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of symmetries that oordinates easily with any existing searh tehnology. In-troduing the onept of symmetry-breaking formulas, they proposed the useof symmetries to restrit the underlying problem. These additional onstraintsare satis�ed by exatly one member (\the lexiographi leader") of eah set ofsymmetri points1 in the searh spae. Thus, instead of having to reformulateeah advane in searh tehnology, this method an be used as a preproessorto any onstraint solver. The tehnique was extended and suessfully appliedto pratial planning problems by Joslin and Roy [14℄.The symmetry-breaking approah operates as follows. Let T be the inputonstraint-satisfation problem and let G be a group of permutations of thevariables known to preserve models of T . One onstruts a set S of onstraintsthat are satis�ed only by the lexial leader in eah G-orbit in the searh spae.In onsidering the augmented problem T ^ S, the searh algorithm will auto-matially restrit to those lex-leaders, thus pruning the searh.The entral theme of this paper is the eÆieny of onstruting a suitablelex-leader S.In previous investigations [7℄, a \natural" lex-leader formula �nat(G) (seeSetion 3 herein) was proposed, namely, a truth assignment X on the variablesis a lex-leader if and only if 8g 2 G : X � g(X)(where g(X) represents the e�et on the truth assignment of the permutationof the variables; a formal de�nition appears in Setion 3). The eÆay of thisformula was suessfully demonstrated on seleted problems involving smallgroups. Although �nat(G) required enumeration of lauses for all group ele-ments, it was pointed out that one expets onsiderable redundany amongstthese and so the formula might be brought down to manageable size by \prun-ing" redundant lauses (see examples in Setion 3). However, we now desribesymmetry groups for whih �nat(G) annot be pruned below exponential size(see Setion 6.1). Indeed, this an happen even within a rudimentary lass ofabelian permutation groups operating on the set 
 of variables: groups in thelass have orbits of size � 2 and are, thereby, identi�able with vetor spaesover the 2-element �eld.Our approah now is to avoid group enumeration by substituting a formulathat expresses \g 2 G". This in itself is not diÆult. However, we then need toreformulate what seems an instane of nonsatis�ability:9g : [(g 2 G) ^ (X < g(X))℄as an instane of satis�ability. We do this �rst for the above \vetor spaes",exploiting the fat that nonsolvability of a linear system an be expressed assolvability of a \dual" linear system. As a result, we write (in Setion 7.4) alex-leader formula �(G) of size O(n3) for suh groups (n = j
j).1A searh spae \point" is a string that reords truth assignments to the boolean variables2



An additional obstale arises in extending �(G) to general abelian groups.Via a sharpening of a result of [2℄ and [7℄, we show that even if the orbitshave size as large as 3, testing lex-leadership of points (i.e., strings) is oNP-omplete (Setion 6.2). Hene, it is unlikely that the property an be apturedin a polynomial-size formula. However, it seems that the problem is sensitiveto the ordering of the variables. We go on to show that, for any abelian G, onean �nd an ordering of 
 with respet to whih we onstrut a suitable �(G)of size O �n3�(logn)� (here �(logn) is a lower-order term apturing the ost ofarithmeti on numbers with O(logn) digits).The onstrution of suint �(G) makes essential use of the duality of sub-groups of abelian groups (equivalent to the isomorphism of the group with itsharater group) (Setion 7.1). This devie is needed to express membershipin a subgroup whih is de�ned initially by its dual subgroup (Setion 7.5). Itis also ritial in generalizing the result for Z2 and onverting the assertion ofnonsolvability of a linear system over some Zpe (where p is prime) to the as-sertion of solvability of a linear system (Setion 7.2); this is again a neessarytranslation en route to an interpretation as satis�ability of a boolean formula.In Setion 8, we omment on the extendability of the results to nonabeliangroups.2 De�nitions and NotationsFor a group G, we write H � G to indiate that H is a subgroup of G. Thegroup onsisting of all permutations of a set 
, alled the symmetri group on
, is denoted by Sym(
); a permutation group is a subgroup of Sym(
) for aspei�ed 
.We say that G ats on 
 if there is a homomorphism � : G ! Sym(
).Suppose G ats on 
. For ! 2 
 and g 2 G, the image of ! under �(g) isdenoted by !g. The orbit of ! under G is !G = f!gj g 2 Gg. The restrition ofG on the orbit �, denoted by G�, is alled an orbit onstituent of G. The groupG is said to be transitive on 
 if 
 is itself an orbit of G. The point stabilizer of! is the subgroup G! = fg 2 G j!g = !g. The point-wise stabilizer of � � 
is G(�) = \Æ2�GÆ . A group G ats regularly on 
 if G! = 1 for all ! 2 
.We have partiular need to deal with permutation groups G for whih everyorbit has size � 2. Note, in partiular, suh G is neessarily an elementaryabelian 2-group, that is, a diret produt of yli groups of order 2. Thesegroups are haraterizable as well as the additive groups of vetor spaes overthe 2-element �eld.We write G = hSi to indiate that set S � G generates the group G. Foromputation, permutation groups are input (and output) via generators. Thus,subgroups of Sym(
) have suint desriptions sine they have generating setsof size O(j
j) [8℄; in partiular, we may assume that a group is spei�ed inspae that is polynomial in j
j. We refer to any standard text (e.g., [13℄) forbasi fats about groups. For permutation groups, we refer to [8℄. See [19℄ forbakground on polynomial-time omputation in permutation groups.3



Suppose 
 = f1; 2; : : : ; ng and G � Sym(
) (this will be the usual situationherein). For 0 � i � n, let 
i denote f1; 2; : : : ; ig and Gi = G(
i). Let 2
denote the set of funtions from 
 to f0; 1g (equivalently, 2
 is the set of alln-bit strings). Then G ats on 2
 via X 7! gX for g 2 G, X 2 2
 where(gX)(i) = X(ig).2 (The orbits of the ation of G on 2
 will be of partiularonern to us.) For any X 2 2
 and 0 � i � n, let Xi be the restrition ofX to 
i (onsidering X as a string, Xi is an i-tuple onsisting of the �rst ioordinates). There is a natural lexiographi (ditionary) order on 2
: X < Yif X 6= Y and X(i) < Y (i) for the least i suh that Xi 6= Yi. The lex-leader inan orbit is the lexially largest string.A propositional variable an take on two values, true or false (we write 0 forfalse, 1 for true). Let L be a set of propositional variables. Literals are variablesin L or negations of variables in L. A lause is a disjuntion of distint literalsin L. A theory is a onjuntion of lauses. A truth assignment for a set ofvariables L is a funtion X : L ! f0; 1g. In the usual way, X extends by thesemantis of propositional logi to a funtion on the set of theories over L andby abuse of notation, we will ontinue to denote the extended funtion by X .A truth assignment X of L is alled a model of a theory T if X(T ) = 1.The propositional satis�ability problem or SAT is the following deision prob-lem: given a theory, deide whether it has a model. This is a anonial exampleof an NP-omplete problem [10℄.Let T be a theory. A sub-olletion S of lauses of T is said to be a pruningof T if the onjuntion Vs2S s, is logially equivalent to T . A partiular lauseof T is said to be non-prunable if it belongs to all prunings of T . A lause A (ora olletion of lauses) is said to prune a lause B in T if A (or the onjuntionof the olletion of lauses) logially implies B. We remark that non-prunabilityis a very stringent requirement on a lause: if any subolletion of lauses of Tis logially equivalent to T , it must inlude the non-prunable lauses.3 The \Natural" Lex-Leader FormulaWe formalize the notion of lex-leader formulas in the ontext of a permutationgroup ating on the set of variables and develop the \natural" formula of thistype.Let 
 = f1; 2; : : : ; ng be an ordered set, equipped with a total order �, andlet G � Sym(
). Our goal is to write a formula �(G; �) in propositional logithat is true of only one member of eah G-orbit in 2
; we may onsider thatmember to be anonial. In this paper, we hoose the anonial member to bethe lexial leader in the orbit, i.e., a funtion X suh that for all Y 6= X inthe same orbit, Y < X . Thus, a lex-leader formula for G is a boolean formula�(G; �) de�ned over n variables, whose models are lex-leaders in their orbits. Ifthe ordering � of 
 is lear from the ontext (e.g., when an ordering is expliitly2It is natural to write this as a \left ation", e.g., we have g1g2X = g1(g2A), whereasexpressing the image of X under g1 by Xg1 would lead to the awkward relation Xg1g2 =(Xg2 )g1 . 4



de�ned or when it is the natural integer total order in f1,2, . . . ng) we drop itfrom the notation and refer to a lex-leader formula as �(G).In subsequent setions, we will allow �(G; �) to be de�ned over a larger setof variables and require that the projetion of its models in a �xed set of noordinates (e.g., the variables of a theory T where G ats as symmetries of T ,see Setion 4) are lex-leaders in their G-orbits. However, the �rst formula thatomes to mind involves only the given variables.By the de�nition of lexiographial order, for any X;Y 2 2
, the assertionX � Y is aptured in the boolean formula^1�i�n (Xi�1 = Yi�1 ! X(i) � Y (i))With this onvention, 11 is the lex-leader in the set f00; 01; 10; 11g. Observethat X(i) � Y (i) is just a mnemoni for the boolean expression Y (i)! X(i).We wish to assert that X � gX , for all g 2 G. With this in mind, we letC(g; i) denote the formula(gX)i�1 = Xi�1 ! X(i) � (gX)(i)(the X will be understood in our use of C(g; i)). Note that C(g; i) expands to[(X(1) = X(1g)℄^[X(2) = X(2g)℄^� � �^[X(i�1) = X((i�1)g)℄ ! X(i) � X(ig)Thus, we onstrut the \natural" lex-leader formula, �nat(G), where�nat(G; �) = ĝ2G n̂i=1C(g; i) (1)As before, if the order � is lear from the ontext, we drop it from thenotation and refer to the natural lex-leader formula �nat(G).Equation (1) ould have dupliate lauses. For example, onsider G =Sym(f1; 2; 3g). Then C((1 2); 1) = C((1 2 3); 1) = (X(1) � X(2)) whih meansthat the lause X(1) � X(2) appears twie in Equation (1). Notie that thegroup elements (1 2) and (1 2 3) both belong to the same right oset of G1.The above intuition allows us to eliminate dupliate lauses as follows: Foreah i, we inlude the lause C(g; i) for just one g in eah oset of G mod Gi.This approah an still leave us with Pn�1i=0 jG=Gi+1j lauses (whih ould beof exponential size in general groups). So the question remains: an we prune�nat(G) further? In some ases, we an: for example, the lauseC((1; 3); 1) = (X(1) � X(3))logially implies the lauseC((1; 2; 3); 2) = f(X(1) = X(2))! X(2) � X(3)gso that, in the presene of the former, the latter an be dropped.5



Here are some more substantial examples of pruning.Example (Symmetri Group)Let G = Sym(
) where 
 = f1; 2; : : : ; ng. Observe that the lex-leaders of2
 under the ation of G are those assignments where all 1's appear before all0's, i.e., these are assignments X suh that X(i) � X(i+1) for all 1 � i � n�1.Thus a lex-leader formula for G is^1�i�n�1(X(i) � X(i+ 1)) (2)It is easy to see that one an prune �nat(G) to Formula (2). Sine the for-mula in Equation (1) involves a onjuntion over every group element, �nat(G)starts out with at least n! lauses. First observe that C(g; i) is trivial if ig � i (infat, this remains true regardless of the group). So we need only onsider lausesC(g; i) where ig > i. Any suh nontrivial lause C(g; i) is pruned by a lause ofthe form C(h; i) where h is the transposition (i ig). This removes all lauses butthose of the formX(i) � X(j) for i < j. This means that there areO(n2) lausesin �nat(G) after pruning. But we an further prune even further by replaingany 3 lauses of the form (X(i) � X(j)) ^ (X(j) � X(k)) ^ (X(i) � X(k)) by(X(i) � X(j)) ^ (X(j) � X(k)). This prunes �nat(G) to Formula (2).Example (Full Vetor Spae)Let G = hgi j 1 � i � n=2i � Sym(
) where 
 = f1; 2; 3; : : : ; ng have orbitsf2i�1; 2igwhere 1 � i � n=2, where we assume n is even. Also (2i�1)gj = 2i�1(whih means that (2i)gj = 2i) if j 6= i and (2j�1)gj = 2j (and (2j)gj = 2j�1).So G � Zn=22 where g 2 G $ vg 2 Zn2 where vg(i) = 1 i� (2i� 1)g = 2i. SinejGj = 2n=2, �nat(G) has exponential size (before pruning). We now show that�nat(G) an be pruned to the following formula:^1�i�n=2(X(2i� 1) � X(2i)): (3)To see why, onsider any C(g; i) for 1 � i � n. Observe that C(g; i) is trivial(and an be pruned from �nat(G)) when i is even. It is also trivial when iis odd and ig = i. So assume i is odd (= 2j � 1) and (2j � 1)g = 2j. Theonsequent of C(g; 2j � 1) is X(2j � 1) � X(2j) and so C(g; 2j � 1) is prunedby the lause C(gj ; 2j � 1) = (X(2j � 1) � X(2j)). Thus lauses of the formX(2j � 1) � X(2j) for 1 � j � n=2, are the only lauses that remain, pruning�nat(G) to Formula (3).Suh examples lead one to hope that, even when �nat(G) is of exponentialsize in j
j, one ould prune it to polynomial size by removing redundant lauses.However, we shall see that this is not the ase even for groups with orbits ofsize 2 (Theorem 5.1). 6



4 Symmetry-Breaking FormulasLet T be a theory over an n variable set L. A permutation g 2 Sym(L) is saidto be an automorphism (also alled a \symmetry") of the theory T if g mapsmodels of T to models and non-models to non-models. The set of all symmetriesof a theory is easily seen to form a group: this group is alled the \symmetrygroup" of the theory, denoted by Aut(T ). Our input will be T and a spei�edsubgroup G of Aut(T ). The goal of symmetry-breaking is to use the presene ofthis group to �nd models of T eÆiently.We remark that this is a slight departure from the methodology of [7℄ whihexpliitly omputed the group of syntati symmetries of an input theory T andalways used this preise group. A syntati symmetry is a permutation of thevariables that maps the set of lauses to itself.In this paper, we make no assumptions on how we obtain the input groupG. The group G ould possibly inlude symmetries that are not syntati; forexample, G ould ontain permutations that the user knows are symmetriesbeause of some domain-spei� knowledge. On the other hand, syntati sym-metries an reveal hidden struture in the input problem: e.g., in [14℄, where theauthors onsidered transportation planning problems, strutural symmetries in-volved intriate swithing of pakages and destinations whih were not obviousfrom a priori knowledge of the problem domain.Remark : Although not addressed in this paper, the problem of �nding synta-ti symmetries of T is interesting in its own right. This problem is equivalentto the graph isomorphism problem (ISO) [6℄, whose omplexity is a lassi openproblem in omputer siene: there are no polynomial-time algorithms knownto solve ISO but there is evidene that it is not NP-omplete, see, e.g., [16℄) andit is rarely diÆult in pratie.The group G � Aut(T ) indues an equivalene relation on the set of truthassignments of L, wherein X is equivalent to Y if Y = gX for some g 2 G; thus,the equivalene lasses are preisely the orbits of G on the set of assignments.Note, further, that any orbit either ontains only models of T or ontains nomodels of T . This indiates why symmetries should redue searh: we andetermine whether T has a model by visiting eah equivalene lass rather thanvisiting eah truth assignment.We illustrate this with an example:Example : Let T be a _ , b _ , a _ b _ , a _ b and let G = h(a b)i. It islear that (a b) 2 Aut(T ), in fat it is a syntati symmetry. The two modelsof T are (1; 0; 0) and (0; 1; 0) (where the �rst, seond and third oordinates aretrue/false values of a; b and  respetively). Clearly, this permutation mapsmodels to models. We an \break" this symmetry by adding the lause b ! awhih eliminates one of the models, (0; 1; 0), leaving us with only one modelfrom the orbit. Thus the symmetry-breaking formula for T is (b! a).In general, we introdue an ordering on the set of variables, and use it toonstrut a lexiographi order on the set of assignments. We will then add7



a formula that is true of only the lexially largest model under this ordering,within eah orbit.3 Equation (1) is an example of suh a formula.The size of the lex-leader formulas we obtain for abelian groups isO(n3�(logn))where n is the size of the permutation domain (Theorem 5.4). We remark thatn is not neessarily the size of the input problem. If the input is a booleanformula, then n is the number of variables and the size of the formula ouldpossibly be muh larger than O(n3). At the same time, the symmetry groupmay not at on all n points, so the bound we obtain for abelian groups mightbe overly pessimisti. Another option might be to break symmetries partiallyby writing lex-leaders for only some orbits of assignments.It is also worth noting that that the problem of �nding �(G) for an arbitraryabelian G � Sym(
) does arise from onsideration of some boolean formula T .Spei�ally, the ation of any suh G an be extended to some polynomial-size�
 � 
 suh that G = Aut(T ), where T is de�ned on the variables �
. Withrespet to an ordering of �
 that begins with 
, the lex-leader approah to �ndinga symmetry-breaking formula inludes �nding a suitable �(G) for the given 
ation.Sine we allow an arbitrary group of symmetries as input, the symmetrybreaking formula depends only the group and not on the input theory. Beauseof this, we may ignore the presene of the input theory and fous on the size oflex-leader formulas for various groups. As a result, Theorems 5.1, 5.2, 5.3 and5.4 make no mention of theories.5 Statement of ResultsWe now summarize our results in the following theorems. Proofs are inludedin subsequent setions.Theorem 5.1 There are an in�nite number of pairs G;
, where G � Sym(
),suh that the number of non-prunable lauses in �nat(G; �) is n for all possibleorderings � of 
, where  is a onstant > 1 and n = j
j. In fat, these groupsG have orbits of size � 2 and are, therefore, elementary abelian 2-groups.Nevertheless, we show:Theorem 5.2 Let G � Sym(
) have orbits of size � 2. Then, for any ordering� of 
, one an �nd a lex-leader formula �(G; �) of size O(n3).However, we also prove that unless P = NP , there is no polynomial-timealgorithm that omputes a lex-leader formula for an arbitrary group G (evenfor abelian G):3We note that this is surely not the only way to reate symmetry-breaking formulas. Onean break symmetries by adding any formula that is true of one member of eah equivalenelass. 8



Theorem 5.3 The problem of testing whether a 0=1 string X is the lex-leaderin its G-orbit is oNP-omplete. This is the ase even if G is abelian with orbitsof size 3.We remark that a slightly weaker result with orbits of size 4 an be deduedfrom [2℄ (Proposition 3.1). A result of this form was also noted in [7℄ (Theorem3.2) but the groups were nonabelian and the orbits unbounded. In that ase thegroups were expliitly onstruted as the automorphisms of spei�ed theories.It is possible, though less onvenient in this ase, to show how the group lassunderlying Theorem 5.3 arises as automorphism groups.Finally, we show that the hardness suggested by Theorem 5.3 an be ir-umvented by a areful hoie of variable ordering. We prove:Theorem 5.4 For abelian groups G � Sym(
), one an �nd an ordering � of
 and a lex-leader formula �(G; �) of size O(n3 �(logn)) (j
j = n) where �(r)is the time to multiply two r-digit integers.Proofs appear as follows: Theorem 5.1 in Setion 6.1, Theorem 5.2 in Se-tion 7.4, Theorem 5.3 in Setion 6.2, Theorem 5.4 in Setion 7.5.6 Hardness of Lex-Leader FormulasIn this setion, we study obstrutions to the onstrution of ertain lex-leaderformulas. We show an exponential lower bound to the \natural" formula �nat(G)(Setion 6.1) even for groups with orbits of size 2. We also show that, in general,determining lex-leadership with respet to given orders is NP-hard (Setion 6.2)even for abelian groups with orbits of size 3. The reader should ontrast theseresults to the positive results desribed in Theorems 5.2, 5.4.6.1 Exponential Lower Bounds for the \Natural" FormulaIn this subsetion, we exhibit an exponential lower bound on the size of thena��ve lex-leader formula, �nat(G), proving Theorem 5.1.Given 
 = f1; 2; : : : ; ng, G = hSi � Sym(
), reall from Equation (1) thatthe formulas assoiated with g 2 G are C(g; i):[(gX)i�1 = Xi�1℄! [X(i) � (gX)(i)℄ ; for i = 1; : : : ; n (4)We now onsider the ase when n is even and the orbits of G are f2i� 1; 2igfor 1 � i � n=2. Then G is an elementary abelian 2-group (every elementin G has order 2) and G an be identi�ed with a subspae of Zn2 as follows:every permutation g in G orresponds to a vetor vg in Zn=22 suh that vg(i) =1 i� (2i � 1)g = 2i; where 1 � i � n=2 and vg(i) is the ith oordinate of vg .So the group G = hSi orresponds to the vetor subspae V � Zn=22 wherefvsj s 2 Sg is now a set of basis vetors of V .9



Equation (4) is neessarily trivially true when ig = i. Beause G has orbitsof size 2, it is also a true when i is even: suppose i is even and ig 6= i. Thenthis means ig = i� 1 and (i� 1)g = i. This, in turn, means that the anteedentof (4) implies (X(i � 1) = X(i)). The onsequent is X(i) � X(i � 1). If theanteedent is true, the onsequent is trivially true and the whole expression issatis�ed. If the anteedent is false, the whole expression is again true. Thus weneed to onsider lauses of the form C(g; 2i�1), when (2i�1)g 6= 2i�1 (whihfores (2i � 1)g = 2i). (A very similar argument shows that the lause C(g; i)is trivial for all g 2 G and i suh that ig � i for any group G.)If i is odd and ig 6= i, then the expression [(gX)i�1 = Xi�1℄ redues toequality of X over the 2-element orbits where g moves points. Thus we mayrewrite Equation (4) for C(g; 2i� 1) to get24 ^1�k�i�1 fX(2k � 1) = X((2k � 1)g)g35! X(2i� 1) � X((2i� 1)g)We say that C(g; 2i� 1) is nontrivial if (2i� 1)g 6= 2i� 1.Thus we an prune �nat(G) to e�nat(G) de�ned by the following equation:e�nat(G) = ĝ2G ^1�i�n=2(2i�1)g 6=2i�1 C(g; 2i� 1) (5)We will now show that there are groups G for whih the number of non-prunable lauses of e�nat(G) have exponential size.For g 2 G, 1 � i � n=2, let vg;i 2 Zi2 be the projetion of vg in the �rst ioordinates, i.e., vg;i(j) = 1 i� (2j � 1)g = 2j for 1 � j � i. Observe that ifC(g; 2i� 1) is nontrivial then vg(i) = 1. For v; w 2 Zk2, let v � w i� v(i) � w(i)for all 1 � i � k. In other words, the order � is the lattie-theoreti orderde�ned by set inlusion. For 1 � i � n=2, de�neVi = fvg;i 2 V j vg(i) = 1g:Vi is also a lattie under the partial order de�ned by set-theoreti inlusion(inherited from Zi2). Note by de�nition, the zero vetor is not in Vi.Lemma 6.1 Let C(g1; 2i1 � 1) and C(g2; 2i2 � 1) be two non-trivial lauses ine�nat(G). Then C(g1; 2i1 � 1) prunes C(g2; 2i2 � 1) i� i1 = i2 and vg1;i � vg2;iwhere i = i1 = i2.Proof: The \only-if" diretion is easy to prove. We now prove the non-trivialdiretion.()) Suppose i1 6= i2. We exhibit an X whih makes C(g1; 2i1 � 1) true andC(g2; 2i2� 1) false, ontraditing the hypothesis. De�ne I1 = fl j vg1;i1(l) = 1gand I2 = fl j vg2;i2(l) = 1g. Note that i1 2 I1 and i2 2 I2.10



We de�ne X as follows:X(2k � 1) = 0; X(2k) = 0 if k 2 I2; k 6= i2X(2i2 � 1) = 0; X(2i2) = 1X(2k � 1) = 1; X(2k) = 0 if k 62 I2Every oordinate not in I1 or I2 is set to 0 in X . The lause C(g2; 2i2 � 1) isfalse under this X . We show that if i1 6= i2 and I1 6� I2, the lause C(g1; i1) istrue, ontraditing the hypothesis.The anteedent of C(gj ; 2ij � 1) for j 2 f1; 2g is^k2IjnfijgX(2k � 1) = X(2k)and the onsequent of C(gj ; 2ij � 1) for j 2 f1; 2g isX(2ij � 1) � X(2ij):If i1 6= i2, the onsequent of C(g1; 2i1� 1) , i.e., X(2i1� 1) � X(2i1) is truebeause either i1 62 I2, in whih ase X(2i1 � 1) = 1; X(2i1) = 0 or i1 2 I2 inwhih ase X(2i1� 1) = 0; X(2i1) = 0 sine i1 2 I2 n fi2g. Hene in either ase,C(g1; 2i1 � 1) is true.Suppose i1 = i2 but I1 6� I2. (Note that this is equivalent to vg1;i 6�vg2;i where i = i1 = i2) Then there is some l 2 I1 n I2 suh that the termX(2l�1) = X(2l) appears in the anteedent of C(g1; 2i1�1). So the anteedentof C(g1; 2i1 � 1) is false. Hene C(g1; 2i1 � 1) is true. 2In general, it is possible that a lause in �nat(G) for an arbitrary group G,annot be pruned away by a single other lause but some onjuntion of lausesprunes it. For groups under onsideration, we show that this not possible.Lemma 6.2 Let C = fC(g1; 2i1 � 1); C(g2; 2i2 � 1); : : : ; C(gk; 2ik � 1)g be aolletion of lauses suh that their onjuntionĈ2CCprunes a lause C(g; 2i� 1) then eah C 2 C prunes C(g; 2i� 1).Proof: Let I = flj vg;i(l) = 1g and assign X as follows. For all l 2 I; l 6= ilet X(2l � 1) = 0; X(2l) = 0 and X(2i � 1) = 0; X(2i) = 1. For all l 62 I letX(2l � 1) = 1; X(2l) = 0. Observe that C(g; 2i � 1) is false for this X . If for1 � j � k, we have ij 6= i, then X makes C(gj ; 2ij � 1) true. Hene we musthave ij = i for eah 1 � j � k. If ij = i but vgj ;i 6� vg;i, then C(gj ; 2ij � 1) istrue. However X makes C(g; i) false. Hene it must be the ase that for eahj, ij = i and vgj ;i � vg;i. Now Lemma 6.1 implies that C(gj ; 2ij � 1) prunesC(g; 2i� 1). 2The following lemma gives a ombinatorial interpretation to logial prun-ability in e�nat(G): 11



Lemma 6.3 A non-trivial lause C(g; 2i � 1) in e�nat(G) is non-prunable i�vg;i is minimal in Vi.Proof: (() The lause C(g; 2i � 1) is prunable if there is some set of lausesC(gij ; 2ij � 1) in e�nat(G) whih prunes it. Lemma 6.2 implies that this meansthat C(gij ; 2ij � 1) prunes C(g; 2i� 1) for eah j. Lemma 6.1 now implies thatij = i and w = vgij ;i � vg;i.The reverse diretion follows from Lemma 6.1. 2In partiular, Lemma 6.3 provides a bijetion between the non-prunablelauses in e�nat(G) and the minimal elements of the lattie Vi. De�ne min(Vi) =fv 2 Vij 8w 2 Vi; w � v ! v = wg, i.e., min(Vi) is the set of minimal elementsof Vi. We an thus onludeProposition 6.1 Let G �= V � Zn2. The number of non-prunable formulas ine�nat(G) is Pni=1 jmin(Vi)j:Heneforth, we will work with these groups in their vetor spae representa-tion, i.e., as subspaes of Zn2 for some n. Our goal will be to exhibit subspaesof Zn2 with exponentially large jmin(Vn)j { these will represent groups with anexponential number of distint non-prunable lauses.We de�ne the subspae V = V (n) � Z2n+12 as follows. For S � f1; : : : ; nglet vS 2 V (n) � Z2n+12 be de�ned as follows:vS(i) = 8>><>>: 1 if i 2 SvS(i� n) + jSj mod2 if n+ 1 � i � 2njSjmod2 if i = 2n+ 10 otherwiseIn other words, vS has the inidene vetor of S in the �rst n oordinates,either a opy of the same inidene vetor in the next n oordinates (if jSj iseven) or the inidene vetor of the omplement of S in the next n oordinates(if jSj is odd). The last oordinate of vS is the \parity hek" bit of S.Set V (n) = fvS j S � f1; : : : ; ngg:Lemma 6.4 Any vetor vS 2 V with jSj odd is minimal in V n f0g.Proof: Suppose vS0 2 V be suh that vS0 � vS and S0 6= S and S0 6= ;. Thisneessarily implies that S0 � S. If jS0j is even, then S0 � �S (looking at thelast n + 1 oordinates). This means that S0 = ; (a ontradition). If jS0j isodd and S0 6= S, then vS0 � vS implies S0 � S when you onsider the �rst noordinates and S � S0 when you onsider the last n+1 oordinates. So S = S0,a ontradition. 2 12



Lemma 6.5 For any ordering of oordinates,jmin(V2n+1)j � 2n�2:Proof: The set of vetors M = fvS j S � f1; 2; : : : ; ng; jSj is odd g remainsminimal in V irrespetive of the ordering of oordinates. Thus in any orderingof oordinates, min(V2n+1) =M\ V2n+1. Sine at least half of the vetors inMhave 1's in the (2n+1)-th oordinate, min(V2n+1) � jMj=2. Sine jMj = 2n�1,we have the desired result. 2Observe that as long as the orbits of G in 
 all have size 2 then we onlyneed to onsider C(g; i) where i is the �rst element in its orbit and the positionof the seond element is not relevant. Hene for the orresponding group G =G(n) � Sym(
) (where j
j = 4n + 2 and G(n) � V (n) � Z2n+12 ) the numberof non-prunable lauses is at least 2n�2 for any ordering of the variables. Thuswe have a proof of Theorem 5.1.Remark [Sperner spaes℄: We have seen that �nat(G) annot be prunedbelow an exponential size when G orresponds to a vetor spae with an expo-nential number of minimal vetors. This would be the ase if the vetor spaewere suh that all non-zero vetors were inomparable (in the inlusion order).This suggested to us a onept of Sperner spaes. These are subspaes of Zn2suh that, for all non-zero vetors v; w 2 V , v � w ! v = w. The terminologystems from a relation to the Sperner families (see [9℄) of extremal set theory.These strutures have also arisen in the study of statistial designs ([15℄, [21℄).In a future paper ([20℄), we further investigate the ombinatoris of Spernerspaes. We show, in partiular, that with high probability a random subspaeof Zn2 is Sperner. This indiates an abundane of groups satisfying the onlu-sion of Theorem 5.1. We also show that testing whether a group is a Spernerspae is oNP-omplete.6.2 Order Sensitivity of Lex-Leader FormulasSine a lex-leader formula for G � Sym(
) has to assume that 
 is ordered, it isoneivable that the size of the lex-leader formula ould vary widely dependingon what ordering was hosen for 
. This is beause the omplexity of �ndinglex-leaders is dependent on the input ordering. While this problem is solvablein polynomial time for even solvable (and beyond) groups when we assume anordering of the permutation domain, it is NP-hard (and not known to be in NP)for elementary abelian 3-groups for some orderings of the permutation domain,as asserted in Theorem 5.3.Proof of Theorem 5.3We show that testing whether there exists g 2 G suh that gX > X is NP-omplete. This is learly equivalent to the original problem. This is done via aredution from Exat 3-Cover [10℄: 13



Problem: Exat 3-CoverInput: A set � and a olletion � of 3-element subsets of �.Question: Is there a sub-olletion �0 � � suh that � = S�2�0 �.Given an instane (�;�) of Exat 3-Cover, we onstrut a linearly ordered set
, G � Sym(
), and a string X on 
 as follows.
: Let � be the set of unordered pairs of elements of �, and let 	 =ff�; �0g j �; �0 2 �; �\ �0 6= ;g, the set of unordered pairs of interseting triples.Let � = �[�[	. Set 
 := f1; 2; 3g��, �x any linear ordering of � and order
 lexiographially (so that i�� preedes j �� if i < j).G: First let s denote the 3-yle (1; 2; 3). For � 2 �, we de�ne g� 2 Sym(
)so that (i; !)g� = ( (is�j!\�j ; !) for ! 2 � [	(isj!\�j ; !) for ! 2 �(so the nontrivial orbits of g� are 3-yles). Set G = hfg� j � 2 �gi.X : Let X take the value 1 on f1; 3g�� and 0 on f2g ��.Suppose that �0 � � is a perfet over of � and set g :=Q�2�0 g�. We showthat gX takes the value 1 on ��1: for  2 �, j\�j = 1 for exatly one � 2 �0 sothat (1; !)g = (3; !) and gX(1; !) = X(3; !) = 1; for  2 �[	, j \�j � 1 for all� 2 �0 so that (1;  )g is either (1;  ) or (3;  ) and, in either ase gX(1;  ) = 1;for Æ 2 �,P�2�0 jÆ\�j = 2, so again, gX(1; Æ) = X(3; Æ) = 1. But gX also takesthe value 1 on some elements of �� 2 sine, for  2 �, gX(2; ) = X(1; ) = 1.Hene gX preedes X in lexiographial order.Conversely, suppose that gX preedes X for some g 2 G. Let suh g =Qri=1 g�i . We may assume no �i appears � 3 times in this produt, else weould drop out those three ourrenes. No �i ould appear twie, otherwise for 2 �i, gX(1; ) = X(2; ) = 0, in whih ase X would preede gX . Now set�0 := f�ig1�i�r. If �; �0 2 �0, �\ �0 = ;, sine otherwise  = f�; �0g 2 	 and so(1;  ) would be moved by both g and g 0 foring gX(1;  ) = X(2;  ) = 0. Toshow that �0 is a over, �x � 2 �1 and let � 2 � be arbitrary and let Æ = f�; �g;sine � 2 Æ \ �1,P1�i�r jÆ \ �ij � 1, but equality annot hold sine that wouldimply gX(1; Æ) = X(2; Æ) = 0 in whih ase X would preede gX ; hene � 2 �ifor some i. 27 Lex-Leader Formulas for Abelian GroupsIn this setion, we show how to write suint lex-leader formulas for abeliangroups. Let G � Sym(
) be abelian. We reorder the orbits of G so that pointsin the same orbit appear onseutively. Let us suppose that there are r orbits.For an assignment X 2 2
, let Xfig (X[i℄) denote its projetion in the i-th orbit(resp. �rst i orbits).To express lex-leadership of X , we wish to assert that for eah 1 � i � r,:9g : (g 2 G) ^ (gX[i�1℄ = X[i�1℄) ^ (gXfig > Xfig) (6)14



We show that for abelian groups, we an express the ondition (gX[i�1℄ =X[i�1℄) as a system of equations, using a duality result (desribed in Setion 7.1).Similarly, the onditions (g 2 G) and (gXfig > Xfig) an be expressed as asystem of linear equations over an appropriately de�ned module. When weonsider a subspae of Zn2 as our group G, this module is, not surprisingly, avetor spae over Z2. Thus Equation (6) asserts the non-existene of a solutionto a set of linear equations. We �rst show in Setion 7.3 how one an expressthe nonsolvability of a system of equations de�ned modulo arbitrary m as thesatis�ability of a suint boolean formula.7.1 DualityAt a few ritial points, it is neessary to exploit a well-known duality of abeliangroups. We refer to [13, Setion 13.2℄ or [18, Setion 1.9℄ for bakground.Suppose G = Zm1 � � � � � Zmk. The harater group of G, denoted byG�, an viewed as the (additive) group of homomorphisms G ! Zm, wherem = lm(m1; : : : ;mk), the exponent of G [18℄. The group G� is then isomorphito G.For omputational purposes, it is onvenient to �x a (non-anonial) isomor-phism between G and G� via a bilinear form on G. Namely, for 1 � i � k, let zibe a �xed generator of Zmi. Then, for h =Pki=1 bizi, g =Pki=1 izi we de�neh � g = kXi=1 mmi bii mod m:Thus, if � 2 G�, we an take bi 2 Z suh that mmi bi = �(zi) (suh bi existssine mi�(zi) = �(mizi) = 0) so that h =Pki=1 bizi satis�es h � g = �(g) for allg 2 G. It follows that the map h 7! Fh where Fh(g) = h � g identi�es G withG�. Furthermore, if we de�ne, for H � G, H? = fg 2 G j Fg(H) = 0g, then wehave the well-known resultLemma 7.1 For H � G, H?? = H.Hene, given a generating set fPi ajizigj2J for H?, then Pi tizi 2 H i�Pi ajiti � 0 mod m for j 2 J .We use this fundamental result in two ways.First, given a permutation group H by generators, one an ompute a gener-ating set for H? in polynomial time. This essentially involves solving a systemof equations. This is used in Setion 7.4 and Setion 7.5, when we wish toexpress membership of a permutation h in H by speifying that it has to beannihilated by the generators of the dual H?.But we also onsider instanes where H is initially known only as the sub-group that �xes a stringX but, fortunately, G is a small (listable) group. In thisase, we an express membership in H by asserting orthogonality to all thoseelements of G that �x X . This is used in Setion 7.5 when we wish to expressmembership of a permutation g in the subgroup K �xing a string X , again, via15



a system of equations expressing that g is annihilated by the permutations inK?.7.2 Nonsolvability as SolvabilityAn essential ingredient in our ability to write suint lex-leader formulas forabelian groups is that we an express the nonsolvability system of linear equa-tions Ax � b mod pe (p prime) as the solvability of another system of linearequations mod pe. The following (folklore) lemma redues nonsolvability tosolvability:Lemma 7.2 The system of equations Ax � b mod pe (p is prime) is not solv-able i� the system [A b℄T y � (0; 0; : : : ; 0; pe�1)T mod peis solvable.Proof: The system is solvable i� b is in subgroup H of Zrpe generated by theolumns of A (where r is the number of rows in A). This is the ase i� b 2 H??(as in Setion 7.1). Hene the system is nonsolvable i� there is some x 2 Zrpesuh that x 2 H? but x � b 6= 0 mod pe. By taking a multiple of suh x ifneessary, we have [A b℄Tx � (0; 0; : : : ; pe�1)T mod pe. 2Remark:i) A more general result an be stated that relates the nonsolvability ofAx � b mod m (where m is any positive integer) to the solvability of anysystem in a olletion of linear systems Apx � bp mod pe for eah primep jm where pe is the largest power of p dividing m.ii) This redution of nonsolvability to solvability is a polynomial time redu-tion and in partiular, the size of the system [Ab℄T y � (0; 0; : : : ; pe�1)T modpe is (n+ 1)� n if A x � b mod pe was an n� n system.7.3 Solvability as Boolean Satis�abilityIn this setion, we show how to express (non)solvability of a system of equationsmodulo m as the satis�ability of a suint boolean formula.Let �(r) denote the time to multiply two r-bit integers. Sine division hasthe same omplexity as multipliation, we an assume that we an add, subtrat,multiply and divide r-bit integers in �(r) time. It is well-known (e.g., see vonzur Gathen[11℄, hapter 8) that �(r) = O(r log r log log r).We prove the following theorem:Theorem 7.3 Let Ax � b mod m be a system of equations where A is a n� nmatrix. Then one an �nd a boolean formula �(A; b) of size O(n2 �(logm))whih is satis�able i� E is not solvable.16



Theorem 7.3 is �rst shown in the speial ase when the equations are de�nedover Z2. Let � = (�1; �2; : : : ; �n) be an n-bit vetor from Zn2. Also, let b 2 Z2.Let E (= E(�; b)) denote the equation Pni=1 �ixi = b.Lemma 7.4 One an onstrut a boolean formula � of size �(n) whih is sat-is�able i� E is solvable.Proof: Observe that E is solvable i� the equations �1 = �1x1, �i = �i�1 + �ixifor 2 � i � n � 1 and b = �n�1 + �nxn are simultaneously solvable where�i; 1 � i � n � 1 are new variables. This system is solvable i� the booleanformula(�1 $ (�1 ^ x1)) ^ ^2�i�n�1(�i $ (�i�1�(�i ^ xi))) ^ (b$ (�n�1�(�n ^ xn)))is satis�able (� refers to the exlusive-or operator). 2Given a system of equations, we an now apply the onstrution in Lemma 7.4to eah equation.Proposition 7.1 Let Ax = b be a system of equations over Z2 where A is anm�n matrix. Then one an �nd a boolean formula �(A; b) of size �(mn) whihis satis�able i� Ax = b is solvable.We have seen in Lemma 7.2 (also see remark following Lemma) that we anexpress the nonsolvability of a system Ax � b mod 2 as the solvability of thesystem [Ab℄T y � (0; 0; : : : ; 1)T mod 2. So now Proposition 7.1 implies that onean �nd a boolean formula expressing nonsolvability of Ax � b mod 2.Proposition 7.2 Let Ax = b be a system of equations over Z2 (where A is anm � n matrix). Then one an �nd a boolean formula, �(A; b), of size �(mn),whih is satis�able i� Ax = b is not solvable.Remark : The ability to write a system of equations whih is solvable i� Ax = bis not solvable allowed us to express nonsolvability as solvability. Sine we wanta boolean formula whih is satis�able i� Ax = b is not solvable, we remind thethat reader that it does not suÆe to put a negation sign in front of �(A; b) (the\solvability" formula of Proposition 7.1).We now prove Theorem 7.3. We �rst develop mahinery, akin to Proposi-tion 7.1 for vetor spaes, to represent arithmeti mod m as satis�ability of aboolean formula.Reall that a boolean iruit C is a direted ayli graph (DAG) whoseverties are labeled with the names of Boolean onnetives ^ ; _ ; : (the logigates) or variables (inputs). Eah boolean iruit omputes a boolean funtionf : f0; 1gm ! f0; 1gn that is a mapping from the values of its m input variablesto the values of its n outputs. The size of a iruit s(C) is the number oflogi gates. We also assume that the fan-in of a iruit (the in-degree of anyvertex) is at most 2. To take are of trivialities, we make the assumptions thats(C) = 
(m) and m = �(n).The following lemma is folklore and is easy to prove:17



Lemma 7.5 Let C be a iruit omputing a boolean funtion f(x1; x2; : : : xm) =(y1; y2; : : : ; yn). Then one an onstrut a boolean formula F(C) of size O(s(C))de�ned over x1; x2; : : : xm; y1; y2; : : : yn (and additional variables) whose modelsare suh that the value of (y1; y2; : : : ym) is f(�1; �2; : : : ; �m) where �i is thevalue of xi in the model.Reall that �(n) is the time to multiply two n-bit integers (equivalently, �(n)is the size of a iruit that omputes the produt of the integers). It is well-known ([22℄) that all primitive operations (addition, subtration, multipliation,division) of n-bit integers an be done by iruits of size O(�(n)).Let � = (�1; �2; : : : ; �n) be an n-bit vetor from Znm. Also, let b 2 Zm. LetE (= E(�; b)) denote the equation Pni=1 �ixi = b over Zm.Lemma 7.6 One an onstrut a boolean formula � of size O(n �(logm)) whihis satis�able i� E is solvable.Proof: E is solvable i� the following system of equations is solvable:�i = �ixi; 1 � i � n1 = �1;i = i�1 + �i; 2 � i � n� 1b = n�1 + �nFor eah equation above, let the right-hand side represent a funtion om-puted by a iruit C (this iruit does omputation modulo m) and assumey1; y2; : : : ydlogme are the output bits for C. Let the variable on the left-handside be x, represented by bits x1; x2; : : : ; xdlogme. Then we write a formulaF(C) ^ Vi(xi = yi) equivalent to this partiular equation where F(C) is asdesribed in Lemma 7.5. The onjuntion of formulas for eah equation is ourdesired �. Corretness and size estimates are easy to prove. 2The next lemma now follows.Lemma 7.7 Let Ax = b be a system of equations over Zm where A is an n�nmatrix. Then one an onstrut a boolean formula �(A; b) of sizeO(n2 �(logm))whih is satis�able i� Ax = b is solvable.We an now write a boolean formula expressing nonsolvability over Zpe,whih proves Theorem 7.3.Lemma 7.8 Let E : Ax � b mod pe be a system of equations where A is a n�nmatrix. Then one an onstrut a boolean formula �(A; b) of size O(n2 �(log pe))whih is satis�able i� E is not solvable.18



Proof: Lemma 7.2 redues nonsolvability of E to solvability of the system [A b℄T y =(0; 0; : : : ; pe�1)T . Hene E is solvable i� �(A; b) = �([A b℄T ; (0; 0; : : : ; pe�1)T ) issatis�able. The bound now follows. 2A useful tehnique in writing lex-leader formulas for abelian groups is theability to rewrite a system of equations, where eah equation is de�ned over apossibly di�erent modulus, to an equivalent system (or systems) of equationsover a uniform modulus.Let E refer to the following r � s system of equations:X1�j�sA(i; j)xj � bi mod mifor integers mi � n for some n and 1 � i � r.We now show how to express the (non)solvability of E as the (non)solvabilityof a set of systems of equations (eah de�ned over a uniform small prime powermodulus).Lemma 7.9 One an write O(n= logn) systems of equations Ep for eah primep jmi for some i, suh that E is solvable i� eah suh system Ep is solvable.Furthermore, eah system Ep is de�ned over Zpe for some integer e suh thatpe � n, and has O(r) equations in O(s) unknowns.Proof: Eah equationP1�j�s A(i; j)xj = bi mod mi is solvable i�P1�j�s A(i; j)xj =bi mod pei is solvable for eah prime p suh that pei j mi and pei+1 - mi. Thusby the Chinese remainder theorem, E is solvable i� eah of the systems of equa-tions Ep : P1�j�s A(i; j)xj = bi mod pei ; 1 � i � r is solvable for eah suhprime p j mi for some 1 � i � r. Note that Ep might ontain fewer than r equa-tions, sine it might be the ase that ei = 0 for some i and so we an removethe trivial equation P1�j�s A(i; j)xj = bi mod 1 from Ep. It might also havefewer than s variables, if ertain variables only appear with oeÆients whihare powers of pei .We an further rewrite Ep as a system of equations, where eah equation isde�ned modulo pe where e = maxfeig. To do this we multiply both sides ofeah equation P1�j�s A(i; j)xj = bi mod pei (where we now an assume thatei 6= 0) by pe�ei to get the equivalent equation:X1�j�s pe�eiA(i; j)xj = pe�eibi mod peWe thus get a equivalent system of equations Ep de�ned over Zpe by applyingthe above transformation to eah equation in Ep.Observe that the number of systems Ep is O(n= logn) (by the Prime NumberTheorem, [23, h 10℄) sine for some i, p jmi and mi � n. 2Lemma 7.8 exhibits a boolean formula �p of sizeO(rs �(log pe)) = O(rs �(log n))(sine pe � n) whih is satis�able i� Ep is not solvable (where, reall, �(r) is thetime to multiply two r-bit integers).Thus we have the following lemma:19



Lemma 7.10 Let E be the following r � s system of equations:X1�j�sA(i; j)xj � bi mod mifor integers mi � n for some n and 1 � i � r. Then one an onstrut aboolean formula � of size O(rs(n= logn)�(logn)) whih is satis�able i� E is notsolvable.Proof: The formula is _p �p:Sine the number of primes � n= logn, the size of this formula is O(n= logn�rs�(logn)). 2Remark: As we noted in proof to Lemma 7.9, the system Ep obtained from Eby taking remainders mod pe may end up with far fewer than the original s vari-ables. This might lead to substantial savings in the size of the resulting booleanformula. If we assume that for eah p, Ep has O(r) equations and Np variables,then the size of �p is rNp�(log pe). As a result, the size of � in Lemma 7.10beomesPp2I rNp�(log pe) where I = fp j p is prime and p j mi for some ig isthe set of primes to onsider. This leads to an order of magnitude savings inthe size of the lex-leader formula for abelian groups, where Pp2I Np is small(muh smaller than the pessimisti estimate of O(ns= logn)).7.4 Groups with Orbits of Size 2In this setion, we show how one an use linear algebra to write short lex-leaderformulas for G when G is a subspae of Zn2, thus proving Theorem 5.2 .Let G � Sym(
) be as desribed in Setion 6.1, i.e., G � W � Zn=22 be agroup ating on n points [n℄ = f1; 2; : : : ; ng where the orbits of G are the setsf2i � 1; 2ig for eah 1 � i � n=2 (after suitable reordering of 
 if neessary).Observe that g 2 G � w 2 W where wi = 1 i� (2i� 1)g = 2i.The assignmentX 2 2[n℄ is a lex-leader under the ation of G i� the followingholds for eah 1 � i � n=2::w : (w 2W ) ^ (X[i�1℄ = wX[i�1℄) ^ (wXfig > Xfig) (7)We now show that eah subexpression in parenthesis in Equation (7) an bereplaed by a set of linear equations over Z2:X[i�1℄ = wX[i�1℄The following lemma expresses this ondition as a system of equations.Lemma 7.11 Let X 2 2[n℄ and w 2 W � Zn=22 . For 1 � i � n=2, one anwrite a system of linear equations whih is satis�ed i� X[i�1℄ = wX[i�1℄.20



Proof: De�ne the variable ak to be 1 i� X(2k � 1) = X(2k), i.e.,ak $ X(2k � 1) = X(2k):If X[i�1℄ = wX[i�1℄, then for eah orbit j � i � 1, if wj = 1 we must haveX(2j � 1) = X(2j) (i.e., aj = 1). We an express this ondition by the linearequation in Z2: (1� aj)wj = 0Thus we an express X[i�1℄ = wX[i�1℄ by the system of linear equations inZ2: (1� aj)wj = 0 for eah j, 1 � j � i� 1.The number of suh equations is O(n). 2wXfig > XfigThe following lemma expresses this ondition as the solvability of a linearsystem.Lemma 7.12 Let X 2 2[n℄ and w 2 W � Zn=22 . For 1 � i � n=2, one anwrite a system of linear equations whih is satis�ed i� wXfig > Xfig.Proof: If wi = 0, then learly wXfig = Xfig. So,(wXfig > Xfig) � (wi = 1) ^ (X(2i� 1) = 0) ^ (X(2i) = 1):The right-hand side is learly a system of linear equations. 2w 2WThe following lemma, a diret onsequene of Lemma 7.1, shows that mem-bership in W an be expressed as a set of linear equations.Lemma 7.13 Let W � Zn2 and let w 2 Zn2. One an write a homogeneoussystem of equations over variable wi, for 1 � i � n, whih is satis�ed whenw 2 W .Proof: Given W � Zn2 via a set of basis elements, one an �nd a basis S forW? � Zn2 in polynomial time (this step an be a preproessing step before thelex-leader formula is onstruted). This is equivalent to solving a set of linearequations. Now, beause of Lemma 7.1, a vetor w 2 Zn2 belongs to W i�w � x = 0 for eah vetor x 2 S. This, in turn, is another system of O(n) linearequations in wi. 2Combining Lemmas 7.11, 7.12 and 7.13, we have the following orollary:21



Corollary 7.14 Let X 2 2[n℄ and W � Zn=22 . One an write n=2 systems ofequations E(i) (for 1 � i � n=2) eah of whih is nonsolvable i� X is a lex-leaderunder W . Furthermore, E(i) has O(n) equations in O(n) unknowns.Proof: For eah 1 � i � n=2, we have from Equation (7) that X is a lex-leaderi�, :w : (w 2W ) ^ (X[i�1℄ = wX[i�1℄) ^ (wXfig > Xfig)Lemmas 7.11, 7.12, 7.13 imply that we an replae eah of the onditions(w 2W ), (X[i�1℄ = wX[i�1℄) and (wXfig > Xfig) by a system of equations. LetE(i) denote the resulting (aggregate) system of equations. Clearly E(i) has atmost 2n+ 1 equations and is de�ned over the unknowns wi, 1 � i � n=2.Thus lex-leadership of X is equivalent to the nonsolvability (beause of thenegated existential quanti�er in the expression in Equation (7)) of a system ofequations E(i) for eah i. 2Hene we want a boolean formula whih is satis�able i� E(i) is not solvable.Proposition 7.2 shows that one an eÆiently onstrut suh a boolean formula�(i) of size O(n2).Hene ^1�i�n=2 �(i)is satis�able i� X is a lex-leader.Thus we have a proof of the following theorem:Theorem 7.15 Let G � Sym(
) be a group with orbits of size � 2. Then forall orderings of 
 one an onstrut a lex-leader formula �(G) of size O(n3).Thus while �nat(G) for some groups of this lass was of exponential size forany ordering of 
 (Theorem 5.1), �(G) is of polynomial size if of polynomialsize for every order.7.5 Abelian Groups: General CaseIn the general ase, the projetion of abelian G � Sym(
) in eah orbit isisomorphi to a diret produt of yli groups. In this subsetion, we onsiderthis general ase.Let �1;�2; : : : ;�r be the orbits of G in 
. We assume that 
 is orderedso that, for i < j the points in �i appear before the points �j (in partiular,eah orbit is ontiguous). Reall that an abelian transitive group is regular [8℄so that jG�i j = j�ij. We write g(i) for the projetion of g 2 G in G�i . Sinethe points in the same orbit appear together, we an number the points in �i asf0; 1; 2; : : : ; j�ij�1g without any onfusion. For a string X , we let Xfig(j) referto the value of X at the j-oordinate in its restrition to �i, where 1 � i � rand 0 � j � j�ij � 1. 22



Our goal, as before, is to rewrite the expression for lex-leader, namely, foreah 1 � i � r,:9g : (g 2 G) ^ (gX[i�1℄ = X[i�1℄) ^ (gXfig > Xfig) (8)as the nonsolvability of a system of equations over an appropriately de�nedmodule.We now onsider eah subexpression in parenthesis inside Equation (8) andrewrite it as a system of equations:gX[i�1℄ = X[i�1℄We fous on the j-th orbit (j < i) and show that Xfjg = gXfjg an beexpressed as a system of equations. We assume that group H = G�j = Zm1 �Zm2�� � ��Zmt and write g(j; l) for the projetion of g(j) in Zml. With respetto this deomposition, we use the bilinear from k; h 7! k�h de�ned in Setion 7.1.De�ne for k; h 2 H , and Xfjg:�(Xfjg; k; h) := 0�0� ^0�i�m�1Xfjg(i) = Xfjg(ih)1A! k � h = 01Awherem = jH j = j�j j. Observe that �(Xfjg; k; h) is equivalent to the onditionk � h = 0 for h 2 H suh that hXfjg = Xfjg. For all other h, �(Xfjg; k; h) istrue.Also de�ne �(Xfjg; k) := ĥ2H �(Xfjg; k; h):Let K = K(Xfjg) be the subgroup of H stabilizing Xfjg. Hene,�(Xfjg; k) := 8h2K(Xfjg)(k � h = 0)= (k 2 K?)For eah k 2 H , we inlude the linear equation4:�(Xfjg; k) � [k � g(j)℄ = 0 (9)So the number of equations is j�j j.When k 62 K?, the oeÆient �(Xfjg; k) is 0 so Equation (9) is triviallysatis�ed. The oeÆient is 1 if k 2 K?. Hene, the set of equations sayspreisely that g(j) 2 K?? = K, i.e., g is in the stabilizer of Xfjg.We an form equations of the form (9) for eah of the �rst i� 1 orbits for atotal of Pj<i j�j j equations. Thus we have the following lemma:4More preisely, this is a ongruene mod lm(m1; : : : ;mk) involving variables g(j; l)23



Lemma 7.16 Let G be as above and let g 2 G; X 2 2
. One an write a systemof linear equations E1(g; i) whih is satis�ed i� Xg[i�1℄ = X[i�1℄. FurthermoreE1(g; i) has O(n) equations in O(n) unknowns.gXfig > XfigWe express this ondition as the solvability of a (olletion of) linear systemsin the following lemma:Lemma 7.17 Let G be as above and let g 2 G; X 2 2
. One an write aolletion fE2(g; i; h) jh 2 G�ig of linear equation-systems suh that gXfig >Xfig i� E2(g; i; h) is satis�ed for some h 2 G�i .Proof: Again supposeG�i � Zm1�� � ��Zmt, so h(2 G�i) � (h(1); h(2); : : : ; h(t))where h(i) 2 Zmi. The boolean variable S(h; i) for eah h 6= 0 expresses theondition (hX > X) as follows:S(h; i) = _0�j�m�1240� ^0�`<jXfig(`) = Xfig(`h)1A ^ (Xfig(j) < Xfig(jh))35where j�ij = m.For g 2 G, we an express gXfig > Xfig as_h2G�i (S(h; i) ^ (g(i) = h)) :We express the ondition that g(i) = h by a system of equations g(i; j) =h(j) mod mi for 1 � i � t. We an thus express eah lause S(h; i) ^ (g(i) = h)as a system of linear equations E2(g; i; h) as follows:S(h; i)g(i; j) � h(j) mod mj for eah 1 � j � t:Thus gXfig > Xfig i� one of the equation systems E2(g; i; h) is satis�ed for someh. 2g 2 GLet D = G�1 � � � ��G�r . Using the �xed yli deompositions of G�i , weobtain a yli deomposition of D. For d 2 D, let d(i) be the projetion of din G�i and then d(i; j) the projetion of d(i) in jth yli fator of G�i .Now, viewing G as a subgroup of D, we let K = G? � D as in Setion 7.1;a generating set Q for K an be found by solving a linear system. Then, forg 2 D, we have g 2 G i� g � q = 0 for all q 2 Q. But observe that g � q = 0expands to an equation of the from Pi;j aijd(i; j)g(i; j) � 0modm (m beingthe lm of the orders of the yli fators). We denote the resulting system by24



E3(g). The number of equations is jQj = O(n) and the unknowns are the g(i; j)and onsistent with the variables arising in the systems E1(g; i) and E2(g; i; h).Thus Equation (8) asserts that for eah 1 � i � r; h 2 G�i ,:9g : E(i; h) (10)where E(i; h) is E3(g) ^ E1(g; i) ^ E2(g; i; h). Thus, in e�et, Equation (8) assertsthe nonsolvability of eah system in a olletion of n linear equation-systemsfE(i; h) j 1 � i � r; h 2 �igThe number of equations in eah system E(i; h) is O(n) and eah system hasO(n) variables g(k; l)'s. Eah equation in E(i; h) is de�ned either modulo the sizeof a yli fator in D orm wherem is the lm of the sizes of the yli fators inD. Now, Lemma 7.10 implies that one an onstrut a boolean formula �(i; h)of size O((n3= logn)�(logn)) whih is satis�able i� E(i; h) is not solvable. To bepreise, E(i; h) does not satisfy all the hypotheses of Lemma 7.10 beause someof the equations are de�ned modulo large integers (> n). However, it is easyto see that when we break E(i; h) into its prime-power systems, we need onlyonsider primes that are � n. In the analysis of the �nal size of the formula inthe lemma, this is what is signi�ant.Thus X is a lex-leader i� E(i; h) is nonsolvable for eah i and eah h 2 G�i ,i.e., i� the following boolean formula is satis�able^1�i�r ^h2G�i �(i; h) (11)This gives us a lex-leader formula of size O(n4�(logn)= logn).A Tighter AnalysisAs we remarked after Lemma 7.10, the above bound for the lex-leaderformula overounts by an order of magnitude. This is beause, en route toLemma 7.10, when we break E(i; h) into its prime-power systems Ep, Ep hasfar fewer variables than n (the original number of variables in E(i; h)). Wenow show that more areful ounting leads to a smaller estimate of the �nallex-leader formula.When the orbit onstituents are written as sums of ylis, we may haveassumed eah of these ylis is of prime power order. Let Np be the number ofyli summands of p-power order. The following lemma is well-known:Lemma 7.18 The number of yli fators of abelian G � Sym(
) is O(n)where j
j = n.Proof: Sine G is a subdiret produt of its orbit onstituents fG�ig, we havejGj � Qi jG�i j = Qi j�ij � 3n=3 (the last inequality follows from Pi�i = n).But the number of yli fators of G is learly O(log jGj). 225



Sine the total number of yli summands is O(n), PpNp = O(n). Whenthe system of equations are broken into primary-parts, then the number ofessential variables in the system Ep for any prime p is Np. When one onsiderthe dual system (e.g., in going from nonsolvability to solvability) the number ofequations beomes Np.Sine there are three omponents in the system of equations in Equation (10),we onsider what happens in eah omponent when we pass mod pe.First, we onsider the systems that arise from expanding \inner produts":the system expressing g 2 G (E3(g)) and the system expressing g-invariane ofX[i�1℄ (E1(g; i)). The summands expanding the inner produt are of the formg(k; l) � x � m=q (reall de�nition of inner produt, Setion 7.1) where m isthe exponent (i.e., the lm of the yli prime-power fators) of the relevantgroup, and also the modulus for the equation (ongruene), and q is the orderof the (k; l)-th yli fator. By assumption q = pa for some prime p. Whenthe equation (ongruene) is onsidered mod any prime p0 other than p, thissummand disappears beause m=q � 0 mod p0. Hene, the variable g(k; l) isretained only in the systems written for the prime p.Next, onsider the equations that arise from expressing gXfig > Xfig. Theseare of the form S(h; i) g(i; j) � h(j) mod mjwith j varying over the yli fators in the orbit and mj the order of the orre-sponding yli fator and is therefore pa, where again p is the prime assoiatedwith the variable g(i; j). This equation annot be inluded in any Eq for a primeq di�erent from p beause q does not divide mj .Lastly, we onsider the equations that arise from expressing g 2 G. As in thease for gX[i�1℄ = X[i�1℄, we retain only those oeÆients in the inner produtterms whih appear with m=pa in Ep.Hene we have the following lemma:Lemma 7.19 For prime p, the number of variables in Ep is Np.Using the fat that PNp = O(n), this means that eah �p expressing non-solvability of Ep is of size O(nNp�(log pe)) (via Lemma 7.8), so that the formula�(i; h) = Wp �p expressing nonsolvability of E(i; h) is of sizePp nNp�(log pe) =O(n2�(logn)). Sine the number of pairs f(i; h)g is O(n), the resulting lex-leader formula, namely, Equation (11), is of size O(n3�(logn)). This provesTheorem 5.4.8 Future WorkWe note that a generalization to arbitrary nonabelian groups is unlikely; indeed,it is shown in [2℄ that testing lex-leadership is NP-hard even for the orderingsheme that we use for abelian groups. On the other hand, that same paperdesribes an polynomial-time algorithm for testing lex-leadership for a group26
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