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Abstract

We present polynomial-time algorithms for computation in quotient groups
G/K of a permutation group G. In effect, these solve, for quotient groups,
the problems that are known to be in polynomial-time for permutation groups.
Since it is not computationally feasible to represent G/K itself as a permuta-
tion group, the methodology for the quotient-group versions of such problems
frequently differ markedly from the procedures that have been observed for the
K = 1 subcases. Whereas the algorithms for permutation groups may have
rested on elementary notions, procedures underlying the extension to quotient
groups often utilize deep knowledge of the structure of the group.

In some instances, we present algorithms for problems that were not previ-
ously known to be in polynomial time, even for permutation groups themselves
(K =1). These problems apparently required access to quotients.



1. Introduction

Since the order of a permutation group G on n letters can be exponential in
n, it is customary, in both theory and practice (see, e.g., [Ca], [FHL], [Si]), to
specify G by a small set of generating permutations (less than n are needed and
typically many fewer suffice). Despite the succinctness of such representations,
a substantial polynomial-time machinery has developed for computing with per-
mutation groups. A major stimulus for this activity was the application to the
graph isomorphism problem (ISO), for early work ([Bal], [FHL], [Lul], [Mil],
[Mi2], [BL]) used groups to put significant instances of ISO into polynomial
time. Ensuing studies resulted in algorithms for deciphering the basic build-
ing blocks of the group ([BKL], [Lu2], [Ne], [KT], [Kal], [Ka2], [Ka3], [BLS1]),
making available constructive versions of standard theoretical tools.

One essential ingredient has, to a great extent, been lacking. The facility
to deal with quotient groups (equivalently, homomorphic images of groups) is a
central methodology of group theory, but there has not seemed to be an effective
computational analogue. In practice, group theory systems do offer permuta-
tion representations of quotients [Ca]. But, from the standpoint of worst-case
complexity, this reduction back to permutation groups cannot work. The rea-
son is that quotients of given permutation groups need not have faithful (1-1)
permutation representations on a polynomial-size set. For example, in illustrat-
ing the computational blowup, Neumann [Ne] gives an example of a 2-group
acting on n letters, a quotient of which has no faithful representation on less
than 27/ letters.

The above difficulties notwithstanding, we introduce methods for dealing
with quotient group problems that close the apparent complexity gap. In fact,
we are motivated to conjecture a Quotient Group Thesis:

If a problem for quotient groups G/K of permutation groups has a
polynomial-time solution when K =1 then it has a polynomial-time
solution in general.

Corroborating testimony for the Quotient Group Thesis is our extension of
the polynomial-time library for permutation groups (as we see it) to quotients
of permutation groups. We employ a variety of techniques in this extension,
including two very useful tools (the Sylow and Frattini methods in §5) for lifting
problems on G/K to problems on a “reasonable” G. In the process, we enhance
the algorithmic infrastructure even for the case K = 1: some issues seem to
have required access to quotients.

For several problems, the procedures for handling G/K are easy conse-
quences of those for the special case K = 1. But in other, critical instances
this is far from the case. As confirmation, witness the difference in the nature
of the underlying theoretical tools. For example, demonstrating, from first prin-
ciples, that the center of a permutation group is computable in polynomial-time
involves only elementary properties of groups and no other knowledge of the



group structure ([Lu2], [CFL]); it is, in fact, interpretable as the subgroup fix-
ing a set of points (in an augmentation of the set) [Lu2] and so computable by
the most basic algorithm in [FHL]. Such a concrete interpretation is not available
for quotient groups. To show that the center of a quotient group can be com-
puted efficiently, we make essential use of the Sylow structure made available via
procedures in [Ka2], [Ka3], procedures that are dependent upon the (~ 15000
page) classification of finite simple groups. Nevertheless, we emphasize that
our new methods do not require a deep knowledge of this classification or of
other algebraic theory of great depth. The procedures that we cite (e.g., from
[Lu2], [Ka2], [Ka3]) have elementary specifications; so they are quite accessible
to non-specialists.

Another aspect of the procedures seems worth highlighting. From one point
of view, we are effectively manipulating induced permutation representations in
which the new permutation domains are themselves too large to enumerate. One
example occurs in the consideration of the transitive action of a permutation
group G on its, possibly exponential, collection P of Sylow p-subgroups of G
(where g € G maps P — P9 = g~1Pg); given two “points” P;, P, € P, we need
to find some (and sometimes all) g € G such that P{ = P,. Another example is
our computation of cores of subgroups H of G, for the core is interpretable as
the kernel of the permutation representation of G on the set of (right) cosets of
Hin G.

Section 2 has an extended glossary of group-theoretic terminology, most of
which is standard; the reader should refer back to this as needed. In Section
3, we recall a few fundamental algorithmic results for permutation groups. We
present, in Section 4, the backbone of the polynomial-time library for computing
with permutation groups as well as with quotients of permutation groups; see
that section also for a pointer to the proofs in Sections 5-12. Some intriguing
open questions are indicated in Section 13.

In the Appendix, we discuss some problems that are routinely solved in prac-
tical computation but are of uncertain complexity. A polynomial-time solution
to any of these would also resolve ISO. The “library” in Section 4 also serves as
an update on solutions to special cases of the problems that are highlighted in
the Appendix.

We emphasize that the issue herein is polynomial-time computation. With
that in mind, we freely trade efficiency for exposition. In particular, we make
no attempt either to optimize worst-case time-bounds or to describe efficient
implementations. Of course, these are well-motivated, related issues, and each
is the object of a growing literature.

A more complete collection of algorithms and proofs will appear in [KL].

2. Definitions and notation

We recall some group-theoretical terminology.



Throughout, let G be a finite group. We write H < G to indicate that H
is a subgroup of G, and H < G to indicate that H is a normal subgroup; then
H < G and H < G indicate that the inclusions are strict. A group G is simple
if there is no H such that 1 < H < G. We say that H is subnormal in G if
there is a chain of subgroups of the form H = Ly <1 L; <---dL,, = G. If
S C G then (S) is the subgroup of G generated by S. For s,t € G, we write s’
for the conjugate of s by t, namely, s~ ts; and extend the notation to subsets
S, T C G via ST = {s' | s € S,t € T}. The normalizer and centralizer of S in
Gare Ng(S)={g€G|S9=S}and Cg(S) ={ge G|s9=s, Vs €S},
respectively; subsets of Ng(S) or Cg(S) are said to normalize or centralize S,
respectively. The center of G is Z(G) = Cg(G). The normal closure of S in G is
the smallest normal subgroup of G containing S, namely (SY). If H < G then
the core of H in G, Coreg(H), is the largest normal subgroup of G' contained
in H, namely {HY | g € G}.

We refer to [Ha] for a discussion of Sylow’s Theorem: (i) If p is a prime then
a Sylow p-subgroup of G is a p-subgroup whose order is the p-part of |G|; (ii)
any p-subgroup of G is contained in a Sylow p-subgroup; (iii) any two Sylow
p-subgroups P;, P, are conjugate in G: P{ = P, for some g € G.

For s,t € G, we write [s, t] for the commutator s~'t~1st, and for S,T < G,
we set [S,T] = ([s,t] | s € S,t € T'). The derived subgroup of G is G' = [G,G].
The derived series of G is the series G > G' > (G') > ---; G is solvable if
this series terminates with the group 1. The lower central series of G is defined
recursively by: Li1(G) = G and L;11(G) = [G, L;(G)]; G is nilpotent if this series
terminates with the group 1. The upper central series of G is defined recursively
by: Zo(G) = G and Z;41(R)/Zi(G) = Z(G/Z;(@)); G is nilpotent iff this series
terminates with the group G.

We refer to [Ha, Ch. 8] for an amplification of the following facts about
composition series and chief series. A composition series of G is a maximal chain
1=Ho<H1<---<1Hp, = G of subgroups; then each quotient group H;/H;_; is
a simple group, and is called a composition factor of G; the isomorphism types
in the multiset {H;/H;_1 | 1 < i < m} are uniquely determined by G. A chief
series of G is a maximal chain 1 = Ko < K3 < --- < K, = G of normal (in G)
subgroups; the isomorphism types in the multiset {K;/K,—1 | 1 < i < r} are
uniquely determined by G (even as groups with operators G).

If 3 is any collection of simple groups, let Ox(G) denote the largest normal
subgroup of G each of whose composition factors is isomorphic to a member
of ¥, and let O (G) denote the smallest normal subgroup of G such that each
composition factor of G/O*(G) is isomorphic to a member of . If 3 consists
of all the groups of prime order, then Osx(G) is the maximal solvable normal
subgroup of G, while O*(G) is the last term in the derived series of G. If ¥
consists of a single group of prime order p, the group O,(G) is the largest normal
p-subgroup of G; the subgroup (0,(G) | p||G|) is called the Fitting subgroup
of G and is the largest normal nilpotent subgroup of G.

The automorphism group of a group G is denoted Aut(G). Then H is a



characteristic subgroup of G if it is mapped to itself by all elements of Aut(G).
Examples include the groups in the derived series, the upper and lower central
series, Ox(G) and O* (@), for any X.

We denote by Sym(Q) the group of all permutations of an n-element set
Q, or by Sym(n) if the set does require explication. For A C Q,¢g € Sym(Q),
we denote by A9 the image of of A under g. The group of n x n nonsingular
matrices over a g-element field is denoted by GL(n, ).

For any fixed integer d, let T’y designate the class of groups all of whose non-
cyclic composition factors are isomorphic to a subgroup of Sym(d); in particular,
'y contains all solvable groups. A most significant effect of this restriction on a
class of groups is that the primitive permutation groups (see [Wi]) in the class
have polynomially-bounded order [BCP]. (Primitive groups arise naturally as
the base cases in certain divide-and-conquer procedures; see, e.g., [Lul]). There
are fairly elementary procedures for testing membership in I'y (see [Lul, §4]).
For our purposes, it is essential only that d be fixed; the specific value of d would
play a role in more precise timing arguments [Ba2], [BL], [BKL]). The class I'y
arose originally in the context of testing graph isomorphism ([Lul], [Ba2], [Mil],
[Mi2], [BL], [FSS)).

3. Algorithmic preliminaries

Unless indicated otherwise, subgroups of Sym(n) = Sym({Q2) are input via gen-
erators. Output of groups is always via generators. All procedures identifying
elements or subgroups are constructive — i.e., computed via straight-line pro-
grams, in which each element is a product or inverse of previously constructed
or input elements. Throughout this paper, all algorithms have polynomial-time
worst-case complexity. Checking running time to this extent is straightforward.
Keep in mind, for this, that any strictly decreasing sequence of subgroups of
Sym(n) has polynomial length (the bound logn! = O(nlogn) is an immediate
consequence of Lagrange’s Theorem [Ha|; for the sharper bound 3n — 2, see
[Bad]).

In this section, we recall a few fundamental problems for which polynomial-
time algorithms are known. For these, there is no reasonable corresponding
problem for quotient groups as the underlying set is too involved in the actual
statement of the problem (though this point is arguable for 3.1).

Given a group G < Sym(Q), each of the following problems is solvable in
polynomial time.

3.1. Given h € Sym(Q), test whether h € G. [FHL]

As a consequence, one can test whether a group H is a subgroup of G (applying
membership tests to the generators). The basic methodology for 3.1 and 3.2 is
due to Sims [Si].



3.2. Given A C (2, find the pointwise stabilizer of A in G, ie., {g€ G |69 =
5,6 € A}). [FHL]

3.3. Suppose that G € Ty (see §2). Given A C , find the set stabilizer of A
in G, ie., {g€G|AI=A} [Lul]

4. A polynomial-time library

Let K<G < Sym(n). In this section we list a number of problems for computing
in G = G/K. For the case K = 1, we believe that these present an overview of
the polynomial-time toolkit. Of course, it is not feasible to list every polynomial-
time result, but, to our knowledge, problems known to be in polynomial-time
are fairly direct consequences of this list.

We always assume that generators are given for G and K. Each element of
G is specified by a single coset representative: elements of G are cosets of the
form Kg with g € G. All subgroups of G are written using boldface type; they
are specified by generators.

The following problems are listed P1-P16; in referring to an algorithm, it
is convenient to use the label, Pm, of the corresponding problem. The various
problems have been divided into three broad categories: TOOLS, BUILDING
BLOCKS, and CHARACTERISTIC SUBGROUPS. The ordering of the
list is not intended to reflect the order in which solutions have been obtained in
the literature or are obtained in this paper.

Given G = G/K for K 4G < Sym(Q), each of the following problems is
solvable in polynomial-time.

TOOLS
P1. Find |G|, the order of G.

P2. (i) Find a generator-relator presentation for G.

(ii) Given G = (M), and a map m: M — H, where H is any group in
which we are able to determine, in polynomial time, products and in-
verses of designated elements; decide whether or not 7 is extendible to
a homomorphism G — H.

P3. (i) Given S C G, find the normal closure (S¢).

(ii) Given H < G, test whether H is subnormal in G; and, if so, find a
sequence H=Lo<dL; <---<4L,, = G.

P4. Given A,B < G, find A N B in each of the following situations:
(i) A normalizes B, or

(ii) more generally, B is subnormal in (A, B), or
(iii) A €Ty (cf. §2).



P5. (i) Given H < G, find Coreg(H).
(i) More generally, for arbitrary G = G/K,H = H/K, find Coreg(GNH).

P6. Given A,B < G such that A normalizes B.
(i) Find Ca (B).
(ii) Given g € G normalizing A and B, determine whether there is some
a € A such that b* = b9 for all b € B; and if so, find such an a € A.

P7. Given A < G with A € T'y.
(i) Given B < G, find Ca(B).
(ii) Given b1,bs € G, determine whether there is some a € A such that
by = be; and if so, find such an a € A.

P8. Suppose G is nilpotent.
(i) Given B < G, find Ng(B).
(ii) Given By, B2 < G, determine whether or not B; and B, are conjugate
in G; and if so, find g € G such that BY = B,.

P9. Compute the kernel of the homomorphism 7 in each of the following situ-
ations:

(i) m G — H/L, where L < H < Sym(A).

(ii) = is an action of G on a permutation group H < Sym(A), i.e,, m: G —
Aut(H) (G need not act on A). More generally, let H be a quotient
of subgroups of Sym(A).

(iii) = is alinear representation of G over a finite field, i.e., m: G — GL(m, q).

BUILDING BLOCKS

P10. (i) Test whether G is simple;

(ii) if it is not, find a proper normal subgroup N, i.e., 1 < N < G.

(iii) Find a composition series 1 = Hy <H; <--- <H,,, = G for G, and
find a faithful permutation representation for each of the composition
factors H;/H,_1; specifically, a homomorphism 7;: H; — Sym(A;) with
kernel(m;)=H;_1 and |A;| < |Q].

P11. (i) If H < G, test whether H is a minimal normal subgroup;
(ii) if it is not, find N < G such that 1 < N < H.
(iii) Find a chief series for G.

P12. If G is simple, identify the isomorphism type of G; that is, find the name
of this simple group.



P13. (i) If p is a prime, find a Sylow p-subgroup of G containing a given
p-subgroup P of G (P could be 1).
(i) Given Sylow p-subgroups P1,P5 of G, find g € G such that P{ = Ps.
(iii) Given a Sylow p-subgroup P of L where L 4 G, find Ng (P).

CHARACTERISTIC SUBGROUPS

P14. Find the following subgroups of G:
(i) the derived series (and hence, test whether or not G is solvable);

(ii) the lower central series (and hence, test whether or not G is nilpotent);
and

(iii) the upper central series (in particular, find Z(G)).

P15. (i) Find the subgroup generated by all minimal normal subgroups of G
(the socle of G).

(ii) Find the intersection of all maximal normal subgroups of G.

P16. For any collection ¥ of simple groups,
(i) find Ox(G), and
(ii) find O%(G).

We discuss sources for the above and also indicate the situations where the
extension from the case K =1 is immediate.

P1: Finding |G| is inherent in Sims’s basic procedure ([Si]; see [FHL]) and
the extension to G is trivial: |G/K| = |G|/|K]|.

For K =1, algorithms for P2(i) are standard (e.g., [Le]); an asymptotically
fast implementation is given in [BLS2]. Extensions to general K and proce-
dures for P2(ii) follow easily from the nature of these presentations; see §12
for comments. Typical situations that we have in mind for H in P2(ii): H is
input via a Cayley table; H = Sym(A) for some listed set A; H = GL(m, ¢) (in
which case timings must be polynomial in m and logq); H = Aut(A) for some
A < Sym(A), for some listed set A (w(M) being specified on generators of A, in
which case we might also need to verify that m(M) C Aut(A)). More generally,
we may suppose H is a black box group in the sense of [BS].

When K = 1, P3(i) is contained in [FHL]; the analogue for quotient groups
is immediate since ((H/K)%/X) = (HS)/K. P3(ii) is an easy consequence of
the observation that H is subnormal in G iff H is subnormal in (HS).

When K = 1, P4(i) is an easy application of results in [FHL] (see [Ho], or
[CFL] where it is directly reduced to 3.2); the general case is an immediate
consequence. In view of P3(ii), P4(ii) follows at once. For K = 1, PA4(iii) is
in [Lul, §4.2]. The general case is solved herein, see §7. All parts of P4 should
be compared with the general problem INTERSECTION (see the Appendix),
which is at least as hard as GRAPH-ISOMORPHISM (ISO) [Lul].



Problem P5 was previously open even for K =1 (see [Ba3]). It is solved in
86.

For K = 1, problem P6(i) is solved in [Lu2], while P7(i) is a consequence
of P4(iii) and the computability of Cgym(q)(B) (see, e.g., [CFL]). The general
cases of P6(i), P7(i) are amongst the principal applications of the methods
of this paper, see §86,7. These problems should be compared with the general
problem CENTRALIZER (see the Appendix), which again is at least as difficult
as ISO. Methods for obtaining P6(ii), P7(ii) from P6(i), P7(i), respectively,
are analogues of the familiar reduction of ISO to finding automorphism groups
of graphs, see §11.

P8(i) and P8(ii) are dealt with in §§10,11; these are new results even for
K =1. General NORMALIZER (see the Appendix) clearly is at least as difficult
as CENTRALIZER (cf. P6(i)).

In problem P9, we would typically expect the homomorphisms to be speci-
fied by images of generators (see P2(ii)). In this set of problems, it seems as if
only the case L =1 in (i) is immediate, for this case reduces to an application
of 3.2. P9(ii) and P9(iii) use the building blocks of the groups. These results
will appear in [KL]. Note that P9(ii) is a generalization of P6(i).

P10is treated in [Lu2]. Although only the case K = 1 is dealt with explicitly,
the general case is implicit in [Lu2, §4].

It is easy to reduce P11(i) to the case that H is a direct product of isomorphic
simple groups, all conjugate in G (for, taking the smallest group L # 1 in
a composition series of H, we may assume that H = (L®)). If then H is
nonabelian, it is minimal normal in G. The interesting case then is when H
is abelian. This has been resolved by Rényai [R4, §5.3] as an application of
an elegant study of the “Building Blocks” in associative algebras. P11(ii) and
P11(iii) follow easily.

P12 appears in [Kal]. The “name” refers to a standard naming of the finite
simple groups (examples: “Zg;”, “A;7”, “PSL(4,19)”).

For K =1, P13(i),(ii),(iii) are resolved in [Ka2], [Ka2], [Ka3], respectively.
The general case is in §8.

For K = 1, P14(i) and P14(ii) are standard observations, both problems
reducing to finding normal closures of sets of commutators (e.g., see [FHL] for
P14(i)); the general case is an immediate consequence. On the other hand,
P14(iii) is new even when K =1 (cf. §6).

An algorithm for P15(i) is discussed in §9. Computation of the “abelian
part” of the socle requires an application of Rényai’s work [R6]. P15(ii) is
implicit in [BLS1].

We assume in P16 that X is specified by a, possibly parametrized, list of
names of groups. We outline methods for these problems in §9. P16(ii) is
actually implicit in [BLS1], given the additional capability in P12. For K = 1,
the special case O,(G) has been computed in [Ka2] and [Ne].



5. Two paradigms

We isolate two useful computational ideas. In each case we will not present an
actual algorithm, but rather the outline of one. It is important to note that,
while the methods themselves are based on elementary group theoretic facts,
their implementation requires the Sylow machinery in the instances K = 1 of
P13, which, at present, depend heavily on the classification of finite simple
groups. Fortunately, properties of simple groups are not visibly involved in the
specifications of this machinery, nor in its uses. For easy but striking examples
of the use of these methods, see §§6,7.

Sylow Method.
Problem
Input: G < Sym(n), given via generators; H < G with H specified only by a
membership test.
Find: Generators for H.

Method: Reduce to the case in which G is a p-group as follows. For each
prime p, p‘ |G|, find a Sylow p—subgroup P of G (using P13(i)), and then find
generators for PN H.

Output H as (PN H | one P per prime p| |G]).

Correctness: Since H <G, PN H is a Sylow p-subgroup of H. O

Before turning to the next, equally elementary method, we recall the follow-
ing standard fact concerning finite groups [Go, p.12]:

Frattini argument. Let P < K < G with P o Sylow subgroup of K. Then
G = KNg(P).

This inspires the

Frattini Method.
Problem
Input: K < G < Sym(n), given via generators, such that G/K has some
given isomorphism-invariant group-theoretic property; a subgroup H of G
containing K, specified only by a membership test.
Find: Generators for H.

Method: Reduce to the case in which K is nilpotent, as follows. If K is not
nilpotent, there is, for some prime p, a Sylow p-subgroup P of K (computed by
P13(i)) that is not in normal K. Use P13(iii) to find Ng(P) and N (P). Re-
cursively solve the problem for the triple Ng(P),Ng (P), HNNg(P), producing
generators A for H N Ng(P). Output A along with generators for K.

Correctness: By the Frattini argument, G = KNg(P), so that Ng(P)/Ng(P) &
G/K has the given group-theoretic property. Moreover, H = KNg(P) =
K(HNNg(P)) = K(A). For the timing, we observe that Ng(P) < G. O



The group-theoretic properties of G/K we have in mind here include solv-
ability or membership in 'y (cf. §2). In view of the above reduction, the full
group G may be assumed to have the respective property.

6. Cores and centers

This section contains a simple but noteworthy use of the Sylow Method. We
resolve P5 and then apply the result to P6(i) and P14(iii).

Note that a polynomial-time computation of Coreg(H) would be an imme-
diate consequence of a polynomial-time procedure for intersecting permutation
groups. However, the latter seems out of reach (see the Appendix). Hence, a
less direct approach will be required.

Recall first that intersections with p-groups are feasible (case K = 1 of
P4(iii) [Lul]). We also need to recall that it is easy to implement a normal-
closure routine for N = (S) so as to return: (1) a set T generating N consisting
entirely of conjugates (in G) of elements of S; and (2) for each ¢t € T, some
g € G for which t € S9. For example, given G = (M), form T as follows:
after initializing T:= S, repeatedly check (using 3.1) whether there is some
teT,a € M with t* ¢ (T'), and, if so, add t* to T.

Algorithm for P5(ii). We may assume that K = 1. Note, for membership-
testing, that, if g € G, then g € Coreq(G N H) iff (¢¢) < H. Use of the Sylow
Method (§5) shows that it suffices, for each prime p, to take a Sylow p-subgroup
P of G and find P N Coreg(G N H). For this:

while ((P¢) £ H) do
begin
find g € G such that P9 £ H

(* via the above normal-closure routine *);
1

P:=PnNnHI
end;
output P.

Correctness: One needs only to observe that the value of PN Coreg(G N H)
is a loop invariant and that, upon exit from the loop, P < Coreg(G N H). O

Algorithm for P6(i). Let A= A/K, B = B/K. View G x G as a permu-
tation group on a 2n-element set, the disjoint union of 2 copies of 2, in the
natural manner (the first coordinate permuting only the first copy, the second
coordinate permuting only the second). Note that 1 x K << G x G and 1 x B is
normalized by A x A.

Let D be the diagonal group {(a,a) | a € A}, and set R:= D(1 x B) and
S:=D(1 x K).

10



Use P5(i) to find Coreg(S). Let C be the group obtained by restricting
Coreg(S) to the first n points.
Output C/K (i.e., output the set of K¢, c ranging over the generators of C).

Correctness: We must show that Ca(B) = C/K. Note that C' contains K
since K x K is a normal subgroup of R contained in S. Observe, too, that
(a,z) € Siff a € A and a~'z € K. Now, if (a,z) € S, then

(a,z) € Corer(S)
iff (a,2)®CS
iff (a,z)? € S, Vb e B (since SP = 9)
iff a2’ =a1ab(@ l2) € K,VbeB
iff a®=a (modK), Vbe B. O

Algorithm for P14(iii). Successively use P6(i) and the definition of the
upper central series.

The preceding method for finding Z(G) is in stark contrast to the known
algorithms for finding Z(G). For example, in [CFL] this is found first by finding
Csym(n) (G); but no analogue of this is available for G. Another method [Lu2]
finds Z(QG) by first constructing a faithful permutation representation of G/Z(QG)
on a set of size O(n?); evidently, such an approach cannot be iterated. Instead,
we have made full use of (the case K = 1 of) the Sylow machinery which, in
turn, depends on the classification of finite simple groups.

7. Computations with solvable groups

Despite the title, the algorithms in this section deal with a more general, though
less standard, class of groups: we assume throughout that G € T'y, for some
fixed d (§2).

We present algorithms for P4(iii) and P7(i). The Frattini Method (§5) plays
a critical role.

Algorithm for P4(iii). Let A = A/K, B = B/K. We seek H =ANB. If
K € T; then A € T'; so that this intersection can be found via the case K =1
of P4(iii) [Lul, §4.2]. Otherwise, K is certainly not nilpotent, so that we can
find, for some prime p, a Sylow p-subgroup P of K that is not normal in K
(using the case K =1 of P13(i) [Ka2]). Use the case K =1 of P13(iii) [Ka3]
to find N4 (P), Ng(P), Nk (P). Recursively, compute N 4(P) N\Ng(P). Output
H = [N4(P) N Np(P)]K.

Correctness: Since A normalizes B, N 4(P)/Ng (P) normalizes Ng(P)/Ng (P);
also, A = KN 4(P) by the Frattini argument (§5), so that N4(P)/Ng(P) =
A/K € T'y. Hence, the recursive call is valid. By the Frattini argument, H =
Nu(P)K = (N4o(P)NNg(P))K. For the timing, observe that N4(P) < A. O
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In the following, we denote, for any r € Sym(Q2), A, = {(w,w") |w € O} C
2 x Q (the “graph” of r), so that A, = A, iff r = s. Considering the natural
action of Sym(Q) x Sym(f) on O x Q (i.e., via (a, 5)9M = (a9, 3")), we note
that A" = A 1.

Algorithm for P7(i). We may assume that B = (Kb} is cyclic. The Frattini
Method reduces the problem to the case K nilpotent. In particular, we may
assume A € T'y.

Let A = A/K. Letting D be the diagonal subgroup {(a,a) | a € A} (so
D= A),set L:=D(1 x K) < Sym(Q) x Sym(f2). Then L € T'y.

Use 3.3 to find the set stabilizer S of A in L.

Let H be the first-coordinate projection of S (generated by the first-coordinate
projections of the generators of S). Output H.

Correctness: For a € A and k € K, A,(,a’“k) = Ag-1pqx- Thus (a,ak) stabi-
lizes Ay iff b* = bk—!. Hence, for a € A, there is some (a,ak) € L stabilizing
Ay iff Ka € CA(B). O

8. Sylow subgroups

We indicate algorithms for P13 that are easy extensions of the case K =1
[Ka2], [Ka3].

Algorithm for P13(i). Let P = P/K. Use the case K =1 of P13(i) to find
a Sylow p-subgroup ) of P and to find a Sylow p-subgroup R of G containing
Q. Then RK/K is a Sylow p-subgroup of G/K containing P/K.

Algorithm for P13(ii). Let the given Sylow p-subgroups be P; = P;/K,
1 =1,2. Use the cases K =1 of P13(i) and P13(ii) to find Sylow p-subgroups
Ry and Ry of G lying in P; and Ps, respectively, and to find g € G such that
RY = R,. Then P =P,.

Algorithm for P13(iii). Let L= L/K and P = P/K.

Use the case K =1 of P13(i) to find a Sylow p-subgroup R of P. (Then R
is also Sylow in L, and P = RK.)

Use the case K =1 of P13(iii) to find Ng(R).

Then Ng(P) = Ng(R)K/K. (For, by the Frattini argument (cf. §5)
applied to the triple R < P <4 Ng(P), we have Ng(P) = PNy, (p)(R) =
RK Ny, (p)(R) < KNG (R) < KNg(P). But Ng(P) = Ng(P)/K.)

One consequence of P13(i) is an

Algorithm for finding O,(G). This uses the fact that O,(G) = Coreg(P)
for any Sylow p-subgroup P of G. Note that this special case of P5(i) can also
be computed by successively intersecting conjugates of P using P4(iii).
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Remarks. (i) There are more elementary (and more practical) methods for
computing Op(G) (case K = 1); in particular, these do not depend upon the
classification of finite simple groups ([Ne], also [KL]).

(ii) As in [Ka2], all of these results can be extended to Hall subgroups either
of G or of its normal subgroups.

9. Socles and other normal subgroups

Next we turn to P15 and P16.

Soc(H), the socle of H, is the direct product of simple subgroups, and hence
can be written

Soc(H) = Soc(H)' x Hp||H| Soc,(H)

where Soc(H)' is generated by the nonabelian minimal normal subgroups of H,
while Socp,(H) is generated by the minimal normal p-subgroups of H and is
elementary abelian.

A technique for computing the “nonabelian part” of the socle, Soc(H)', is
indicated in [BKL, §5]; it is stated only for K = 1, but given P6(i), the technique
extends to the general case. We now indicate an

Algorithm for finding Soc,(G), where p is any prime divisor of |G|.

Find O,(G) (see the end of §8).

Use P14(iii) to find Z(0,(G)).

We may assume that Z(0,(G)) # 1.

Find the elementary abelian p-group V' generated by all elements of order p
in Z(0,(G)). (Namely, for each generator d of Z(0,(G)), take an element d' in
(d) of order p; then V is generated by these elements d'.) Clearly, Soc,(G) < V.
Since V' is a vector space over GF(p), we can use [R9] as follows.

Each generator of G induces (by conjugation) a linear transformation of V,
whose matrix with respect to a basis of V' can be found using 3.1 and linear
algebra. Let A be the algebra generated by these linear transformations of
V. Then the minimal normal subgroups of G lying in V are precisely the A-
irreducible subspaces, so that Soc,(G) is the span of these. This space is found
using [R].

Algorithm for P16(i). Use P15(i) to find Soc(G).

Use P12 to test whether any member of ¥ is isomorphic to a minimal sub-
normal subgroup of G (i.e., a simple factor of Soc(G)). If not, output 1.

We may assume that some member of ¥ is isomorphic to a minimal subnor-
mal subgroup J of G. Use P3(i) to find L = (JG).

Recursively find S/L = Os(G/L).

Output S. Correctness is immediate.

Algorithm for P16(ii). Find G/G’ and |G/G’| using P14(i) and P1.
If ¥ contains a cyclic group whose order, p, divides that of the abelian group
G/G/, find a maximal normal subgroup M of G such that |G/M]| = p.
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If ¥ contains no such cyclic group, use the algorithm for P15(ii) [BLS1],
which lists all maximal normal subgroups M of G such that G/M is simple
and nonabelian, and then use P12 to test whether or not any such G/M is
isomorphic to a member of X.

If a maximal normal subgroup M of G has been found such that G/M is
isomorphic to a member of ¥, then output O*(G) = O*(M). Else output
O*(G) = G.

Correctness: If O¥(G) < G then, by definition, G has a homomorphic image
G /M isomorphic to a member of ¥. Then all composition factors of G/O% (M)
are isomorphic to members of ¥, so that O (M) > O*(G). Then M > 0% (G),
and all composition factors of M/O¥(G) are isomorphic to members of ¥, so
that we also have O*(M) < O*(G). O

10. Normalizers in nilpotent groups

We turn to a special case of the problem NORMALIZER (see the Appendix).

Algorithm for P8(i). Case 1. |B| is prime. Let L < G with |L| prime (i.e.,
L is a subgroup of order p in Z(QG), found using P14(iii)). Let — denote the
natural homomorphism G — G/L.

Recursively find a group H such that L <H < G and H = Ng(B). (Then
Nu(B) = Ng(B): if b € G normalizes B then b normalizes B, so that b =
Lb € H/L and hence b € H. Note that H acts on the abelian group BL, which
equals L or B x L and has order a prime or the product of two primes, so that
[BL| < n?)

Output Ny (B) (as the stabilizer of B in the action of H on a small set: the
set of subgroups of BL of order |B|, where this set has size 1 or 1 + |B|).

Case 2. Arbitrary |B|. Let G = Gg > Gy > ... be a normal series of G
each of whose quotients is cyclic of prime order (this is just a chief series of our
nilpotent group).

Find i with B ﬁ Gi+1,B S Gi. Find J:=Bn Gi+1.

Recursively find H = Ng(J). (Then H > Ng(B), so that Ng(B) = Ng(B);
and GZ' = BGZ‘+1, so that |B/J| = |G¢/Gi+1| is prime.)

Now use Case 1 to find Ny,3(B/J) = Nu(B)/J.

11. Conjugacy

Centralizer problems, such as P6(i) or P7(i), and normalizer problems, such as
P8(i), can be thought of as finding stabilizers of “points” in some other action of
G. There is a corresponding question of determining all the elements of a group
that carry a “point” to another “point”. The relation between the problems
is much like that between the problems of finding automorphism groups of
objects (such as graphs) and testing isomorphism. Indeed, the reduction of
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testing graph isomorphism to finding automorphism groups (see, e.g., [Lul])
has analogues here. We will indicate reductions of P6(ii), P7(ii), P8(ii), to
P6(i), P7(i), P8(i), respectively. We remark, however, that an alternative to
these reductions is a reformulation, and generalization, of the actual algorithms
for P6(i), P7(i), P8(i), to produce algorithms to find the full collection of
a € G performing the conjugations in P6(ii), P7(ii), P8(ii), respectively; this
collection is either () or a coset of a subgroup of G. This approach is similar to
that for 3.3 given in [Lul], where, by replacing the input G by a coset Gh, one,
in effect, finds the elements of G that map A to AR

Algorithm for P6(i). Using P6(ii), find L := C(ya(B) ({9)A is a group
since g normalizes A). Test whether ¢ € LA. If, it is, find a factorization
g=la,l €L, a € A (this is straightforward [BLS1, §7]), and output a.

Correctness: If a € A then b9 =b°,Vb € B, iff ga=' € L. O

Recall that Sym(Q) x Sym(Q) acts naturally on the disjoint union Q;UQs of
two copies 1, Q2 of Q. Define t € Sym(Q;UQs) by w! = ws and wh = wy, for
all we Q.

Algorithm for P7(ii). Suppose by = Ks; and by = Kss. Form the following
subgroups of Sym(Q) x Sym(Q): B:= ((s1,s2)), K:= K x K, A:= (t)(A x A)
(so A is the wreath product Al Zs acting naturally on Q;UQ, [Ha, p. 81]).

Use P7(i) to find fI/I? = Cz/g(ﬁ/f(). If some generator h of H switches
Q1 and s, then th fixes ; and hence induces a permutation r on 2, where
r € A; in this case, output a: = Kr. Else output “no such a exists”.

Correctness: Note that A and B normalize K , and 2/[? >~ A1 Z; €Ty
hence the use of P7(i) is valid. An element t(r1,7r2) € t(A x A) centralizes
(31,32)(m0df?) iff b5 = by and b5 = by, so an output of the form Kr
satisfies the requirement for a. On the other hand, if Kr € A satisfies bX" = b,
then t(r,r1) is in H and it switches Q; and Q9; and hence some generator of
H must switch Q; and Q. O

A reduction of P8(ii) to P8(i) can be constructed along the lines of that from
P7(ii) to P7(i). The only tricky part is to maintain nilpotence in the wreath
product construction: in general, nilpotence of N does not imply that of N Z,.
To avoid this problem, first reduce to the p-group case (G, By, By are direct
products of p-groups); then, to maintain p-groups, utilize wreath products with
Z, in the construction.

12. Presentations

We comment briefly on P2. This material is essentially folklore.
Given an algorithm for the K = 1 case of P2(i), there is an obvious approach
to the general case. For, suppose G = (X | R). To obtain a presentation
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for G: express generators of K in terms of the image X of X in G and pull
these expressions back to words in X; augment R by the words so obtained.
But, in order to make use of this approach, it is necessary that elements of
G be expressible as short words in X. In fact, known algorithms for finding
presentations of G admit this facility ([BLS1], [Le]), X appearing as a “strong
generating set” of G.

An algorithm for P2(ii) is a consequence of the straight-line (§3) construction
of a presentation for P2(i). Duplicate the straight-line construction of X from
the generators M of G in a straight-line program program starting with m(M).
This produces a map «': X - H. Next, one verifies that the relations, which
are words in X, are satisfied in the corresponding set 7'(X). This guarantees
that the map X — n/(X) extends to a homomorphism 7': G — H. Finally, it is
necessary to verify that 7' agrees with the original input on M; namely, express
each a € M as a word in X and check that the corresponding word in 7'(X)
evaluates to 7 (a).

13. Some open questions

We indicate some favorites from the questions inspired by these investigations.

1. SIZE OF REPRESENTATION DOMAIN

Input: N <G < Sym(n), integer m.

Question: Is G/N isomorphic to a subgroup of Sym(m)?
The problem is in NP. This is easy to see if m is entered in unary. A more
general verification uses P5(i). We suspect that an efficient deterministic algo-
rithm would require new mathematical tools. But what about special classes of
groups? The problem is easily in P if G/K is abelian. What about nilpotent
groups?
2. EXTENDIBILITY OF HOMOMORPHISM

Input: M C G < Sym(n); a map mM — H for some group H (cf.

P2(ii)).

Question: Is m extendible to a homomorphism 7: G — H?
The problem is clearly in NP (using P2(ii)). Again, one should probably start
with special cases. What about G abelian, where H is, say, a permutation

group? Even the special case when G is cyclic leads to the interesting question:
given h € H and an integer m (in unary); is h = k™ for some k € H?

3. INNER AUTOMORPHISM
Input: G < Sym(n); m € Aut(G).
Question: Is there a g € G such that w(a) = a?, for all a € G.
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By P2(ii), # may be specified on generators. Here, too, the problem is in NP.
Note that this is a generalization of P7(ii).!

Other problems that arise naturally have to do with extension of the tech-
niques herein when they are presently restricted to special classes of groups.
Extend the T'y hypothesis in 3.3, P4(iii), P7; find normalizers in, say, solv-
able groups (cf. P8). These questions are strongly motivated by GRAPH-
ISOMORPHISM (see the Appendix).

Finally, it still seems worth seeking elementary solutions to some of the
elementary-sounding problems. Examples: (1) Should it really be necessary to
invoke the classification of finite simple groups just to find elements of prime
order p in a permutation group G where p| |G|? (2) Problems P5, P6 may have
a more direct approach. Note that there is an elementary algorithm for finding
the cores of set-stabilizers [Lu2, §3].

Appendix. Hard problems?

We highlight a set of problems, which are related to some of those discussed
herein, but which seem unlikely to have polynomial-time solutions. This is
suggested by the fact that these are at least as hard as GRAPH-ISOMORPHISM
(ISO), the problem of testing whether two graphs are isomorphic. In practice,
ISO is not a hard problem (e.g., see [McK]). Indeed, on average over all graphs,
and even over regular graphs, isomorphism is known to be testable in linear
time [BK], [Ku]. Furthermore, there is strong evidence that ISO is not NP-
complete, else the polynomial-time hierarchy would collapse to X5 = II5 = AM
([GMW]). Nevertheless, ISO has stubbornly resisted attempts to place it in
polynomial-time. (At present the best algorithm for general graphs has worst-
case complexity exp(cy/nlogn) [BKL].)
Consider now the following problems for permutation groups.

I. SET-STABILIZER (STAB)
Input: G < Sym(Q); A C Q.
Find: Stabg(A) ={g€ G| A9 =A}.

1Since submission of this manuscript to the Proceedings of 22nd ACM STOC, we have
observed that INNER AUTOMORPHISM is, indeed, in polynomial time (and this holds even
with G replaced by G = G/K). However, this observation, in turn, puts another interesting
problem into NP, namely, OUTER AUTOMORPHISM: Given G, the question is whether G
has any outer automorphism. As with Question 1, we expect that moving this from NP to P
would involve some new mathematical developments.
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II. INTERSECTION (INTER)
Input: G, H < Sym(Q).
Find: GNH.

ITI. CENTRALIZER (CENT)
Input: G, H < Sym(Q).
Find: Cg(H).

IV. LARGEST NORMALIZED SUBGROUP (LNS)
Input: G, H < Sym().
Find: LNS(H;G) = ({H? | g € G}, the largest subgroup of H that is
normalized by G.

V. RELATIVE-CENTRALIZER (REL_CENT)
Input: K 4G < Sym(Q), B C Sym(Q).
Find: Cq(B,K)={g€ G| (Kb)? = Kb,Vb € B}.

Remarks.

(i) Note in REL_CENT that we do not assume that B normalizes K.

(ii) IV should be compared with P5(ii), finding the largest subgroup of H
that is n G and is normalized by G.

It is well known that ISO o« STAB (we use “x” to denote polynomial-time-
Turing-reduction); see, e.g., [Lul]. But, in fact, STAB is equivalent, with respect
to polynomial-time reduction, to each of problems II-V.

Suppose we are given an instance G, {2, A of STAB. Let G act in the diagonal
on the disjoint union Q = Q,UQ, of two copies of Q (i.e., (w;)! = w!, Yw € Q,
i = 1,2, Vg € G). Let a be the involution in Sym(Q) specified by: wi =
if w e A then ws_; else w; for i = 1,2; and set H:= (a), B:= {a} and
K:= G. Observe that Stabg(A) = GNG* = Cg(H) = Cg(a) = LNS(H;G) =
Cg (B, K), thus reducing I respectively to IL, III, IV, V.

Reductions in the other direction:

INTERS o STAB: Let G x H act on Q x § in the natural way, and set
A:= {(w,w) | w € Q}. Then Stabgxu(A) ={(9,9)|lg € GNH}.

CENT « STAB: g € G commutes with A iff g, acting diagonally on 2 x €2,
stabilizes {(w,w”) | w € Q}.

LNS &« INTERS: L := H; while L is not normalized by G, intersect L with
its conjugates by the generators of G.

REL_CENT « STAB: This reduction is implicit in the algorithm for P5(i)

(87).

Variations.
(i) Problems IT-V also can be stated for quotient groups. In keeping with
the Quotient Group Thesis, it is worth noting that each quotient-group problem
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remains polynomial-time equivalent to STAB. This is obvious for II, TV, V,
where the quotient-group statement is interpretable as an instance of the same
problem. IIT gets absorbed into V.

(ii) The indicated reduction shows that V remains hard even for G/K € Ty,
in fact, for G = K. It would seem this hypothesis puts the problem tantalizingly
close to P7(i). But note Remark (i). In the algorithm for P7(i), the hypothesis
that b normalizes K is only needed in the Frattini reduction to the case A € T'y.
In fact, the algorithm shows that REL_CENT is in P if G € T'y.

(iii) ITT remains “hard” even if H is subnormal in (G, H) (compare with
P4(ii)). For, in the earlier reduction, for each w € Q, let b, be the involution
of O that switches wy € (3 with its counterpart ws € s, leaving everything
else fixed; let B = (b, | w € ). Then G normalizes B and H < B < GB. Find
C:= Cgp(H); it is an easy matter to construct the projection m:GB — G.
Then 7(C) = Stabg(A).

We mention also one other “hard” problem.

VI. NORMALIZER (NORM)
Input: G, H < Sym(Q).
Find: Ng(H).

STAB & NORM; in fact, in the above reductions from STAB, Stabg(A) =
N¢(H). We conjecture that there is a reverse reduction.

Another analogy with ISO puts some perspective on the “hardness” of these
problems. In 1980, the second author had observed that II is polynomial-
time-Turing-equivalent to the decision problem of testing nonemptiness of coset
intersection (COS_INTERS): Is Ga N Hb nonempty? In fact, this equivalence
is analogous to that between finding graph automorphism-groups and ISO. The
analogy has been reinforced by Babai and Moran, who show that the NP-
completeness of COS_INTERS would imply the same collapse X5 = II5 = AM
(1BM]).

We remark, finally, that problems such as I-VTI are not considered difficult in
practical computation, and systems such as CAYLEY [Ca] allow quite efficient
implementations. This should be no surprise, considering the ease with which
ISO is handled in practice.
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