after suitable reordering of € if necessary).
Observe that g € G = w € W where w; = 1 iff (20 — 1)9 = 2i.

The assignment X € 2" is a lex-leader under the action of G iff the following
holds for each 1 <i < n/2:

—w: (w e W) A (Xji—q = "“"Xji—y) A ("Xgy > Xgay) (7)

We now show that each subexpression in parenthesis in Equation (7) can be
replaced by a set of linear equations over Zs:

Xz = X1

The following lemma expresses this condition as a system of equations.

Lemma 7.11 Let X € 2" and w e W < Zg/z. For 1 < i < n/2, one can
write a system of linear equations which is satisfied iff Xj;_1) = “X[;_1)-

20

Proof: Define the variable aj, to be 1 iff X (2k — 1) = X (2k), i.e.,
ap ¢ X(2k — 1) = X (2k).

If Xj;_1) = “X[;_1], then for each orbit j <7 —1, if w; = 1 we must have
X(2j —1) = X(2j) (ie., a;j = 1). We can express this condition by the linear
equation in Zs:

(1 —aj)w; =0

Thus we can express X[;_;) = “X};_) by the system of linear equations in
Z22
(1 —aj)w; =0foreach j,1<j<i—1.

The number of such equations is O(n). m|
"Xy > Xyiy

The following lemma expresses this condition as the solvability of a linear
system.

Lemma 7.12 Let X € 2" and w e W < ZS/Q. For 1 < i < n/2, one can
write a system of linear equations which is satisfied iff "Xy > Xy

Proof: 1f w; = 0, then clearly “X;; = Xy;3. So,
(wX{i} > X{i}) =(w;=1) A (X(20=1)=0) A (X(2¢) =1).
The right-hand side is clearly a system of linear equations. O

weW

The following lemma, a direct consequence of Lemma 7.1, shows that mem-
bership in W can be expressed as a set of linear equations.

Lemma 7.13 Let W < Z% and let w € Z5. One can write a homogeneous
system of equations over variable w;, for 1 < i < n, which is satisfied when
wewWw.

Proof: Given W < Z3 via a set of basis elements, one can find a basis S for
WL < Z% in polynomial time (this step can be a preprocessing step before the
lex-leader formula is constructed). This is equivalent to solving a set of linear
equations. Now, because of Lemma 7.1, a vector w € ZI belongs to W iff
w - x = 0 for each vector # € S. This, in turn, is another system of O(n) linear
equations in w;. O

Combining Lemmas 7.11, 7.12 and 7.13, we have the following corollary:

21

Corollary 7.14 Let X € 2l" and W < Zgﬂ. One can write n/2 systems of
equations E(1) (for 1 <i < n/2) each of which is nonsolvable iff X is a lex-leader
under W. Furthermore, £(i) has O(n) equations in O(n) unknowns.

Proof: For each 1 <i < n/2, we have from Equation (7) that X is a lex-leader
iff,

W (’LU € W) N (X[ifl] = wX[l-,l]) A (wX{l} > X{l})

Lemmas 7.11, 7.12, 7.13 imply that we can replace each of the conditions
(we W), (Xj—1y = “X[i—1)) and (“Xy; > Xy;3) by a system of equations. Let
£(i) denote the resulting (aggregate) system of equations. Clearly £(i) has at
most 2n + 1 equations and is defined over the unknowns w;, 1 <i < n/2.

Thus lex-leadership of X is equivalent to the nonsolvability (because of the
negated existential quantifier in the expression in Equation (7)) of a system of
equations £(i) for each ¢. O

Hence we want a boolean formula which is satisfiable iff £(i) is not solvable.
Proposition 7.2 shows that one can efficiently construct such a boolean formula
¢(i) of size O(n?).

Hence

AR
1<i<n/2
is satisfiable iff X is a lex-leader.
Thus we have a proof of the following theorem:

Theorem 7.15 Let G < Sym(RQ) be a group with orbits of size < 2. Then for
all orderings of Q one can construct a lex-leader formula A(G) of size O(n?).

Thus while Ap,t(G) for some groups of this class was of exponential size for
any ordering of 2 (Theorem 5.1), A(G) is of polynomial size if of polynomial
size for every order.

7.5 Abelian Groups: General Case

In the general case, the projection of abelian G < Sym(Q) in each orbit is
isomorphic to a direct product of cyclic groups. In this subsection, we consider
this general case.

Let Ay, Ag, ..., A, be the orbits of G in Q. We assume that Q) is ordered
so that, for i < j the points in A; appear before the points A; (in particular,
each orbit is contiguous). Recall that an abelian transitive group is regular [8]
so that |G2| = |A;]. We write g(i) for the projection of g € G in G®:. Since
the points in the same orbit appear together, we can number the points in A; as
{0,1,2,...,]A;] =1} without any confusion. For a string X, we let X;;(j) refer
to the value of X at the j-coordinate in its restriction to A;, where 1 <i <r
and 0 <j < |A; —1.

22

Our goal, as before, is to rewrite the expression for lex-leader, namely, for
each 1 < <r,

-3g: (g€ G) N (“Xpimyy = X)) A (X > Xiy) (8)

as the nonsolvability of a system of equations over an appropriately defined
module.

We now consider each subexpression in parenthesis inside Equation (8) and
rewrite it as a system of equations:

IXi—1) = Xpi—1g

We focus on the j-th orbit (j < i) and show that Xy;; = 9X ;; can be
expressed as a system of equations. We assume that group H = G? = Z,,, &
Limy @+ ® L, and write g(j,1) for the projection of g(j) in Z,,,. With respect
to this decomposition, we use the bilinear from k, h — k-h defined in Section 7.1.

Define for k,h € H, and X;y:

Xy, b, h) = N X)) =XpHa" | = k-h=0

0<i<m—1

where m = |H| = |Aj|. Observe that a(Xy;;, k, h) is equivalent to the condition
k-h =0 for h € H such that hX{j} = Xyjy. For all other h, a(Xy;y,k,h) is
true.

Also define

B(Xy. k) =)\ a(Xgy.k h).
heH

Let K = K(Xy;1) be the subgroup of H stabilizing X ;;. Hence,

B(Xgy k) = VheK(Xm)(k ~h=0)
= (ke K™h)

For each k € H, we include the linear equation®:

B(Xgjy, k) * [k-g(5)] =0 (9)
So the number of equations is |A]|.

When k ¢ K=+, the coefficient B(Xyj1,k) is 0 so Equation (9) is trivially
satisfied. The coefficient is 1 if & € K. Hence, the set of equations says
precisely that g(j) € K-+ = K, ie., g is in the stabilizer of Xy;;.

We can form equations of the form (9) for each of the first i — 1 orbits for a

total of Y. _.|A;| equations. Thus we have the following lemma:

4More precisely, this is a congruence mod lem(my, ..., my) involving variables g(j,1)

j<i

23

Lemma 7.16 Let G be as above and let g € G, X € 22. One can write a system
of linear equations &1(g,1) which is satisfied iff X[gi,l] = X[j—1)- Furthermore
&1(g,1) has O(n) equations in O(n) unknowns.

Ky > Xy

We express this condition as the solvability of a (collection of) linear systems
in the following lemma:

Lemma 7.17 Let G be as above and let g € G, X € 22. One can write a
collection {E2(g,i,h) |h € G2} of linear equation-systems such that Xy >
Xy iff E2(g,4,h) is satisfied for some h € GAi.

Proof: Again suppose G2 = Z,,, & &% p,, s0o h(€ GA) = (h(1), h(2), ..., h(t))
where h(i) € Zy,,. The boolean variable S(h,i) for each h # 0 expresses the
condition ("X > X) as follows:

Sthiy=\/ { N\ X0 = X (") | A (Xg50) < X{i}(jh))}

0<j<m—1 0<e<j

where |A;| = m.
For g € G, we can express X ;3 > Xy;) as

\/ (S(h,i) A (g(i) = h)).
heGAi

We express the condition that g(i) = h by a system of equations ¢(i,j) =
h(7) mod m; for 1 < i < t. We can thus express each clause S(h,i) A (g(i) = h)
as a system of linear equations £:(g, i, h) as follows:

S(h,i)g(i,7) = h(j) mod m; for each 1 < j <t.

Thus 9X ;3 > Xy iff one of the equation systems E2(g, i, h) is satisfied for some
h.

geG

Let D = G® @ ---@ G . Using the fixed cyclic decompositions of G27, we
obtain a cyclic decomposition of D. For d € D, let d(i) be the projection of d
in G2 and then d(i, j) the projection of d(i) in jth cyclic factor of G2,

Now, viewing G as a subgroup of D, we let K = G+ < D as in Section 7.1;
a generating set () for K can be found by solving a linear system. Then, for
g € D, we have g € G iff g- ¢ = 0 for all ¢ € Q. But observe that g-q =0
expands to an equation of the from Z” a;;d(i,7)g(i,j) = O0modm (m being
the lem of the orders of the cyclic factors). We denote the resulting system by

24

&5(g). The number of equations is |@| = O(n) and the unknowns are the g(i, 5)
and consistent with the variables arising in the systems &;(g,¢) and £2(g, 1, h).

Thus Equation (8) asserts that for each 1 <i <7 h € G2,

-dg: £(i,h) (10)
where £(i, h) is E3(g) A E1(g,1) A E2(g, i, h). Thus, in effect, Equation (8) asserts

the nonsolvability of each system in a collection of n linear equation-systems
{€@G,h) |1 <i<r hel;}

The number of equations in each system £(i, h) is O(n) and each system has
O(n) variables g(k,1)’s. Each equation in £(i, h) is defined either modulo the size
of a cyclic factor in D or m where m is the lcm of the sizes of the cyclic factors in
D. Now, Lemma 7.10 implies that one can construct a boolean formula ¢(i, h)
of size O((n?/logn)u(logn)) which is satisfiable iff £(i, h) is not solvable. To be
precise, (i, h) does not satisfy all the hypotheses of Lemma 7.10 because some
of the equations are defined modulo large integers (> n). However, it is easy
to see that when we break £(i,h) into its prime-power systems, we need only
consider primes that are < n. In the analysis of the final size of the formula in
the lemma, this is what is significant.

Thus X is a lex-leader iff £(i, h) is nonsolvable for each i and each h € G®¢,
i.e., iff the following boolean formula is satisfiable

AN B (11)

1<i<r heGAi

This gives us a lex-leader formula of size O(n*u(logn)/logn).

A Tighter Analysis

As we remarked after Lemma 7.10, the above bound for the lex-leader
formula overcounts by an order of magnitude. This is because, en route to
Lemma 7.10, when we break £(i, h) into its prime-power systems &,, &, has
far fewer variables than n (the original number of variables in £(i,h)). We
now show that more careful counting leads to a smaller estimate of the final
lex-leader formula.

When the orbit constituents are written as sums of cyclics, we may have
assumed each of these cyclics is of prime power order. Let IV, be the number of
cyclic summands of p-power order. The following lemma is well-known:

Lemma 7.18 The number of cyclic factors of abelian G < Sym(€) is O(n)
where |Q] = n.

Proof: Since G is a subdirect product of its orbit constituents {G*/}, we have
|G| < T1,1G? | = T1;1Ai| < 3™ (the last inequality follows from Y, A; = n).
But the number of cyclic factors of G is clearly O(log |G|). O

25

Since the total number of cyclic summands is O(n), >°, N, = O(n). When
the system of equations are broken into primary-parts, then the number of
essential variables in the system &, for any prime p is N,. When one consider
the dual system (e.g., in going from nonsolvability to solvability) the number of
equations becomes N,

Since there are three components in the system of equations in Equation (10),
we consider what happens in each component when we pass mod p¢.

First, we consider the systems that arise from expanding “inner products”:
the system expressing g € G (€3(g)) and the system expressing g-invariance of
Xji—1y (€1(g,4)). The summands expanding the inner product are of the form
g(k,1) x © x m/q (recall definition of inner product, Section 7.1) where m is
the exponent (i.e., the lem of the cyclic prime-power factors) of the relevant
group, and also the modulus for the equation (congruence), and ¢ is the order
of the (k,1)-th cyclic factor. By assumption ¢ = p® for some prime p. When
the equation (congruence) is considered mod any prime p’' other than p, this
summand disappears because m/q = 0 mod p'. Hence, the variable g(k,!) is
retained only in the systems written for the prime p.

Next, consider the equations that arise from expressing 9X;; > Xy;3. These
are of the form

S(h,i) g(i,j) = h(j) mod m,

with j varying over the cyclic factors in the orbit and m; the order of the corre-
sponding cyclic factor and is therefore p*, where again p is the prime associated
with the variable ¢(7, j). This equation cannot be included in any &, for a prime
g different from p because ¢ does not divide m;.

Lastly, we consider the equations that arise from expressing g € G. As in the
case for 9X|;_;; = X[;_1), we retain only those coefficients in the inner product
terms which appear with m/p® in &,.

Hence we have the following lemma:

Lemma 7.19 For prime p, the number of variables in &£, is N,.

Using the fact that Y N, = O(n), this means that each ¢, expressing non-
solvability of &, is of size O(nN,u(logp®)) (via Lemma 7.8), so that the formula
(i h) = V, ¢, expressing nonsolvability of £(i, h) is of size >, nNpu(logp®) =
O(n?pu(logn)). Since the number of pairs {(i,h)} is O(n), the resulting lex-
leader formula, namely, Equation (11), is of size O(n®u(logn)). This proves
Theorem 5.4.

8 Future Work

We note that a generalization to arbitrary nonabelian groups is unlikely; indeed,
it is shown in [2] that testing lex-leadership is NP-hard even for the ordering
scheme that we use for abelian groups. On the other hand, that same paper
describes an polynomial-time algorithm for testing lex-leadership for a group

26

class that includes all solvable groups. While such a result already implies at
least a polynomial-size lex-leader formula, the conversion of the known algorithm
yields an unwieldy formula even in the abelian case (where it is at least 6 orders
of magnitude larger than what we present herein). In subsequent work, we
intend to consider the feasibility of A(G) for the “good” groups of [2].

ACKNOWLEDGMENT

We are grateful to James Crawford and Matt Ginsberg of the Computational

Intelligence Research Laboratory for inviting us to participate in projects that
inspired this research.

References

[1]

F. A. Aloul, I. L. Markov, and K. A. Sakallah. Efficient symmetry breaking
for boolean satisfiability. In Proc. Intl. Joint Conf. on Artificial Intelligence
(IJCAI), 2003.

L. Babai and E. M. Luks. Canonical labeling of graphs. In Proc. 15th ACM
Symp. on Theory of Computing, pages 171-183, 1983.

R. Backofen and S. Wilf. Excluding symmetries in constraint-based search.
In Proceedings of 5 th International Conference on Principle and Prac-
tice of Constraint Programming (CP’99), volume 1713 of Lecture Notes in
Computer Science, pages 73 87. Springer-Verlag, 1999.

B. Benhamou. Study of symmetry in constraint satisfaction problems. In
Principles and Practice of Constraint Programming (PPCP-94), 1994.

C. A. Brown, L. Finkelstein, and P. W. Purdom. Backtrack searching in
the presence of symmetry. In T. Mora, editor, Applied algebra, algebraic
algorithms and error correcting codes, 6th international conference, pages
99 110. Springer-Verlag, 1988.

J. Crawford. A theoretical analysis of reasoning by symmetry in first-
order logic (extended abstract). In Workshop notes, AAAI-92 workshop on
tractable reasoning, pages 17 22, 1992.

J. Crawford, M. Ginsberg, E. M. Luks, and A. Roy. Symmetry breaking
predicates for search problems. In Proceedings of the Fifth International
Conference on Knowledge Representation and Reasoning (KR ’96), pages
148-159, 1996.

J. D. Dixon and B. Mortimer. Permutation groups. Springer-Verlag, New
York, 1996.

K. Engel. Sperner Theory, volume 65 of Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 1997.

27

[10]

[11]

[12]

[13]

[14]

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-completeness. W. H. Freeman and Company, New York,
1979.

Jvz. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, 1999.

T. Griiner, R. Laue, and M. Meringer. Algorithms for group actions ap-
plied to graph generation. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 28:113-122, 1997.

M. Hall. The Theory of Gzroups. Chelsea Publishing Company, New York,
second edition, 1976.

D. Joslin and A. Roy. Exploiting symmetries in lifted csps. In Proceedings
of the Fourteenth National Conference on Artificial Intelligence, pages 197—
203. American Association for Artificial Intelligence (AAAT), 1997.

G. Katona and J. Srivastava. Minimal 2-coverings of a finite affine space
based on GF(2). J. Statist. Plann. Inference, 8(3):375 388, 1983.

J. Kobler, U. Schoning, and J. Tordn. The graph isomorphism problem: its
structural complexity. Birkhduser Boston Inc., Boston, MA, 1993.

C.W.H. Lam, L.H. Thiel, and S. Swiercz. The non-existence of finite pro-
jective planes of order 10. Canadian Journal of Math, XLI:1117-1123,
1989.

S. Lang. Algebra. Addison-Wesley Publishing Company, 1999.

E. M. Luks. Permutation groups and polynomial-time computation. In
W. M. Kantor L. Finkelstein, editor, Groups and Computation, Workshop
on Groups and Computation, volume 11 of DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, pages 139 175, 1993.

E. M. Luks and A. Roy. In preparation.

D. Miklés. Linear binary codes with intersection properties. Discrete Appl.
Math., 9(2):187 196, 1984.

J. Savage. Models of Computation, Exploring the Power of Computing.
Addison-Wesley, 1998.

H. N. Shapiro. Introduction to the Theory of Numbers. Wiley-Interscience,
1983.

28

