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h.Abstra
tSymmetry-breaking formulas for a 
onstraint-satisfa
tion problem aresatis�ed by exa
tly one member (e.g., the lexi
ographi
 leader) from ea
hset of \symmetri
al points" in the sear
h spa
e. Thus, the in
orporationof su
h formulas 
an a

elerate the sear
h for a solution without sa
ri�
ingsatis�ability. We study the 
omputational 
omplexity of generating lex-leader formulas. We show, even for abelian symmetry groups, that thenumber of essential 
lauses in the \natural" lex-leader formula 
ould beexponential. Furthermore, we show the intra
tability (NP-hardness) of�nding any expression of lex-leadership without reordering the variables,even for elementary abelian groups with orbits of size 3. Nevertheless,using te
hniques of 
omputational group theory, we des
ribe a reorderingrelative to whi
h we 
onstru
t small lex-leader formulas for abelian groups.1 Introdu
tionThe exploitation of symmetries to fa
ilitate sear
h is a standard tool in 
ombi-natori
s (see, e.g., [17, 5, 12℄) and has, more re
ently, been applied with somesu

ess to 
onstraint-satisfa
tion problems [4, 7, 3, 1℄. In parti
ular, in [7℄,Crawford and Ginsberg along with the present authors proposed a novel use�The authors are pleased to a
knowledge partial support via NSF grant CCR98209451



of symmetries that 
oordinates easily with any existing sear
h te
hnology. In-trodu
ing the 
on
ept of symmetry-breaking formulas, they proposed the useof symmetries to restri
t the underlying problem. These additional 
onstraintsare satis�ed by exa
tly one member (\the lexi
ographi
 leader") of ea
h set ofsymmetri
 points1 in the sear
h spa
e. Thus, instead of having to reformulateea
h advan
e in sear
h te
hnology, this method 
an be used as a prepro
essorto any 
onstraint solver. The te
hnique was extended and su

essfully appliedto pra
ti
al planning problems by Joslin and Roy [14℄.The symmetry-breaking approa
h operates as follows. Let T be the input
onstraint-satisfa
tion problem and let G be a group of permutations of thevariables known to preserve models of T . One 
onstru
ts a set S of 
onstraintsthat are satis�ed only by the lexi
al leader in ea
h G-orbit in the sear
h spa
e.In 
onsidering the augmented problem T ^ S, the sear
h algorithm will auto-mati
ally restri
t to those lex-leaders, thus pruning the sear
h.The 
entral theme of this paper is the eÆ
ien
y of 
onstru
ting a suitablelex-leader S.In previous investigations [7℄, a \natural" lex-leader formula �nat(G) (seeSe
tion 3 herein) was proposed, namely, a truth assignment X on the variablesis a lex-leader if and only if 8g 2 G : X � g(X)(where g(X) represents the e�e
t on the truth assignment of the permutationof the variables; a formal de�nition appears in Se
tion 3). The eÆ
a
y of thisformula was su

essfully demonstrated on sele
ted problems involving smallgroups. Although �nat(G) required enumeration of 
lauses for all group ele-ments, it was pointed out that one expe
ts 
onsiderable redundan
y amongstthese and so the formula might be brought down to manageable size by \prun-ing" redundant 
lauses (see examples in Se
tion 3). However, we now des
ribesymmetry groups for whi
h �nat(G) 
annot be pruned below exponential size(see Se
tion 6.1). Indeed, this 
an happen even within a rudimentary 
lass ofabelian permutation groups operating on the set 
 of variables: groups in the
lass have orbits of size � 2 and are, thereby, identi�able with ve
tor spa
esover the 2-element �eld.Our approa
h now is to avoid group enumeration by substituting a formulathat expresses \g 2 G". This in itself is not diÆ
ult. However, we then need toreformulate what seems an instan
e of nonsatis�ability:9g : [(g 2 G) ^ (X < g(X))℄as an instan
e of satis�ability. We do this �rst for the above \ve
tor spa
es",exploiting the fa
t that nonsolvability of a linear system 
an be expressed assolvability of a \dual" linear system. As a result, we write (in Se
tion 7.4) alex-leader formula �(G) of size O(n3) for su
h groups (n = j
j).1A sear
h spa
e \point" is a string that re
ords truth assignments to the boolean variables2



An additional obsta
le arises in extending �(G) to general abelian groups.Via a sharpening of a result of [2℄ and [7℄, we show that even if the orbitshave size as large as 3, testing lex-leadership of points (i.e., strings) is 
oNP-
omplete (Se
tion 6.2). Hen
e, it is unlikely that the property 
an be 
apturedin a polynomial-size formula. However, it seems that the problem is sensitiveto the ordering of the variables. We go on to show that, for any abelian G, one
an �nd an ordering of 
 with respe
t to whi
h we 
onstru
t a suitable �(G)of size O �n3�(logn)� (here �(logn) is a lower-order term 
apturing the 
ost ofarithmeti
 on numbers with O(logn) digits).The 
onstru
tion of su

in
t �(G) makes essential use of the duality of sub-groups of abelian groups (equivalent to the isomorphism of the group with its
hara
ter group) (Se
tion 7.1). This devi
e is needed to express membershipin a subgroup whi
h is de�ned initially by its dual subgroup (Se
tion 7.5). Itis also 
riti
al in generalizing the result for Z2 and 
onverting the assertion ofnonsolvability of a linear system over some Zpe (where p is prime) to the as-sertion of solvability of a linear system (Se
tion 7.2); this is again a ne
essarytranslation en route to an interpretation as satis�ability of a boolean formula.In Se
tion 8, we 
omment on the extendability of the results to nonabeliangroups.2 De�nitions and NotationsFor a group G, we write H � G to indi
ate that H is a subgroup of G. Thegroup 
onsisting of all permutations of a set 
, 
alled the symmetri
 group on
, is denoted by Sym(
); a permutation group is a subgroup of Sym(
) for aspe
i�ed 
.We say that G a
ts on 
 if there is a homomorphism � : G ! Sym(
).Suppose G a
ts on 
. For ! 2 
 and g 2 G, the image of ! under �(g) isdenoted by !g. The orbit of ! under G is !G = f!gj g 2 Gg. The restri
tion ofG on the orbit �, denoted by G�, is 
alled an orbit 
onstituent of G. The groupG is said to be transitive on 
 if 
 is itself an orbit of G. The point stabilizer of! is the subgroup G! = fg 2 G j!g = !g. The point-wise stabilizer of � � 
is G(�) = \Æ2�GÆ . A group G a
ts regularly on 
 if G! = 1 for all ! 2 
.We have parti
ular need to deal with permutation groups G for whi
h everyorbit has size � 2. Note, in parti
ular, su
h G is ne
essarily an elementaryabelian 2-group, that is, a dire
t produ
t of 
y
li
 groups of order 2. Thesegroups are 
hara
terizable as well as the additive groups of ve
tor spa
es overthe 2-element �eld.We write G = hSi to indi
ate that set S � G generates the group G. For
omputation, permutation groups are input (and output) via generators. Thus,subgroups of Sym(
) have su

in
t des
riptions sin
e they have generating setsof size O(j
j) [8℄; in parti
ular, we may assume that a group is spe
i�ed inspa
e that is polynomial in j
j. We refer to any standard text (e.g., [13℄) forbasi
 fa
ts about groups. For permutation groups, we refer to [8℄. See [19℄ forba
kground on polynomial-time 
omputation in permutation groups.3



Suppose 
 = f1; 2; : : : ; ng and G � Sym(
) (this will be the usual situationherein). For 0 � i � n, let 
i denote f1; 2; : : : ; ig and Gi = G(
i). Let 2
denote the set of fun
tions from 
 to f0; 1g (equivalently, 2
 is the set of alln-bit strings). Then G a
ts on 2
 via X 7! gX for g 2 G, X 2 2
 where(gX)(i) = X(ig).2 (The orbits of the a
tion of G on 2
 will be of parti
ular
on
ern to us.) For any X 2 2
 and 0 � i � n, let Xi be the restri
tion ofX to 
i (
onsidering X as a string, Xi is an i-tuple 
onsisting of the �rst i
oordinates). There is a natural lexi
ographi
 (di
tionary) order on 2
: X < Yif X 6= Y and X(i) < Y (i) for the least i su
h that Xi 6= Yi. The lex-leader inan orbit is the lexi
ally largest string.A propositional variable 
an take on two values, true or false (we write 0 forfalse, 1 for true). Let L be a set of propositional variables. Literals are variablesin L or negations of variables in L. A 
lause is a disjun
tion of distin
t literalsin L. A theory is a 
onjun
tion of 
lauses. A truth assignment for a set ofvariables L is a fun
tion X : L ! f0; 1g. In the usual way, X extends by thesemanti
s of propositional logi
 to a fun
tion on the set of theories over L andby abuse of notation, we will 
ontinue to denote the extended fun
tion by X .A truth assignment X of L is 
alled a model of a theory T if X(T ) = 1.The propositional satis�ability problem or SAT is the following de
ision prob-lem: given a theory, de
ide whether it has a model. This is a 
anoni
al exampleof an NP-
omplete problem [10℄.Let T be a theory. A sub-
olle
tion S of 
lauses of T is said to be a pruningof T if the 
onjun
tion Vs2S s, is logi
ally equivalent to T . A parti
ular 
lauseof T is said to be non-prunable if it belongs to all prunings of T . A 
lause A (ora 
olle
tion of 
lauses) is said to prune a 
lause B in T if A (or the 
onjun
tionof the 
olle
tion of 
lauses) logi
ally implies B. We remark that non-prunabilityis a very stringent requirement on a 
lause: if any sub
olle
tion of 
lauses of Tis logi
ally equivalent to T , it must in
lude the non-prunable 
lauses.3 The \Natural" Lex-Leader FormulaWe formalize the notion of lex-leader formulas in the 
ontext of a permutationgroup a
ting on the set of variables and develop the \natural" formula of thistype.Let 
 = f1; 2; : : : ; ng be an ordered set, equipped with a total order �, andlet G � Sym(
). Our goal is to write a formula �(G; �) in propositional logi
that is true of only one member of ea
h G-orbit in 2
; we may 
onsider thatmember to be 
anoni
al. In this paper, we 
hoose the 
anoni
al member to bethe lexi
al leader in the orbit, i.e., a fun
tion X su
h that for all Y 6= X inthe same orbit, Y < X . Thus, a lex-leader formula for G is a boolean formula�(G; �) de�ned over n variables, whose models are lex-leaders in their orbits. Ifthe ordering � of 
 is 
lear from the 
ontext (e.g., when an ordering is expli
itly2It is natural to write this as a \left a
tion", e.g., we have g1g2X = g1(g2A), whereasexpressing the image of X under g1 by Xg1 would lead to the awkward relation Xg1g2 =(Xg2 )g1 . 4



de�ned or when it is the natural integer total order in f1,2, . . . ng) we drop itfrom the notation and refer to a lex-leader formula as �(G).In subsequent se
tions, we will allow �(G; �) to be de�ned over a larger setof variables and require that the proje
tion of its models in a �xed set of n
oordinates (e.g., the variables of a theory T where G a
ts as symmetries of T ,see Se
tion 4) are lex-leaders in their G-orbits. However, the �rst formula that
omes to mind involves only the given variables.By the de�nition of lexi
ographi
al order, for any X;Y 2 2
, the assertionX � Y is 
aptured in the boolean formula^1�i�n (Xi�1 = Yi�1 ! X(i) � Y (i))With this 
onvention, 11 is the lex-leader in the set f00; 01; 10; 11g. Observethat X(i) � Y (i) is just a mnemoni
 for the boolean expression Y (i)! X(i).We wish to assert that X � gX , for all g 2 G. With this in mind, we letC(g; i) denote the formula(gX)i�1 = Xi�1 ! X(i) � (gX)(i)(the X will be understood in our use of C(g; i)). Note that C(g; i) expands to[(X(1) = X(1g)℄^[X(2) = X(2g)℄^� � �^[X(i�1) = X((i�1)g)℄ ! X(i) � X(ig)Thus, we 
onstru
t the \natural" lex-leader formula, �nat(G), where�nat(G; �) = ĝ2G n̂i=1C(g; i) (1)As before, if the order � is 
lear from the 
ontext, we drop it from thenotation and refer to the natural lex-leader formula �nat(G).Equation (1) 
ould have dupli
ate 
lauses. For example, 
onsider G =Sym(f1; 2; 3g). Then C((1 2); 1) = C((1 2 3); 1) = (X(1) � X(2)) whi
h meansthat the 
lause X(1) � X(2) appears twi
e in Equation (1). Noti
e that thegroup elements (1 2) and (1 2 3) both belong to the same right 
oset of G1.The above intuition allows us to eliminate dupli
ate 
lauses as follows: Forea
h i, we in
lude the 
lause C(g; i) for just one g in ea
h 
oset of G mod Gi.This approa
h 
an still leave us with Pn�1i=0 jG=Gi+1j 
lauses (whi
h 
ould beof exponential size in general groups). So the question remains: 
an we prune�nat(G) further? In some 
ases, we 
an: for example, the 
lauseC((1; 3); 1) = (X(1) � X(3))logi
ally implies the 
lauseC((1; 2; 3); 2) = f(X(1) = X(2))! X(2) � X(3)gso that, in the presen
e of the former, the latter 
an be dropped.5



Here are some more substantial examples of pruning.Example (Symmetri
 Group)Let G = Sym(
) where 
 = f1; 2; : : : ; ng. Observe that the lex-leaders of2
 under the a
tion of G are those assignments where all 1's appear before all0's, i.e., these are assignments X su
h that X(i) � X(i+1) for all 1 � i � n�1.Thus a lex-leader formula for G is^1�i�n�1(X(i) � X(i+ 1)) (2)It is easy to see that one 
an prune �nat(G) to Formula (2). Sin
e the for-mula in Equation (1) involves a 
onjun
tion over every group element, �nat(G)starts out with at least n! 
lauses. First observe that C(g; i) is trivial if ig � i (infa
t, this remains true regardless of the group). So we need only 
onsider 
lausesC(g; i) where ig > i. Any su
h nontrivial 
lause C(g; i) is pruned by a 
lause ofthe form C(h; i) where h is the transposition (i ig). This removes all 
lauses butthose of the formX(i) � X(j) for i < j. This means that there areO(n2) 
lausesin �nat(G) after pruning. But we 
an further prune even further by repla
ingany 3 
lauses of the form (X(i) � X(j)) ^ (X(j) � X(k)) ^ (X(i) � X(k)) by(X(i) � X(j)) ^ (X(j) � X(k)). This prunes �nat(G) to Formula (2).Example (Full Ve
tor Spa
e)Let G = hgi j 1 � i � n=2i � Sym(
) where 
 = f1; 2; 3; : : : ; ng have orbitsf2i�1; 2igwhere 1 � i � n=2, where we assume n is even. Also (2i�1)gj = 2i�1(whi
h means that (2i)gj = 2i) if j 6= i and (2j�1)gj = 2j (and (2j)gj = 2j�1).So G � Zn=22 where g 2 G $ vg 2 Zn2 where vg(i) = 1 i� (2i� 1)g = 2i. Sin
ejGj = 2n=2, �nat(G) has exponential size (before pruning). We now show that�nat(G) 
an be pruned to the following formula:^1�i�n=2(X(2i� 1) � X(2i)): (3)To see why, 
onsider any C(g; i) for 1 � i � n. Observe that C(g; i) is trivial(and 
an be pruned from �nat(G)) when i is even. It is also trivial when iis odd and ig = i. So assume i is odd (= 2j � 1) and (2j � 1)g = 2j. The
onsequent of C(g; 2j � 1) is X(2j � 1) � X(2j) and so C(g; 2j � 1) is prunedby the 
lause C(gj ; 2j � 1) = (X(2j � 1) � X(2j)). Thus 
lauses of the formX(2j � 1) � X(2j) for 1 � j � n=2, are the only 
lauses that remain, pruning�nat(G) to Formula (3).Su
h examples lead one to hope that, even when �nat(G) is of exponentialsize in j
j, one 
ould prune it to polynomial size by removing redundant 
lauses.However, we shall see that this is not the 
ase even for groups with orbits ofsize 2 (Theorem 5.1). 6



4 Symmetry-Breaking FormulasLet T be a theory over an n variable set L. A permutation g 2 Sym(L) is saidto be an automorphism (also 
alled a \symmetry") of the theory T if g mapsmodels of T to models and non-models to non-models. The set of all symmetriesof a theory is easily seen to form a group: this group is 
alled the \symmetrygroup" of the theory, denoted by Aut(T ). Our input will be T and a spe
i�edsubgroup G of Aut(T ). The goal of symmetry-breaking is to use the presen
e ofthis group to �nd models of T eÆ
iently.We remark that this is a slight departure from the methodology of [7℄ whi
hexpli
itly 
omputed the group of synta
ti
 symmetries of an input theory T andalways used this pre
ise group. A synta
ti
 symmetry is a permutation of thevariables that maps the set of 
lauses to itself.In this paper, we make no assumptions on how we obtain the input groupG. The group G 
ould possibly in
lude symmetries that are not synta
ti
; forexample, G 
ould 
ontain permutations that the user knows are symmetriesbe
ause of some domain-spe
i�
 knowledge. On the other hand, synta
ti
 sym-metries 
an reveal hidden stru
ture in the input problem: e.g., in [14℄, where theauthors 
onsidered transportation planning problems, stru
tural symmetries in-volved intri
ate swit
hing of pa
kages and destinations whi
h were not obviousfrom a priori knowledge of the problem domain.Remark : Although not addressed in this paper, the problem of �nding synta
-ti
 symmetries of T is interesting in its own right. This problem is equivalentto the graph isomorphism problem (ISO) [6℄, whose 
omplexity is a 
lassi
 openproblem in 
omputer s
ien
e: there are no polynomial-time algorithms knownto solve ISO but there is eviden
e that it is not NP-
omplete, see, e.g., [16℄) andit is rarely diÆ
ult in pra
ti
e.The group G � Aut(T ) indu
es an equivalen
e relation on the set of truthassignments of L, wherein X is equivalent to Y if Y = gX for some g 2 G; thus,the equivalen
e 
lasses are pre
isely the orbits of G on the set of assignments.Note, further, that any orbit either 
ontains only models of T or 
ontains nomodels of T . This indi
ates why symmetries should redu
e sear
h: we 
andetermine whether T has a model by visiting ea
h equivalen
e 
lass rather thanvisiting ea
h truth assignment.We illustrate this with an example:Example : Let T be a _ 
, b _ 
, a _ b _ 
, a _ b and let G = h(a b)i. It is
lear that (a b) 2 Aut(T ), in fa
t it is a synta
ti
 symmetry. The two modelsof T are (1; 0; 0) and (0; 1; 0) (where the �rst, se
ond and third 
oordinates aretrue/false values of a; b and 
 respe
tively). Clearly, this permutation mapsmodels to models. We 
an \break" this symmetry by adding the 
lause b ! awhi
h eliminates one of the models, (0; 1; 0), leaving us with only one modelfrom the orbit. Thus the symmetry-breaking formula for T is (b! a).In general, we introdu
e an ordering on the set of variables, and use it to
onstru
t a lexi
ographi
 order on the set of assignments. We will then add7



a formula that is true of only the lexi
ally largest model under this ordering,within ea
h orbit.3 Equation (1) is an example of su
h a formula.The size of the lex-leader formulas we obtain for abelian groups isO(n3�(logn))where n is the size of the permutation domain (Theorem 5.4). We remark thatn is not ne
essarily the size of the input problem. If the input is a booleanformula, then n is the number of variables and the size of the formula 
ouldpossibly be mu
h larger than O(n3). At the same time, the symmetry groupmay not a
t on all n points, so the bound we obtain for abelian groups mightbe overly pessimisti
. Another option might be to break symmetries partiallyby writing lex-leaders for only some orbits of assignments.It is also worth noting that that the problem of �nding �(G) for an arbitraryabelian G � Sym(
) does arise from 
onsideration of some boolean formula T .Spe
i�
ally, the a
tion of any su
h G 
an be extended to some polynomial-size�
 � 
 su
h that G = Aut(T ), where T is de�ned on the variables �
. Withrespe
t to an ordering of �
 that begins with 
, the lex-leader approa
h to �ndinga symmetry-breaking formula in
ludes �nding a suitable �(G) for the given 
a
tion.Sin
e we allow an arbitrary group of symmetries as input, the symmetrybreaking formula depends only the group and not on the input theory. Be
auseof this, we may ignore the presen
e of the input theory and fo
us on the size oflex-leader formulas for various groups. As a result, Theorems 5.1, 5.2, 5.3 and5.4 make no mention of theories.5 Statement of ResultsWe now summarize our results in the following theorems. Proofs are in
ludedin subsequent se
tions.Theorem 5.1 There are an in�nite number of pairs G;
, where G � Sym(
),su
h that the number of non-prunable 
lauses in �nat(G; �) is 
n for all possibleorderings � of 
, where 
 is a 
onstant > 1 and n = j
j. In fa
t, these groupsG have orbits of size � 2 and are, therefore, elementary abelian 2-groups.Nevertheless, we show:Theorem 5.2 Let G � Sym(
) have orbits of size � 2. Then, for any ordering� of 
, one 
an �nd a lex-leader formula �(G; �) of size O(n3).However, we also prove that unless P = NP , there is no polynomial-timealgorithm that 
omputes a lex-leader formula for an arbitrary group G (evenfor abelian G):3We note that this is surely not the only way to 
reate symmetry-breaking formulas. One
an break symmetries by adding any formula that is true of one member of ea
h equivalen
e
lass. 8



Theorem 5.3 The problem of testing whether a 0=1 string X is the lex-leaderin its G-orbit is 
oNP-
omplete. This is the 
ase even if G is abelian with orbitsof size 3.We remark that a slightly weaker result with orbits of size 4 
an be dedu
edfrom [2℄ (Proposition 3.1). A result of this form was also noted in [7℄ (Theorem3.2) but the groups were nonabelian and the orbits unbounded. In that 
ase thegroups were expli
itly 
onstru
ted as the automorphisms of spe
i�ed theories.It is possible, though less 
onvenient in this 
ase, to show how the group 
lassunderlying Theorem 5.3 arises as automorphism groups.Finally, we show that the hardness suggested by Theorem 5.3 
an be 
ir-
umvented by a 
areful 
hoi
e of variable ordering. We prove:Theorem 5.4 For abelian groups G � Sym(
), one 
an �nd an ordering � of
 and a lex-leader formula �(G; �) of size O(n3 �(logn)) (j
j = n) where �(r)is the time to multiply two r-digit integers.Proofs appear as follows: Theorem 5.1 in Se
tion 6.1, Theorem 5.2 in Se
-tion 7.4, Theorem 5.3 in Se
tion 6.2, Theorem 5.4 in Se
tion 7.5.6 Hardness of Lex-Leader FormulasIn this se
tion, we study obstru
tions to the 
onstru
tion of 
ertain lex-leaderformulas. We show an exponential lower bound to the \natural" formula �nat(G)(Se
tion 6.1) even for groups with orbits of size 2. We also show that, in general,determining lex-leadership with respe
t to given orders is NP-hard (Se
tion 6.2)even for abelian groups with orbits of size 3. The reader should 
ontrast theseresults to the positive results des
ribed in Theorems 5.2, 5.4.6.1 Exponential Lower Bounds for the \Natural" FormulaIn this subse
tion, we exhibit an exponential lower bound on the size of thena��ve lex-leader formula, �nat(G), proving Theorem 5.1.Given 
 = f1; 2; : : : ; ng, G = hSi � Sym(
), re
all from Equation (1) thatthe formulas asso
iated with g 2 G are C(g; i):[(gX)i�1 = Xi�1℄! [X(i) � (gX)(i)℄ ; for i = 1; : : : ; n (4)We now 
onsider the 
ase when n is even and the orbits of G are f2i� 1; 2igfor 1 � i � n=2. Then G is an elementary abelian 2-group (every elementin G has order 2) and G 
an be identi�ed with a subspa
e of Zn2 as follows:every permutation g in G 
orresponds to a ve
tor vg in Zn=22 su
h that vg(i) =1 i� (2i � 1)g = 2i; where 1 � i � n=2 and vg(i) is the ith 
oordinate of vg .So the group G = hSi 
orresponds to the ve
tor subspa
e V � Zn=22 wherefvsj s 2 Sg is now a set of basis ve
tors of V .9



Equation (4) is ne
essarily trivially true when ig = i. Be
ause G has orbitsof size 2, it is also a true when i is even: suppose i is even and ig 6= i. Thenthis means ig = i� 1 and (i� 1)g = i. This, in turn, means that the ante
edentof (4) implies (X(i � 1) = X(i)). The 
onsequent is X(i) � X(i � 1). If theante
edent is true, the 
onsequent is trivially true and the whole expression issatis�ed. If the ante
edent is false, the whole expression is again true. Thus weneed to 
onsider 
lauses of the form C(g; 2i�1), when (2i�1)g 6= 2i�1 (whi
hfor
es (2i � 1)g = 2i). (A very similar argument shows that the 
lause C(g; i)is trivial for all g 2 G and i su
h that ig � i for any group G.)If i is odd and ig 6= i, then the expression [(gX)i�1 = Xi�1℄ redu
es toequality of X over the 2-element orbits where g moves points. Thus we mayrewrite Equation (4) for C(g; 2i� 1) to get24 ^1�k�i�1 fX(2k � 1) = X((2k � 1)g)g35! X(2i� 1) � X((2i� 1)g)We say that C(g; 2i� 1) is nontrivial if (2i� 1)g 6= 2i� 1.Thus we 
an prune �nat(G) to e�nat(G) de�ned by the following equation:e�nat(G) = ĝ2G ^1�i�n=2(2i�1)g 6=2i�1 C(g; 2i� 1) (5)We will now show that there are groups G for whi
h the number of non-prunable 
lauses of e�nat(G) have exponential size.For g 2 G, 1 � i � n=2, let vg;i 2 Zi2 be the proje
tion of vg in the �rst i
oordinates, i.e., vg;i(j) = 1 i� (2j � 1)g = 2j for 1 � j � i. Observe that ifC(g; 2i� 1) is nontrivial then vg(i) = 1. For v; w 2 Zk2, let v � w i� v(i) � w(i)for all 1 � i � k. In other words, the order � is the latti
e-theoreti
 orderde�ned by set in
lusion. For 1 � i � n=2, de�neVi = fvg;i 2 V j vg(i) = 1g:Vi is also a latti
e under the partial order de�ned by set-theoreti
 in
lusion(inherited from Zi2). Note by de�nition, the zero ve
tor is not in Vi.Lemma 6.1 Let C(g1; 2i1 � 1) and C(g2; 2i2 � 1) be two non-trivial 
lauses ine�nat(G). Then C(g1; 2i1 � 1) prunes C(g2; 2i2 � 1) i� i1 = i2 and vg1;i � vg2;iwhere i = i1 = i2.Proof: The \only-if" dire
tion is easy to prove. We now prove the non-trivialdire
tion.()) Suppose i1 6= i2. We exhibit an X whi
h makes C(g1; 2i1 � 1) true andC(g2; 2i2� 1) false, 
ontradi
ting the hypothesis. De�ne I1 = fl j vg1;i1(l) = 1gand I2 = fl j vg2;i2(l) = 1g. Note that i1 2 I1 and i2 2 I2.10



We de�ne X as follows:X(2k � 1) = 0; X(2k) = 0 if k 2 I2; k 6= i2X(2i2 � 1) = 0; X(2i2) = 1X(2k � 1) = 1; X(2k) = 0 if k 62 I2Every 
oordinate not in I1 or I2 is set to 0 in X . The 
lause C(g2; 2i2 � 1) isfalse under this X . We show that if i1 6= i2 and I1 6� I2, the 
lause C(g1; i1) istrue, 
ontradi
ting the hypothesis.The ante
edent of C(gj ; 2ij � 1) for j 2 f1; 2g is^k2IjnfijgX(2k � 1) = X(2k)and the 
onsequent of C(gj ; 2ij � 1) for j 2 f1; 2g isX(2ij � 1) � X(2ij):If i1 6= i2, the 
onsequent of C(g1; 2i1� 1) , i.e., X(2i1� 1) � X(2i1) is truebe
ause either i1 62 I2, in whi
h 
ase X(2i1 � 1) = 1; X(2i1) = 0 or i1 2 I2 inwhi
h 
ase X(2i1� 1) = 0; X(2i1) = 0 sin
e i1 2 I2 n fi2g. Hen
e in either 
ase,C(g1; 2i1 � 1) is true.Suppose i1 = i2 but I1 6� I2. (Note that this is equivalent to vg1;i 6�vg2;i where i = i1 = i2) Then there is some l 2 I1 n I2 su
h that the termX(2l�1) = X(2l) appears in the ante
edent of C(g1; 2i1�1). So the ante
edentof C(g1; 2i1 � 1) is false. Hen
e C(g1; 2i1 � 1) is true. 2In general, it is possible that a 
lause in �nat(G) for an arbitrary group G,
annot be pruned away by a single other 
lause but some 
onjun
tion of 
lausesprunes it. For groups under 
onsideration, we show that this not possible.Lemma 6.2 Let C = fC(g1; 2i1 � 1); C(g2; 2i2 � 1); : : : ; C(gk; 2ik � 1)g be a
olle
tion of 
lauses su
h that their 
onjun
tionĈ2CCprunes a 
lause C(g; 2i� 1) then ea
h C 2 C prunes C(g; 2i� 1).Proof: Let I = flj vg;i(l) = 1g and assign X as follows. For all l 2 I; l 6= ilet X(2l � 1) = 0; X(2l) = 0 and X(2i � 1) = 0; X(2i) = 1. For all l 62 I letX(2l � 1) = 1; X(2l) = 0. Observe that C(g; 2i � 1) is false for this X . If for1 � j � k, we have ij 6= i, then X makes C(gj ; 2ij � 1) true. Hen
e we musthave ij = i for ea
h 1 � j � k. If ij = i but vgj ;i 6� vg;i, then C(gj ; 2ij � 1) istrue. However X makes C(g; i) false. Hen
e it must be the 
ase that for ea
hj, ij = i and vgj ;i � vg;i. Now Lemma 6.1 implies that C(gj ; 2ij � 1) prunesC(g; 2i� 1). 2The following lemma gives a 
ombinatorial interpretation to logi
al prun-ability in e�nat(G): 11



Lemma 6.3 A non-trivial 
lause C(g; 2i � 1) in e�nat(G) is non-prunable i�vg;i is minimal in Vi.Proof: (() The 
lause C(g; 2i � 1) is prunable if there is some set of 
lausesC(gij ; 2ij � 1) in e�nat(G) whi
h prunes it. Lemma 6.2 implies that this meansthat C(gij ; 2ij � 1) prunes C(g; 2i� 1) for ea
h j. Lemma 6.1 now implies thatij = i and w = vgij ;i � vg;i.The reverse dire
tion follows from Lemma 6.1. 2In parti
ular, Lemma 6.3 provides a bije
tion between the non-prunable
lauses in e�nat(G) and the minimal elements of the latti
e Vi. De�ne min(Vi) =fv 2 Vij 8w 2 Vi; w � v ! v = wg, i.e., min(Vi) is the set of minimal elementsof Vi. We 
an thus 
on
ludeProposition 6.1 Let G �= V � Zn2. The number of non-prunable formulas ine�nat(G) is Pni=1 jmin(Vi)j:Hen
eforth, we will work with these groups in their ve
tor spa
e representa-tion, i.e., as subspa
es of Zn2 for some n. Our goal will be to exhibit subspa
esof Zn2 with exponentially large jmin(Vn)j { these will represent groups with anexponential number of distin
t non-prunable 
lauses.We de�ne the subspa
e V = V (n) � Z2n+12 as follows. For S � f1; : : : ; nglet vS 2 V (n) � Z2n+12 be de�ned as follows:vS(i) = 8>><>>: 1 if i 2 SvS(i� n) + jSj mod2 if n+ 1 � i � 2njSjmod2 if i = 2n+ 10 otherwiseIn other words, vS has the in
iden
e ve
tor of S in the �rst n 
oordinates,either a 
opy of the same in
iden
e ve
tor in the next n 
oordinates (if jSj iseven) or the in
iden
e ve
tor of the 
omplement of S in the next n 
oordinates(if jSj is odd). The last 
oordinate of vS is the \parity 
he
k" bit of S.Set V (n) = fvS j S � f1; : : : ; ngg:Lemma 6.4 Any ve
tor vS 2 V with jSj odd is minimal in V n f0g.Proof: Suppose vS0 2 V be su
h that vS0 � vS and S0 6= S and S0 6= ;. Thisne
essarily implies that S0 � S. If jS0j is even, then S0 � �S (looking at thelast n + 1 
oordinates). This means that S0 = ; (a 
ontradi
tion). If jS0j isodd and S0 6= S, then vS0 � vS implies S0 � S when you 
onsider the �rst n
oordinates and S � S0 when you 
onsider the last n+1 
oordinates. So S = S0,a 
ontradi
tion. 2 12



Lemma 6.5 For any ordering of 
oordinates,jmin(V2n+1)j � 2n�2:Proof: The set of ve
tors M = fvS j S � f1; 2; : : : ; ng; jSj is odd g remainsminimal in V irrespe
tive of the ordering of 
oordinates. Thus in any orderingof 
oordinates, min(V2n+1) =M\ V2n+1. Sin
e at least half of the ve
tors inMhave 1's in the (2n+1)-th 
oordinate, min(V2n+1) � jMj=2. Sin
e jMj = 2n�1,we have the desired result. 2Observe that as long as the orbits of G in 
 all have size 2 then we onlyneed to 
onsider C(g; i) where i is the �rst element in its orbit and the positionof the se
ond element is not relevant. Hen
e for the 
orresponding group G =G(n) � Sym(
) (where j
j = 4n + 2 and G(n) � V (n) � Z2n+12 ) the numberof non-prunable 
lauses is at least 2n�2 for any ordering of the variables. Thuswe have a proof of Theorem 5.1.Remark [Sperner spa
es℄: We have seen that �nat(G) 
annot be prunedbelow an exponential size when G 
orresponds to a ve
tor spa
e with an expo-nential number of minimal ve
tors. This would be the 
ase if the ve
tor spa
ewere su
h that all non-zero ve
tors were in
omparable (in the in
lusion order).This suggested to us a 
on
ept of Sperner spa
es. These are subspa
es of Zn2su
h that, for all non-zero ve
tors v; w 2 V , v � w ! v = w. The terminologystems from a relation to the Sperner families (see [9℄) of extremal set theory.These stru
tures have also arisen in the study of statisti
al designs ([15℄, [21℄).In a future paper ([20℄), we further investigate the 
ombinatori
s of Spernerspa
es. We show, in parti
ular, that with high probability a random subspa
eof Zn2 is Sperner. This indi
ates an abundan
e of groups satisfying the 
on
lu-sion of Theorem 5.1. We also show that testing whether a group is a Spernerspa
e is 
oNP-
omplete.6.2 Order Sensitivity of Lex-Leader FormulasSin
e a lex-leader formula for G � Sym(
) has to assume that 
 is ordered, it is
on
eivable that the size of the lex-leader formula 
ould vary widely dependingon what ordering was 
hosen for 
. This is be
ause the 
omplexity of �ndinglex-leaders is dependent on the input ordering. While this problem is solvablein polynomial time for even solvable (and beyond) groups when we assume anordering of the permutation domain, it is NP-hard (and not known to be in NP)for elementary abelian 3-groups for some orderings of the permutation domain,as asserted in Theorem 5.3.Proof of Theorem 5.3We show that testing whether there exists g 2 G su
h that gX > X is NP-
omplete. This is 
learly equivalent to the original problem. This is done via aredu
tion from Exa
t 3-Cover [10℄: 13



Problem: Exa
t 3-CoverInput: A set � and a 
olle
tion � of 3-element subsets of �.Question: Is there a sub-
olle
tion �0 � � su
h that � = S�2�0 �.Given an instan
e (�;�) of Exa
t 3-Cover, we 
onstru
t a linearly ordered set
, G � Sym(
), and a string X on 
 as follows.
: Let � be the set of unordered pairs of elements of �, and let 	 =ff�; �0g j �; �0 2 �; �\ �0 6= ;g, the set of unordered pairs of interse
ting triples.Let � = �[�[	. Set 
 := f1; 2; 3g��, �x any linear ordering of � and order
 lexi
ographi
ally (so that i�� pre
edes j �� if i < j).G: First let s denote the 3-
y
le (1; 2; 3). For � 2 �, we de�ne g� 2 Sym(
)so that (i; !)g� = ( (is�j!\�j ; !) for ! 2 � [	(isj!\�j ; !) for ! 2 �(so the nontrivial orbits of g� are 3-
y
les). Set G = hfg� j � 2 �gi.X : Let X take the value 1 on f1; 3g�� and 0 on f2g ��.Suppose that �0 � � is a perfe
t 
over of � and set g :=Q�2�0 g�. We showthat gX takes the value 1 on ��1: for 
 2 �, j
\�j = 1 for exa
tly one � 2 �0 sothat (1; !)g = (3; !) and gX(1; !) = X(3; !) = 1; for  2 �[	, j \�j � 1 for all� 2 �0 so that (1;  )g is either (1;  ) or (3;  ) and, in either 
ase gX(1;  ) = 1;for Æ 2 �,P�2�0 jÆ\�j = 2, so again, gX(1; Æ) = X(3; Æ) = 1. But gX also takesthe value 1 on some elements of �� 2 sin
e, for 
 2 �, gX(2; 
) = X(1; 
) = 1.Hen
e gX pre
edes X in lexi
ographi
al order.Conversely, suppose that gX pre
edes X for some g 2 G. Let su
h g =Qri=1 g�i . We may assume no �i appears � 3 times in this produ
t, else we
ould drop out those three o

urren
es. No �i 
ould appear twi
e, otherwise for
 2 �i, gX(1; 
) = X(2; 
) = 0, in whi
h 
ase X would pre
ede gX . Now set�0 := f�ig1�i�r. If �; �0 2 �0, �\ �0 = ;, sin
e otherwise  = f�; �0g 2 	 and so(1;  ) would be moved by both g and g 0 for
ing gX(1;  ) = X(2;  ) = 0. Toshow that �0 is a 
over, �x � 2 �1 and let � 2 � be arbitrary and let Æ = f�; �g;sin
e � 2 Æ \ �1,P1�i�r jÆ \ �ij � 1, but equality 
annot hold sin
e that wouldimply gX(1; Æ) = X(2; Æ) = 0 in whi
h 
ase X would pre
ede gX ; hen
e � 2 �ifor some i. 27 Lex-Leader Formulas for Abelian GroupsIn this se
tion, we show how to write su

in
t lex-leader formulas for abeliangroups. Let G � Sym(
) be abelian. We reorder the orbits of G so that pointsin the same orbit appear 
onse
utively. Let us suppose that there are r orbits.For an assignment X 2 2
, let Xfig (X[i℄) denote its proje
tion in the i-th orbit(resp. �rst i orbits).To express lex-leadership of X , we wish to assert that for ea
h 1 � i � r,:9g : (g 2 G) ^ (gX[i�1℄ = X[i�1℄) ^ (gXfig > Xfig) (6)14



We show that for abelian groups, we 
an express the 
ondition (gX[i�1℄ =X[i�1℄) as a system of equations, using a duality result (des
ribed in Se
tion 7.1).Similarly, the 
onditions (g 2 G) and (gXfig > Xfig) 
an be expressed as asystem of linear equations over an appropriately de�ned module. When we
onsider a subspa
e of Zn2 as our group G, this module is, not surprisingly, ave
tor spa
e over Z2. Thus Equation (6) asserts the non-existen
e of a solutionto a set of linear equations. We �rst show in Se
tion 7.3 how one 
an expressthe nonsolvability of a system of equations de�ned modulo arbitrary m as thesatis�ability of a su

in
t boolean formula.7.1 DualityAt a few 
riti
al points, it is ne
essary to exploit a well-known duality of abeliangroups. We refer to [13, Se
tion 13.2℄ or [18, Se
tion 1.9℄ for ba
kground.Suppose G = Zm1 � � � � � Zmk. The 
hara
ter group of G, denoted byG�, 
an viewed as the (additive) group of homomorphisms G ! Zm, wherem = l
m(m1; : : : ;mk), the exponent of G [18℄. The group G� is then isomorphi
to G.For 
omputational purposes, it is 
onvenient to �x a (non-
anoni
al) isomor-phism between G and G� via a bilinear form on G. Namely, for 1 � i � k, let zibe a �xed generator of Zmi. Then, for h =Pki=1 bizi, g =Pki=1 
izi we de�neh � g = kXi=1 mmi bi
i mod m:Thus, if � 2 G�, we 
an take bi 2 Z su
h that mmi bi = �(zi) (su
h bi existssin
e mi�(zi) = �(mizi) = 0) so that h =Pki=1 bizi satis�es h � g = �(g) for allg 2 G. It follows that the map h 7! Fh where Fh(g) = h � g identi�es G withG�. Furthermore, if we de�ne, for H � G, H? = fg 2 G j Fg(H) = 0g, then wehave the well-known resultLemma 7.1 For H � G, H?? = H.Hen
e, given a generating set fPi ajizigj2J for H?, then Pi tizi 2 H i�Pi ajiti � 0 mod m for j 2 J .We use this fundamental result in two ways.First, given a permutation group H by generators, one 
an 
ompute a gener-ating set for H? in polynomial time. This essentially involves solving a systemof equations. This is used in Se
tion 7.4 and Se
tion 7.5, when we wish toexpress membership of a permutation h in H by spe
ifying that it has to beannihilated by the generators of the dual H?.But we also 
onsider instan
es where H is initially known only as the sub-group that �xes a stringX but, fortunately, G is a small (listable) group. In this
ase, we 
an express membership in H by asserting orthogonality to all thoseelements of G that �x X . This is used in Se
tion 7.5 when we wish to expressmembership of a permutation g in the subgroup K �xing a string X , again, via15



a system of equations expressing that g is annihilated by the permutations inK?.7.2 Nonsolvability as SolvabilityAn essential ingredient in our ability to write su

in
t lex-leader formulas forabelian groups is that we 
an express the nonsolvability system of linear equa-tions Ax � b mod pe (p prime) as the solvability of another system of linearequations mod pe. The following (folklore) lemma redu
es nonsolvability tosolvability:Lemma 7.2 The system of equations Ax � b mod pe (p is prime) is not solv-able i� the system [A b℄T y � (0; 0; : : : ; 0; pe�1)T mod peis solvable.Proof: The system is solvable i� b is in subgroup H of Zrpe generated by the
olumns of A (where r is the number of rows in A). This is the 
ase i� b 2 H??(as in Se
tion 7.1). Hen
e the system is nonsolvable i� there is some x 2 Zrpesu
h that x 2 H? but x � b 6= 0 mod pe. By taking a multiple of su
h x ifne
essary, we have [A b℄Tx � (0; 0; : : : ; pe�1)T mod pe. 2Remark:i) A more general result 
an be stated that relates the nonsolvability ofAx � b mod m (where m is any positive integer) to the solvability of anysystem in a 
olle
tion of linear systems Apx � bp mod pe for ea
h primep jm where pe is the largest power of p dividing m.ii) This redu
tion of nonsolvability to solvability is a polynomial time redu
-tion and in parti
ular, the size of the system [Ab℄T y � (0; 0; : : : ; pe�1)T modpe is (n+ 1)� n if A x � b mod pe was an n� n system.7.3 Solvability as Boolean Satis�abilityIn this se
tion, we show how to express (non)solvability of a system of equationsmodulo m as the satis�ability of a su

in
t boolean formula.Let �(r) denote the time to multiply two r-bit integers. Sin
e division hasthe same 
omplexity as multipli
ation, we 
an assume that we 
an add, subtra
t,multiply and divide r-bit integers in �(r) time. It is well-known (e.g., see vonzur Gathen[11℄, 
hapter 8) that �(r) = O(r log r log log r).We prove the following theorem:Theorem 7.3 Let Ax � b mod m be a system of equations where A is a n� nmatrix. Then one 
an �nd a boolean formula �(A; b) of size O(n2 �(logm))whi
h is satis�able i� E is not solvable.16



Theorem 7.3 is �rst shown in the spe
ial 
ase when the equations are de�nedover Z2. Let � = (�1; �2; : : : ; �n) be an n-bit ve
tor from Zn2. Also, let b 2 Z2.Let E (= E(�; b)) denote the equation Pni=1 �ixi = b.Lemma 7.4 One 
an 
onstru
t a boolean formula � of size �(n) whi
h is sat-is�able i� E is solvable.Proof: Observe that E is solvable i� the equations �1 = �1x1, �i = �i�1 + �ixifor 2 � i � n � 1 and b = �n�1 + �nxn are simultaneously solvable where�i; 1 � i � n � 1 are new variables. This system is solvable i� the booleanformula(�1 $ (�1 ^ x1)) ^ ^2�i�n�1(�i $ (�i�1�(�i ^ xi))) ^ (b$ (�n�1�(�n ^ xn)))is satis�able (� refers to the ex
lusive-or operator). 2Given a system of equations, we 
an now apply the 
onstru
tion in Lemma 7.4to ea
h equation.Proposition 7.1 Let Ax = b be a system of equations over Z2 where A is anm�n matrix. Then one 
an �nd a boolean formula �(A; b) of size �(mn) whi
his satis�able i� Ax = b is solvable.We have seen in Lemma 7.2 (also see remark following Lemma) that we 
anexpress the nonsolvability of a system Ax � b mod 2 as the solvability of thesystem [Ab℄T y � (0; 0; : : : ; 1)T mod 2. So now Proposition 7.1 implies that one
an �nd a boolean formula expressing nonsolvability of Ax � b mod 2.Proposition 7.2 Let Ax = b be a system of equations over Z2 (where A is anm � n matrix). Then one 
an �nd a boolean formula, �(A; b), of size �(mn),whi
h is satis�able i� Ax = b is not solvable.Remark : The ability to write a system of equations whi
h is solvable i� Ax = bis not solvable allowed us to express nonsolvability as solvability. Sin
e we wanta boolean formula whi
h is satis�able i� Ax = b is not solvable, we remind thethat reader that it does not suÆ
e to put a negation sign in front of �(A; b) (the\solvability" formula of Proposition 7.1).We now prove Theorem 7.3. We �rst develop ma
hinery, akin to Proposi-tion 7.1 for ve
tor spa
es, to represent arithmeti
 mod m as satis�ability of aboolean formula.Re
all that a boolean 
ir
uit C is a dire
ted a
y
li
 graph (DAG) whoseverti
es are labeled with the names of Boolean 
onne
tives ^ ; _ ; : (the logi
gates) or variables (inputs). Ea
h boolean 
ir
uit 
omputes a boolean fun
tionf : f0; 1gm ! f0; 1gn that is a mapping from the values of its m input variablesto the values of its n outputs. The size of a 
ir
uit s(C) is the number oflogi
 gates. We also assume that the fan-in of a 
ir
uit (the in-degree of anyvertex) is at most 2. To take 
are of trivialities, we make the assumptions thats(C) = 
(m) and m = �(n).The following lemma is folklore and is easy to prove:17



Lemma 7.5 Let C be a 
ir
uit 
omputing a boolean fun
tion f(x1; x2; : : : xm) =(y1; y2; : : : ; yn). Then one 
an 
onstru
t a boolean formula F(C) of size O(s(C))de�ned over x1; x2; : : : xm; y1; y2; : : : yn (and additional variables) whose modelsare su
h that the value of (y1; y2; : : : ym) is f(�1; �2; : : : ; �m) where �i is thevalue of xi in the model.Re
all that �(n) is the time to multiply two n-bit integers (equivalently, �(n)is the size of a 
ir
uit that 
omputes the produ
t of the integers). It is well-known ([22℄) that all primitive operations (addition, subtra
tion, multipli
ation,division) of n-bit integers 
an be done by 
ir
uits of size O(�(n)).Let � = (�1; �2; : : : ; �n) be an n-bit ve
tor from Znm. Also, let b 2 Zm. LetE (= E(�; b)) denote the equation Pni=1 �ixi = b over Zm.Lemma 7.6 One 
an 
onstru
t a boolean formula � of size O(n �(logm)) whi
his satis�able i� E is solvable.Proof: E is solvable i� the following system of equations is solvable:�i = �ixi; 1 � i � n
1 = �1;
i = 
i�1 + �i; 2 � i � n� 1b = 
n�1 + �nFor ea
h equation above, let the right-hand side represent a fun
tion 
om-puted by a 
ir
uit C (this 
ir
uit does 
omputation modulo m) and assumey1; y2; : : : ydlogme are the output bits for C. Let the variable on the left-handside be x, represented by bits x1; x2; : : : ; xdlogme. Then we write a formulaF(C) ^ Vi(xi = yi) equivalent to this parti
ular equation where F(C) is asdes
ribed in Lemma 7.5. The 
onjun
tion of formulas for ea
h equation is ourdesired �. Corre
tness and size estimates are easy to prove. 2The next lemma now follows.Lemma 7.7 Let Ax = b be a system of equations over Zm where A is an n�nmatrix. Then one 
an 
onstru
t a boolean formula �(A; b) of sizeO(n2 �(logm))whi
h is satis�able i� Ax = b is solvable.We 
an now write a boolean formula expressing nonsolvability over Zpe,whi
h proves Theorem 7.3.Lemma 7.8 Let E : Ax � b mod pe be a system of equations where A is a n�nmatrix. Then one 
an 
onstru
t a boolean formula �(A; b) of size O(n2 �(log pe))whi
h is satis�able i� E is not solvable.18



Proof: Lemma 7.2 redu
es nonsolvability of E to solvability of the system [A b℄T y =(0; 0; : : : ; pe�1)T . Hen
e E is solvable i� �(A; b) = �([A b℄T ; (0; 0; : : : ; pe�1)T ) issatis�able. The bound now follows. 2A useful te
hnique in writing lex-leader formulas for abelian groups is theability to rewrite a system of equations, where ea
h equation is de�ned over apossibly di�erent modulus, to an equivalent system (or systems) of equationsover a uniform modulus.Let E refer to the following r � s system of equations:X1�j�sA(i; j)xj � bi mod mifor integers mi � n for some n and 1 � i � r.We now show how to express the (non)solvability of E as the (non)solvabilityof a set of systems of equations (ea
h de�ned over a uniform small prime powermodulus).Lemma 7.9 One 
an write O(n= logn) systems of equations Ep for ea
h primep jmi for some i, su
h that E is solvable i� ea
h su
h system Ep is solvable.Furthermore, ea
h system Ep is de�ned over Zpe for some integer e su
h thatpe � n, and has O(r) equations in O(s) unknowns.Proof: Ea
h equationP1�j�s A(i; j)xj = bi mod mi is solvable i�P1�j�s A(i; j)xj =bi mod pei is solvable for ea
h prime p su
h that pei j mi and pei+1 - mi. Thusby the Chinese remainder theorem, E is solvable i� ea
h of the systems of equa-tions Ep : P1�j�s A(i; j)xj = bi mod pei ; 1 � i � r is solvable for ea
h su
hprime p j mi for some 1 � i � r. Note that Ep might 
ontain fewer than r equa-tions, sin
e it might be the 
ase that ei = 0 for some i and so we 
an removethe trivial equation P1�j�s A(i; j)xj = bi mod 1 from Ep. It might also havefewer than s variables, if 
ertain variables only appear with 
oeÆ
ients whi
hare powers of pei .We 
an further rewrite Ep as a system of equations, where ea
h equation isde�ned modulo pe where e = maxfeig. To do this we multiply both sides ofea
h equation P1�j�s A(i; j)xj = bi mod pei (where we now 
an assume thatei 6= 0) by pe�ei to get the equivalent equation:X1�j�s pe�eiA(i; j)xj = pe�eibi mod peWe thus get a equivalent system of equations Ep de�ned over Zpe by applyingthe above transformation to ea
h equation in Ep.Observe that the number of systems Ep is O(n= logn) (by the Prime NumberTheorem, [23, 
h 10℄) sin
e for some i, p jmi and mi � n. 2Lemma 7.8 exhibits a boolean formula �p of sizeO(rs �(log pe)) = O(rs �(log n))(sin
e pe � n) whi
h is satis�able i� Ep is not solvable (where, re
all, �(r) is thetime to multiply two r-bit integers).Thus we have the following lemma:19



Lemma 7.10 Let E be the following r � s system of equations:X1�j�sA(i; j)xj � bi mod mifor integers mi � n for some n and 1 � i � r. Then one 
an 
onstru
t aboolean formula � of size O(rs(n= logn)�(logn)) whi
h is satis�able i� E is notsolvable.Proof: The formula is _p �p:Sin
e the number of primes � n= logn, the size of this formula is O(n= logn�rs�(logn)). 2Remark: As we noted in proof to Lemma 7.9, the system Ep obtained from Eby taking remainders mod pe may end up with far fewer than the original s vari-ables. This might lead to substantial savings in the size of the resulting booleanformula. If we assume that for ea
h p, Ep has O(r) equations and Np variables,then the size of �p is rNp�(log pe). As a result, the size of � in Lemma 7.10be
omesPp2I rNp�(log pe) where I = fp j p is prime and p j mi for some ig isthe set of primes to 
onsider. This leads to an order of magnitude savings inthe size of the lex-leader formula for abelian groups, where Pp2I Np is small(mu
h smaller than the pessimisti
 estimate of O(ns= logn)).7.4 Groups with Orbits of Size 2In this se
tion, we show how one 
an use linear algebra to write short lex-leaderformulas for G when G is a subspa
e of Zn2, thus proving Theorem 5.2 .Let G � Sym(
) be as des
ribed in Se
tion 6.1, i.e., G � W � Zn=22 be agroup a
ting on n points [n℄ = f1; 2; : : : ; ng where the orbits of G are the setsf2i � 1; 2ig for ea
h 1 � i � n=2 (after suitable reordering of 
 if ne
essary).Observe that g 2 G � w 2 W where wi = 1 i� (2i� 1)g = 2i.The assignmentX 2 2[n℄ is a lex-leader under the a
tion of G i� the followingholds for ea
h 1 � i � n=2::w : (w 2W ) ^ (X[i�1℄ = wX[i�1℄) ^ (wXfig > Xfig) (7)We now show that ea
h subexpression in parenthesis in Equation (7) 
an berepla
ed by a set of linear equations over Z2:X[i�1℄ = wX[i�1℄The following lemma expresses this 
ondition as a system of equations.Lemma 7.11 Let X 2 2[n℄ and w 2 W � Zn=22 . For 1 � i � n=2, one 
anwrite a system of linear equations whi
h is satis�ed i� X[i�1℄ = wX[i�1℄.20



Proof: De�ne the variable ak to be 1 i� X(2k � 1) = X(2k), i.e.,ak $ X(2k � 1) = X(2k):If X[i�1℄ = wX[i�1℄, then for ea
h orbit j � i � 1, if wj = 1 we must haveX(2j � 1) = X(2j) (i.e., aj = 1). We 
an express this 
ondition by the linearequation in Z2: (1� aj)wj = 0Thus we 
an express X[i�1℄ = wX[i�1℄ by the system of linear equations inZ2: (1� aj)wj = 0 for ea
h j, 1 � j � i� 1.The number of su
h equations is O(n). 2wXfig > XfigThe following lemma expresses this 
ondition as the solvability of a linearsystem.Lemma 7.12 Let X 2 2[n℄ and w 2 W � Zn=22 . For 1 � i � n=2, one 
anwrite a system of linear equations whi
h is satis�ed i� wXfig > Xfig.Proof: If wi = 0, then 
learly wXfig = Xfig. So,(wXfig > Xfig) � (wi = 1) ^ (X(2i� 1) = 0) ^ (X(2i) = 1):The right-hand side is 
learly a system of linear equations. 2w 2WThe following lemma, a dire
t 
onsequen
e of Lemma 7.1, shows that mem-bership in W 
an be expressed as a set of linear equations.Lemma 7.13 Let W � Zn2 and let w 2 Zn2. One 
an write a homogeneoussystem of equations over variable wi, for 1 � i � n, whi
h is satis�ed whenw 2 W .Proof: Given W � Zn2 via a set of basis elements, one 
an �nd a basis S forW? � Zn2 in polynomial time (this step 
an be a prepro
essing step before thelex-leader formula is 
onstru
ted). This is equivalent to solving a set of linearequations. Now, be
ause of Lemma 7.1, a ve
tor w 2 Zn2 belongs to W i�w � x = 0 for ea
h ve
tor x 2 S. This, in turn, is another system of O(n) linearequations in wi. 2Combining Lemmas 7.11, 7.12 and 7.13, we have the following 
orollary:21



Corollary 7.14 Let X 2 2[n℄ and W � Zn=22 . One 
an write n=2 systems ofequations E(i) (for 1 � i � n=2) ea
h of whi
h is nonsolvable i� X is a lex-leaderunder W . Furthermore, E(i) has O(n) equations in O(n) unknowns.Proof: For ea
h 1 � i � n=2, we have from Equation (7) that X is a lex-leaderi�, :w : (w 2W ) ^ (X[i�1℄ = wX[i�1℄) ^ (wXfig > Xfig)Lemmas 7.11, 7.12, 7.13 imply that we 
an repla
e ea
h of the 
onditions(w 2W ), (X[i�1℄ = wX[i�1℄) and (wXfig > Xfig) by a system of equations. LetE(i) denote the resulting (aggregate) system of equations. Clearly E(i) has atmost 2n+ 1 equations and is de�ned over the unknowns wi, 1 � i � n=2.Thus lex-leadership of X is equivalent to the nonsolvability (be
ause of thenegated existential quanti�er in the expression in Equation (7)) of a system ofequations E(i) for ea
h i. 2Hen
e we want a boolean formula whi
h is satis�able i� E(i) is not solvable.Proposition 7.2 shows that one 
an eÆ
iently 
onstru
t su
h a boolean formula�(i) of size O(n2).Hen
e ^1�i�n=2 �(i)is satis�able i� X is a lex-leader.Thus we have a proof of the following theorem:Theorem 7.15 Let G � Sym(
) be a group with orbits of size � 2. Then forall orderings of 
 one 
an 
onstru
t a lex-leader formula �(G) of size O(n3).Thus while �nat(G) for some groups of this 
lass was of exponential size forany ordering of 
 (Theorem 5.1), �(G) is of polynomial size if of polynomialsize for every order.7.5 Abelian Groups: General CaseIn the general 
ase, the proje
tion of abelian G � Sym(
) in ea
h orbit isisomorphi
 to a dire
t produ
t of 
y
li
 groups. In this subse
tion, we 
onsiderthis general 
ase.Let �1;�2; : : : ;�r be the orbits of G in 
. We assume that 
 is orderedso that, for i < j the points in �i appear before the points �j (in parti
ular,ea
h orbit is 
ontiguous). Re
all that an abelian transitive group is regular [8℄so that jG�i j = j�ij. We write g(i) for the proje
tion of g 2 G in G�i . Sin
ethe points in the same orbit appear together, we 
an number the points in �i asf0; 1; 2; : : : ; j�ij�1g without any 
onfusion. For a string X , we let Xfig(j) referto the value of X at the j-
oordinate in its restri
tion to �i, where 1 � i � rand 0 � j � j�ij � 1. 22



Our goal, as before, is to rewrite the expression for lex-leader, namely, forea
h 1 � i � r,:9g : (g 2 G) ^ (gX[i�1℄ = X[i�1℄) ^ (gXfig > Xfig) (8)as the nonsolvability of a system of equations over an appropriately de�nedmodule.We now 
onsider ea
h subexpression in parenthesis inside Equation (8) andrewrite it as a system of equations:gX[i�1℄ = X[i�1℄We fo
us on the j-th orbit (j < i) and show that Xfjg = gXfjg 
an beexpressed as a system of equations. We assume that group H = G�j = Zm1 �Zm2�� � ��Zmt and write g(j; l) for the proje
tion of g(j) in Zml. With respe
tto this de
omposition, we use the bilinear from k; h 7! k�h de�ned in Se
tion 7.1.De�ne for k; h 2 H , and Xfjg:�(Xfjg; k; h) := 0�0� ^0�i�m�1Xfjg(i) = Xfjg(ih)1A! k � h = 01Awherem = jH j = j�j j. Observe that �(Xfjg; k; h) is equivalent to the 
onditionk � h = 0 for h 2 H su
h that hXfjg = Xfjg. For all other h, �(Xfjg; k; h) istrue.Also de�ne �(Xfjg; k) := ĥ2H �(Xfjg; k; h):Let K = K(Xfjg) be the subgroup of H stabilizing Xfjg. Hen
e,�(Xfjg; k) := 8h2K(Xfjg)(k � h = 0)= (k 2 K?)For ea
h k 2 H , we in
lude the linear equation4:�(Xfjg; k) � [k � g(j)℄ = 0 (9)So the number of equations is j�j j.When k 62 K?, the 
oeÆ
ient �(Xfjg; k) is 0 so Equation (9) is triviallysatis�ed. The 
oeÆ
ient is 1 if k 2 K?. Hen
e, the set of equations sayspre
isely that g(j) 2 K?? = K, i.e., g is in the stabilizer of Xfjg.We 
an form equations of the form (9) for ea
h of the �rst i� 1 orbits for atotal of Pj<i j�j j equations. Thus we have the following lemma:4More pre
isely, this is a 
ongruen
e mod l
m(m1; : : : ;mk) involving variables g(j; l)23



Lemma 7.16 Let G be as above and let g 2 G; X 2 2
. One 
an write a systemof linear equations E1(g; i) whi
h is satis�ed i� Xg[i�1℄ = X[i�1℄. FurthermoreE1(g; i) has O(n) equations in O(n) unknowns.gXfig > XfigWe express this 
ondition as the solvability of a (
olle
tion of) linear systemsin the following lemma:Lemma 7.17 Let G be as above and let g 2 G; X 2 2
. One 
an write a
olle
tion fE2(g; i; h) jh 2 G�ig of linear equation-systems su
h that gXfig >Xfig i� E2(g; i; h) is satis�ed for some h 2 G�i .Proof: Again supposeG�i � Zm1�� � ��Zmt, so h(2 G�i) � (h(1); h(2); : : : ; h(t))where h(i) 2 Zmi. The boolean variable S(h; i) for ea
h h 6= 0 expresses the
ondition (hX > X) as follows:S(h; i) = _0�j�m�1240� ^0�`<jXfig(`) = Xfig(`h)1A ^ (Xfig(j) < Xfig(jh))35where j�ij = m.For g 2 G, we 
an express gXfig > Xfig as_h2G�i (S(h; i) ^ (g(i) = h)) :We express the 
ondition that g(i) = h by a system of equations g(i; j) =h(j) mod mi for 1 � i � t. We 
an thus express ea
h 
lause S(h; i) ^ (g(i) = h)as a system of linear equations E2(g; i; h) as follows:S(h; i)g(i; j) � h(j) mod mj for ea
h 1 � j � t:Thus gXfig > Xfig i� one of the equation systems E2(g; i; h) is satis�ed for someh. 2g 2 GLet D = G�1 � � � ��G�r . Using the �xed 
y
li
 de
ompositions of G�i , weobtain a 
y
li
 de
omposition of D. For d 2 D, let d(i) be the proje
tion of din G�i and then d(i; j) the proje
tion of d(i) in jth 
y
li
 fa
tor of G�i .Now, viewing G as a subgroup of D, we let K = G? � D as in Se
tion 7.1;a generating set Q for K 
an be found by solving a linear system. Then, forg 2 D, we have g 2 G i� g � q = 0 for all q 2 Q. But observe that g � q = 0expands to an equation of the from Pi;j aijd(i; j)g(i; j) � 0modm (m beingthe l
m of the orders of the 
y
li
 fa
tors). We denote the resulting system by24



E3(g). The number of equations is jQj = O(n) and the unknowns are the g(i; j)and 
onsistent with the variables arising in the systems E1(g; i) and E2(g; i; h).Thus Equation (8) asserts that for ea
h 1 � i � r; h 2 G�i ,:9g : E(i; h) (10)where E(i; h) is E3(g) ^ E1(g; i) ^ E2(g; i; h). Thus, in e�e
t, Equation (8) assertsthe nonsolvability of ea
h system in a 
olle
tion of n linear equation-systemsfE(i; h) j 1 � i � r; h 2 �igThe number of equations in ea
h system E(i; h) is O(n) and ea
h system hasO(n) variables g(k; l)'s. Ea
h equation in E(i; h) is de�ned either modulo the sizeof a 
y
li
 fa
tor in D orm wherem is the l
m of the sizes of the 
y
li
 fa
tors inD. Now, Lemma 7.10 implies that one 
an 
onstru
t a boolean formula �(i; h)of size O((n3= logn)�(logn)) whi
h is satis�able i� E(i; h) is not solvable. To bepre
ise, E(i; h) does not satisfy all the hypotheses of Lemma 7.10 be
ause someof the equations are de�ned modulo large integers (> n). However, it is easyto see that when we break E(i; h) into its prime-power systems, we need only
onsider primes that are � n. In the analysis of the �nal size of the formula inthe lemma, this is what is signi�
ant.Thus X is a lex-leader i� E(i; h) is nonsolvable for ea
h i and ea
h h 2 G�i ,i.e., i� the following boolean formula is satis�able^1�i�r ^h2G�i �(i; h) (11)This gives us a lex-leader formula of size O(n4�(logn)= logn).A Tighter AnalysisAs we remarked after Lemma 7.10, the above bound for the lex-leaderformula over
ounts by an order of magnitude. This is be
ause, en route toLemma 7.10, when we break E(i; h) into its prime-power systems Ep, Ep hasfar fewer variables than n (the original number of variables in E(i; h)). Wenow show that more 
areful 
ounting leads to a smaller estimate of the �nallex-leader formula.When the orbit 
onstituents are written as sums of 
y
li
s, we may haveassumed ea
h of these 
y
li
s is of prime power order. Let Np be the number of
y
li
 summands of p-power order. The following lemma is well-known:Lemma 7.18 The number of 
y
li
 fa
tors of abelian G � Sym(
) is O(n)where j
j = n.Proof: Sin
e G is a subdire
t produ
t of its orbit 
onstituents fG�ig, we havejGj � Qi jG�i j = Qi j�ij � 3n=3 (the last inequality follows from Pi�i = n).But the number of 
y
li
 fa
tors of G is 
learly O(log jGj). 225



Sin
e the total number of 
y
li
 summands is O(n), PpNp = O(n). Whenthe system of equations are broken into primary-parts, then the number ofessential variables in the system Ep for any prime p is Np. When one 
onsiderthe dual system (e.g., in going from nonsolvability to solvability) the number ofequations be
omes Np.Sin
e there are three 
omponents in the system of equations in Equation (10),we 
onsider what happens in ea
h 
omponent when we pass mod pe.First, we 
onsider the systems that arise from expanding \inner produ
ts":the system expressing g 2 G (E3(g)) and the system expressing g-invarian
e ofX[i�1℄ (E1(g; i)). The summands expanding the inner produ
t are of the formg(k; l) � x � m=q (re
all de�nition of inner produ
t, Se
tion 7.1) where m isthe exponent (i.e., the l
m of the 
y
li
 prime-power fa
tors) of the relevantgroup, and also the modulus for the equation (
ongruen
e), and q is the orderof the (k; l)-th 
y
li
 fa
tor. By assumption q = pa for some prime p. Whenthe equation (
ongruen
e) is 
onsidered mod any prime p0 other than p, thissummand disappears be
ause m=q � 0 mod p0. Hen
e, the variable g(k; l) isretained only in the systems written for the prime p.Next, 
onsider the equations that arise from expressing gXfig > Xfig. Theseare of the form S(h; i) g(i; j) � h(j) mod mjwith j varying over the 
y
li
 fa
tors in the orbit and mj the order of the 
orre-sponding 
y
li
 fa
tor and is therefore pa, where again p is the prime asso
iatedwith the variable g(i; j). This equation 
annot be in
luded in any Eq for a primeq di�erent from p be
ause q does not divide mj .Lastly, we 
onsider the equations that arise from expressing g 2 G. As in the
ase for gX[i�1℄ = X[i�1℄, we retain only those 
oeÆ
ients in the inner produ
tterms whi
h appear with m=pa in Ep.Hen
e we have the following lemma:Lemma 7.19 For prime p, the number of variables in Ep is Np.Using the fa
t that PNp = O(n), this means that ea
h �p expressing non-solvability of Ep is of size O(nNp�(log pe)) (via Lemma 7.8), so that the formula�(i; h) = Wp �p expressing nonsolvability of E(i; h) is of sizePp nNp�(log pe) =O(n2�(logn)). Sin
e the number of pairs f(i; h)g is O(n), the resulting lex-leader formula, namely, Equation (11), is of size O(n3�(logn)). This provesTheorem 5.4.8 Future WorkWe note that a generalization to arbitrary nonabelian groups is unlikely; indeed,it is shown in [2℄ that testing lex-leadership is NP-hard even for the orderings
heme that we use for abelian groups. On the other hand, that same paperdes
ribes an polynomial-time algorithm for testing lex-leadership for a group26




lass that in
ludes all solvable groups. While su
h a result already implies atleast a polynomial-size lex-leader formula, the 
onversion of the known algorithmyields an unwieldy formula even in the abelian 
ase (where it is at least 6 ordersof magnitude larger than what we present herein). In subsequent work, weintend to 
onsider the feasibility of �(G) for the \good" groups of [2℄.A
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