Technical Report NU-CCS-90-16
College of Computer Science

Northeastern University

Lectures on
Polynomial-Time Computation in

Groups

Eugene M. Luks
University of Oregon

Notes recorded and prepared by
Peter D. Mark and Namita Sarawagi

Preface

These notes reflect a series of lectures that I enjoyed offering at Northeastern University during
Spring Quarter 1990. They were faithfully and enthusiastically recorded and typeset by Peter Mark
and Namita Sarawagi (with occasional solutions and other embellishments by these scribes).

The issue of the lectures was polynomial-time computation in permutation groups. As long
as there remain significant outstanding questions about the limits of polynomial-time (in group
theory problems as elsewhere) this is a worthy focus on its own. Furthermore, restricting to this
issue enables us to bypass both the details of implementation decisions and the rigors of complexity
arguments. Consequently, it is feasible, within a short series of lectures to tackle a broad range of
computational problems, concentrating on the phenomena that put them into polynomial-time.

The reader will see an early indication of this perspective in the verification of polynomial-time
for membership-testing in permutation groups. Our explanation does not offer, or require, a clean
statement of Sims’s method for the problem (though, to be honest, the audience was aware of that
procedure). Instead, we observe that it suffices to know how to compute |G| and we then discuss
the key ingredients for that, namely: there is a “short” chain of subgroups from G to 1; using such
a chain, it is possible to control the size of generating sets; given generators for a group in the
chain, coset representatives and then (Schreier) generators (whose number can be controlled) for
the next group can be constructed.

So, from this point of view, there is no need to discuss specific exponents in the timings. Indeed,
the computational complexities of these algorithms are not optimal, and even naive speedups are
easy to obtain. Similarly, these algorithms are not destined to be implemented as presented. The
matters of best worst-case timings and practical efficiency for the same problems would indepen-
dently comprise worthwhile and dense tutorials.

Useful background for these lectures would be any standard text in group theory together with
the first chapter of Wielandt’s book “Finite Permutation Groups” (1964, Academic Press). Modulo
such references, the group theory herein is self-contained, with the single, notable exception of a
call to the classification of finite simple groups in order to complete the final step in a test for
simplicity (end of lecture 11).

In case any readers want to follow these in a seminar setting, I must warn that the lectures are
not of uniform length. Because of dynamic schedules of attendees, sessions varied in length from
45 minutes to 3 hours. There is also some nonuniformity in mathematical explication. According
to the whims of the audience, there was selected elaboration in some topics. Also, the scribes
selectively filled in some details.

I thank the College of Computer Science, Northeastern University, for its hospitality. In partic-
ular, Larry Finkelstein and Gene Cooperman proposed the visit and zestfully kibbitzed throughout
the lectures. Special thanks to Peter and Namita for their prodigious effort in preparing these
notes, sometimes based only upon cryptic clues left on the whiteboard.

Eugene M. Luks
Computer and Information Science
University of Oregon

Lecture #1 2 April 1990

Computational Complexity and Permutation Groups

Issue: “Efficient” Computation in permutation groups. For sequential computation, we take the
point of view that “Efficient” = Polynomial time

Motivation: Problems such as

Problem: Graph Isomorphism: ISO
Given: X; = (V1, Eq) and X = (V3, Es) graphs.
Question: Is X; = X, 7

Remarks: ISO is clearly in NP, (one can guess the isomorphism, then easily verify in polynomial
time), but is it NP-complete? Or is it in P? Both questions are open. These questions have added
significance since ISO is the only problem whose complexity is still unresolved of the three leading
candidates for problems that might be of complexity intermediate between P and NP-complete, as
proposed by Karp in his famous paper on NP completeness. The other two such problems were
Linear Programming (since shown to be in P) and Primality Testing (since shown to be in P -
assuming the Riemann Hypothesis).

There appears strong evidence that ISO is not NP-complete (e.g., else, by results of Goldreich,
Micali, and Wigderson, the polynomial-time hierarchy would collapse to ¥4 = I = AM). On
the other hand, it has stubbornly resisted efforts to bring it into P. We will point out that ISO
easily reduces to certain natural questions about the complexity of permutation group problems,
motivating efforts to put define the limits of polynomial-time computation in groups. Group theory
also provides a natural setting for the ISO problem. The algebraic methods extend, substantially,
the class of graphs for which isomorphism can be tested in polynomial time. Also, ISO is seen to
be typical of a class of algebraic problems with similarly unresolved complexity status.
Efficiency for ISO

In practice, there are naive algorithms that work efficiently on most graphs. In fact, it has been
shown that isomorphism can be tested on average in linear time [Babai and Kuéera]; this remains
the case even for regular graphs [Kucera].

Polynomial time reductions

The following discussion illustrates a close connection between graph isomorphism and permutation
group algorithms.

Problem: ISO-C
Given: X; = (V1, Eq) and X5 = (V3, E») connected graphs.
Question: Is X1 2 X5 7

Claim 1: ISO <p ISO-C

Proof: Just compare pairs of connected components.

2

Problem: AUT
Given: A graph X.

Find: Aut(X) the group of automorphisms of the graph X.

Claim 2: ISO <p AUT

Proof: By claim 1 we can assume that X; and X» are connected graphs. Form the disjoint union
X = X1UXs. Tt is easy to see that X7 = Xy <= 3f € Aut(X) such that f(X7) = Xo.

This claim by itself does not yield an efficient algorithm, since the group Aut(X) itself could be
exponential in the size of the graph. Therefore, merely listing the elements of Aut(X) may take
exponential time. However, it is an easy consequence of Lagrange’s theorem that every group G
has a generating set of size log |G|. If G < Sy, then log |G| < log n! < nlogn. Hence we can modify
the problem AUT to be:

Problem: AUT-GEN

Given: A graph X.

Find: a set of generators for Aut(X) the group of automorphisms of the graph X.

Claim 3: ISO <p finding a set of generators of Aut(X).

Proof: Any generating set must contain an element that flips X; and X, if some element of
Aut(X1UX3) does. [

Problem: STAB

Given: A C Sym(2) and A C Q2

Find: Generators of (A);a} = {g € (4) | A9 = A}.

Claim: ISO <p STAB.

Proof: Let X = (V, E) be a graph. Then Aut(X) < Sym(V) = G (where < means subgroup). G
also acts on the set (%) = set of all unordered pairs of vertices. Clearly E' C (%) and Aut(X) = Gz
under this action. [J

Note: The existing algorithms for STAB, although exponential, usually run efficiently in practice.
The complexity of STAB is an open question. The reverse reduction, STAB <p ISO, is still open.
Problem: Set Transporter Problem (Generalization of STAB, Decision version)
Given: G = (4) < Sym(Q),A1,A2 CQ

Question: Does there exist g € G such that A9 = Ay?

Exercise: Show that Set Transporter <p STAB.

Hints: The reduction uses analogous techniques to the proof of ISO <p AUT-GEN. The difficulties
that seem to arise are in achieving the analogue of reducing to the “connected case”, which insured

3

that the only automorphisms of the disjoint union would fix or switch the two graphs. Form the
disjoint union of two copies of Q2 = QUQ'. G x G acts on £ but we need also to be able to

switch and Q' without introducing too many extraneous permutations. Let ¢ € Sym(Q) switch
corresponding points in Q and ' and set G = (G x G, 1) (i.e., G is a wreath product G1Z3). The
set to be stabilized? Clearly that ought to be A = AjUA). So how does G{A} solve the problem?

Remark: Babai and Moran have shown that, like ISO, if the decision version of Set Transporter
were NP-complete, then the polynomial-time hierarchy would collapse to £of = II,¥ = AM.

Exercise: Show the following problems are equivalent to ISO:

Problem: #ISO
Given: Two graphs, X, Xo

Find: The number of distinct isomorphisms from X; to X»

Problem: ISO-X1
Given: Two graphs, X, Xo

Find: An isomorphism from X; to Xy

Problem: ISO-Xall
Given: Two graphs, X1, X,

Find: All isomorphisms from X; to Xs

Hints: To reduce ISO-X1 to ISO: first find a pair of corresponding points by attaching unique
“sadgets” to different pairs of points and calling ISO; when corresponding points are located, leave
these gadgets in place and search for second pair of corresponding points, etc. For ISO-Xall (and
AUT-GEN), use similar techniques to find right transversals in the point stabilizer chain in Aut(X)
(see later this lecture and next) .

Exercise: State and prove the analogous set of equivalences for STAB.

Notation

Sym(Q) is the group of permutations of where |Q| = n.
Sym(n) is the group Sym(Q2) where Q = {1,...n}.

G is a group.

Definitions

(1) G acts on Q if 3 a homomorphism G — Sym(£2).

(2) A homomorphism G — Sym(f2) is a faithful action if it is injective. For example, if
G < Sym(Q), then G acts faithfully on Q.

Examples. Let G < Sym(Q).
(i) G acts (faithfully) on Q x Q where (a, 8)? = (a9, 39) for all (a,8) € A x Q, g€ G
(i) G acts (faithfully) on (), if || > 2.
(iii) G acts (faithfully) on 2 where A9 = {§9]6 € A} for all A C Q.

(3) Let G act on €, w € Q, then the orbit of w (under G) = {w9|g € G} and is denoted by w?.
(4) Let G act on €, then G is transitive if it has only one orbit i.e. w% = Q for all w € Q.

(5) Let G act on £, then A C Q is a block (for G) if Vg € G, A=A or AYyNA=0. Aisa
nontrivial block if 1 < |A| < |€Q].
Examples: Let G < Sym(Q).
(i) An orbit is a block.
(ii) If N is a normal subgroup of G then the orbits of N are blocks for G.
Proof: Let A = §" be an orbit of N and g € G. Then A9 = §V9 = 59V
(since N is a normal subgroup of G)= (69)"V which is the orbit of .
The orbits form a partition, so either ANAY =0 or A = A9.

Note: Usually blocks are defined only when @ is transitive. When we need transitivity, it will be
clear in context.

Claim: If A is a block for G. Then for g,h € G either A9 = AP or A9 N AP = ().
Proof: Since AN A" = (Agh_l NA)" | therefore A9 N AP # (), implies (Agh_l NA) # . Since A
is a block, this means that A%"™" = A, which implies AY = AR, [

Algorithms for Finding Orbits and Blocks

Problem: ORBITS
Given: G = (4) C Sym(Q)

Find: the orbits of the action of G on Q

Proposition: There is a polynomial time algorithm for ORBITS.

Proof: Use a transitive closure algorithm (but not merely listing G' and writing down w®). [
Computation of A = w@:
A+ {w}
For all § € A,a € A do
If 6 ¢ A then A + AU{a}.

This algorithm is clearly in polynomial time since there are at most |A||A| iterations, and each
iteration is in polynomial time.

Note: We can also keep track for each § € w® an element g such that w9 = 4.

Problem: BLOCKS
Given: G = (4) < Sym(Q).

Find: a nontrivial block (or a block system) for G, if one exists.

Definition: If (G is transitive and) there are no nontrivial blocks for G (in its action on 2) then
G is primitive.
Exercise: A transitive group G < Sym(f?) is primitive <= for some w € Q the subgroup G,

fixing w is a maximal subgroup of G. From this, or otherwise, show that if G,, is maximal for some
w € 2 then it is maximal for all w € Q.

Proposition: If ¥ C Q then there is a unique minimal block containing ¥..

Proof: Suppose Ay, Ay are both blocks containing .. Then A; N A, also is a block containing
Y. For, if (A1 NA2)9N (A1 NAy) # (B, then (A9 N A7) # 0 and so A9 = Ay, and by the same
reasoning, A7 = Ay. Hence (A1 NA2)9 = (A1 NAg), so A; N Ay is a block. Since the intersection
of two blocks is again a block, consider now the intersection of all blocks containing 3. This must
be the unique minimal block containing X. [

Problem: MINIMAL BLOCK (MB)
Given: G = (4) < Sym(Q), and «, 3 € Q.

Find: the minimal block containing {«, 5}.

Proposition: There is a polynomial time algorithm for MB.

Proof: [Sims] Form a graph X = (V,E) where V = Q and E = {a,ﬁ}G. Note that this graph
may be easily formed in polynomial time (E is an orbit of the action of G on ((22)) The connected
components of X form a block system, since G < Aut(X) as each g € G induces a permutation of
V such that (v,d) € E <= (19,d9) € E. Hence g € G permutes the connected components, and
so they form a block system.

Moreover, B = the component containing « and § is in fact the required minimal block. Suppose
it isn’t. Let By C B be the minimal block where o and 8 € B;. Since B is a connected component,
there exists an edge connecting a vertex in Bj to a vertex in B\ Bj. As every edge is the image
of the edge {a, 3}, without loss of generality, 3¢ € G such that o9 € Bj, and 89 ¢ B;. Now
a¥ € By N By implies that By N B9 # 0. Also 89 € B19\ B;. Therfore By # B19. Hence Bj is
not a block, a contradiction.

The result now follows from the observation that the connected components of a graph may be
found with a standard transitive closure algorithm in polynomial time.l]

Proposition: BLOCKS <p MB

Proof: Fix a point a € Q. For each g €) apply the algorithm for MB given above to the points
a,B. 0

Remark: Let G act transitively on 2. If this action is imprimitive, we can find a block system
with blocks of minimal size (e.g., choose the that leads to smallest block). This also implies that
the subgroup fixing a block acts primitively on the points in the block. If the action on the set of
blocks is imprimitive, we may repeat the process. We continue until the action of G on the blocks
is primitive. We may construct a tree by denoting each block by a vertex, and the children of
this vertex are taken to be subblocks that it contains from the previous round. For an intransitive
group, we construct such a tree in each orbit, yielding a forest whose leaves comprise €2. The group
G now acts on the entire forest as root-fixing automorphisms. Note also that the subgroup of G
that stabilizes any node v in the forest acts primitively on the children of v (Ezercise : Verify!).
This forest is called a structure forest for G.

Problem: MEMBER (Permutation Group Membership)
Given: G = (4) < Sym(Q2) and = € Sym(Q).

Question: Isz € G 7

Remark: It may not be immediately clear that MEMBER is even in NP. The naive nondetermin-
istic algorithm of guessing a word in the generators could take exponential time. Consider G = (g)
where g = (12)(345)(678910) ... where successive cycles have lengths of successive primes. If the
degree of G = n, then order(g) is roughly exp(y/nlogn). So the shortest word in the generators
of G for most elements has exponential length. Nevertheless we will see that MEMBER has a
polynomial time algorithm.

Problem: ORDER (Permutation Group Order)
Given: G = (4) < Sym(Q)
Find: |G|

Proposition: MEMBER <p ORDER .

Proof: z € (A) < [(A)| =|(4,z)| U

Note: Lagrange’s theorem: If H < G then |G| = |H|[G : H].

Goal: To show that ORDER is in P.

Let we Qand H = G, = {g € G|w9 = w} then |G| = |G,|[G : G,] by Lagrange’s theorem. As
Gog = Guh < w9 =uw" [G:G,] = |wY|, that is the right cosets of G, correspond to the orbit
of w. Therefore |G| = |Gy ||w“|. We can find |w®| since ORBITS is in P, and in the process of
finding the orbit, as noted earlier, we also find a complete set of coset representatives for G in G,,.
To find the |G| we now need to compute |G,|. As G, is a group which permutes one less point

than G we can find its order by continuing the process as before, but to do that we need generators
for G,,.

Definition: Given H < G a (right) transversal R for H in G is a complete set of (right) coset
representatives for H in G.

Schreier generators

Theorem: Given G = (A) and H < G, and R a right transversal for H in G. Let B =
{riary=t|r1,72 € R,a € A} N H. Then B generates H.

Proof of Theorem: For each ri,ro € R and a € A, then riary~! € H iff if ro is the coset represen-
tative of the coset H(ria) in R. (In particular, for finite G, |B| < |R||A].)

For any r; € R and a € A if ro is chosen as above, then (riare™!) € B and ria = (riare~1)ro.
Therefore, RA C BR C (B)R. This implies that ((B)R)A C (B)(B)R = ((B)R). That is ((B)R)
is closed with respect to right multiplication by A.

Also, for any 73 € R and a € A we can choose r; € R such that (riaro™!) € B. (In this case we
choose 71 as the coset representative of the coset H(roa™!) in R.) Therefore roa=! = (roa='r171)r
implies that RA~! C B~'R C (B)R. Thus ((B)R)A~! C (B){B)R = ((B)R). That is ((B)R) is
closed with respect to right multiplication by A~!. Note: this paragraph is needed only if |G| is
infinite.

The two closure properties above, imply that (B)R = G. In particular, H C (B)R. For r € R
such that r ¢ H , HN(B)r =0, as (B) < H (by definition of B). Therefore if ¢ is the unique
element of RN H, then H C (B)ry. Hence H = Hry ' C (B). This implies H = (B). U

Remark: The generators in B are called the Schreier generators for H. For G < Sym(n) and
H the subgroup fixing a point, the Schreier generators can be found in polynomial time, as |R||A]
elements need to be computed where |R| < n.

Lecture #2 9 April 1990

Completion of membership algorithm;
Algorithms for recognizing and determining
the structure of nilpotent and solvable groups;
Applications to graph isomorphism

Remark: The basic methodology for efficient membership testing in permutation groups is due to
Sims. Furst, Hopcroft, and Luks observed that Sims’s techniques lead to a polynomial-time test
for membership.

Problem: REDUCE GENERATORS
Given: H = (B) C Sym(Q2), with || = n.

Find: A set of < n? generators for H.

Notation: For H < Q = {wy,wa,...wy }. Let H = subgroup of H fixing the first i — 1 points
={h€H|w"=w;V1<j<i-1}. In particular, H = H1).

Proposition: There is a polynomial time algorithm for REDUCE GENERATORS.

Proof: [Sims] Modify B such that no two elements of B are in the same (right) coset of H(®):
For this, if a,b € B are in the same coset (that is when w;® = w®), then replace b by ba™!. Also,
throw away any duplicates in B. Then the modified B contains distinct coset representatives for
(some) cosets of H®?) in H(1) and (maybe) some elements in H(®). Repeat the same process for
BN H®, that is if a,b € BN H® are in the same coset of H®) then replace b by ba~'. Repeat

this process for each BN H®. As H(™1) =1, this process will stop and number of elements in B
will be at most [H() : H@) 4+ [H®) . HO 4 .. 4+ [H"2) : HO-D] < p2. 0

Remark: This capability to keep the number of generators “small” is fundamental to procedures
in this lecture and later. For, it guarantees that we can keep the size of the intermediate outputs
under control as we routinely concatenate polynomial-time procedures. We will routinely assume
this procedure is invoked as needed.

Proposition: There exists a polynomial time algorithm for ORDER.

Proof: Let w; be any point not fixed by G. As noted earlier, |G| = |GV| = |G?|[GM) : GP],
where [G() : G?)] = |w{|. We may appeal to a recursive computation of |G| as G?) moves fewer
points than G. (Note here the implicit use of REDUCE GENERATORS. Without it the number
of schreier generators, as we pass through successive groups G| could grow exponentially). [J

Corollary: MEMBER is in P.
Proof: We saw earlier that MEMBER <p ORDER. [

Problem: SUBGROUP?
Given: G = (4) < Sym(Q2) and H = (B).

Question: Is H a subgroup of G ?

Proposition: SUBGROUP? is in P.

Proof: Ifeach b € B is a member of G (invoke the algorithm for MEMBER) then H is a subgroup
of G.

Problem: NORMAL?
Given: G = (4) < Sym(Q2) and H = (B).
Question: Is HaG 7

Definition: If A, B € Sym(f) then BA = {b* =a'ba|a € A,b€ B}.
Proposition: NORMAL? is in P.

Proof: It can be seen easily, that it is enough to check that B4 C H. Therefore invoke MEMBER
|B||A| times. [

Definition: Given H < (G, the normal closure of H in G is the smallest normal subgroup of G
containing H and is denoted by (H%).

Problem: NORMAL CLOSURE
Given: G = (A) C Sym(Q) and H = (B) C G.

Find: (H%) the normal closure of H in G.

Remark: In the above problem, and in future problem statements, we assume that finding
a particular group means finding a set of generators for that group. Similarly, unless specified
otherwise, we assume that groups are input via generators. (In the above instance it is convenient
to have names for the generating sets.)

Proposition: There is a polynomial time algorithm for NORMAL CLOSURE.
Algorithm:

Let B’ <~ B and K < (B'Yy=H

While 3b € B’,a € A such that b* ¢ K do
B' + B'"U{b*} and K « (B’)

Return (B')

Each time a new generator is added to B’, the size of the group is (at least) doubled. Therefore
this algorithm takes polynomial time to complete. [

Remark: The observation that increasing subgroup chains in Sym(n) have polynomially-bounded
length is fundamental in establishing polynomial time in many algorithms. We will not always
recall it explicitly. By the way, the naive log(n!) chain-length bound obtained from Lagrange’s
theorem has been improved to O(n) by Babai.

Remark: For ease of notation, from now on, we sometimes write H% for (H%).

Definition: Let G be a group. For g, h € G the element g~'h~!gh is denoted by [g, h] and is called a
commutator of G. The commutator subgroup of G or the derived group of G is the subgroup
generated by all the commutators of G. It is denoted by G' or [G,G] = ({[g,h] | g,h € G}).

10

Note: G’ is the unique smallest normal subgroup of G such that G/G’ is abelian.

Proposition: Let G = (A) then G’ = ([4, A])°.

Proof: Clearly ([4, A]) < G’ and as G' <G, therefore ([4, A))® < G'. Letw : G — G/([A, A])®
be the canonical homomorphism. Then G/{[4, A])¢ = 7(G) is abelian since it is generated by 7(A)
and [r(A), 7(A)] = 7([4, A]) = 1. Therefore, &' < ([A, A])® (by the note above).

Problem: COMMUTATOR SUBGROUP

Given: G = (A) C Sym(Q).

Find: G’, the commutator subgroup of G.

Proposition: COMMUTATOR SUBGROUP is in P.

Proof: By the previous proposition, G’ = H% where H = ({[a,b] | a,b € A}). The generators
for H can be computed in polynomial time from the (polynomial number of) generators of G. The
proposition follows as NORMAL CLOSURE is in polynomial time. [

Definition: Let G be a group and G’ it commutator subgroup . Then the commutator subgroup
of G’ is denoted by G”. The derived series of G is the following chain of groups.

GDOGDO2G">2G@"D...

(Continue until stable). If the derived series terminates at {1} then G is called solvable.

Problem: DERIVED SERIES
Given: G = (A) C Sym(Q).
Find: The derived series of G.

Proposition: DERIVED SERIES is in P.

Proof: By repeated application of COMMUTATOR SUBGROUP (and REDUCE GENER-
ATORS as needed), we can compute the derived series. The algorithm stops when the chain
stabilizes. [

Problem: SOLVABLE

Given: G = (A) C Sym(Q).

Question: Is G solvable?

Proposition: SOLVABLE is in P .

Proof: Find the derived series for G. If it terminates in {1} then G is solvable. [

Definition: Let G be a group. The lower central series of G is the following chain of subgroups.
G=I1°G) > LYG) > L*(G)...

11

where L°(G) = G and L(G) = [G, L 1(G)] = {({[g,h] | g € G,h € L }(G)}). If the lower cen-
tral series terminates in {1} then G is called nilpotent.

Proposition: L' (G) <« G for all i. Moreover if G = (A) and L 1(G) = (B), then L(G) =
({[a,b] |a € A,be B})C.

Proof: Similar to the proof of G' = ({[a,b] | a,b € A})C. [

Problem: LOWER CENTRAL SERIES
Given: G = (4) C Sym(Q).

Find: The Lower Central series of G.

Proposition: LOWER CENTRAL SERIES is in P .

Proof: Clear from above. []

Problem: NILPOTENT
Given: G = (A) C Sym(Q).

Question: Is G nilpotent?

Proposition: NILPOTENT is in P .
Proof: Find the lower central series for G. If it terminates in {1} then G is nilpotent. [J

Remark: It can be seen (by induction) that L (G) 2 G'. Hence G is nilpotent = G is solvable.

Definitions: Let G be a group.
(i) The center of G is the subgroup Z(G) ={g € G| g9 = ¢'9,Y¢ € G }.

(ii) The upper central series of G is the following chain of subgroups.

1=2%G) < Z4G) < Z*(G) < ...

where Z°(G) =1, ZY(G) = Z(G) ,and Z'(G) = {ge G |[G,g] € Z"'(G)}. An equivalent
description of Z'(G) is as follows. Z°(G) =1 and Z¢(G)/Z""1(G) = Z(G/Z'71(Q)).

iii A central series in GG is a chain of normal subgroups
G=Gy>G >...>2G, =1

for which [G, G;-1] C G; for each i.
(iv) If H < G then H is said to be subnormal in G if there exists a chain

H=Ly<I,<..<Ln,=0G

where each L;_1 < L;. It is denoted by H < <G
(v) For H < G, the normalizer H € G is Ng(H) ={g € G | g 'Hg = H}.

12

Exercise: Let P be a Sylow p-subgroup of G, and H be any subgroup containing Ng(P) then
Ng(H) = H.

Solution: Given P < Ng(P) < H, we want to show that Ng(H) = H. Clearly H < Ng(H).
Let g € Ng(H), then g"'Hg = H. Therefore P,g~!Pg < H are Sylow p-subgroups of H. By the
Sylow theorem, there exists h € H such that g~'Pg = h=1Ph. So, (gh~!)"1P(gh~!) = P, implies
gh™' € Ng(P) < H. Hence g € H. I

Exercise: Show the following are equivalent for a finite group G.
(i) G is nilpotent.
(ii) G has a central series.
(iii) Every subgroup of G is subnormal.
(iv) Every proper subgroup is properly contained in its normalizer.
(v) Every maximal subgroup is normal.
(vi) The Sylow subgroups of G are normal in G.
(vii) G is a direct product of p-groups.
(viii) The upper central series terminates at G.
Solution:
(i) = (i7) Clear from definitions.

(11) = (iii) Let G = Gog > Gy > ... > G, = 1 be a central series for G. Consider the chain
G=GoH >G{H > ... > G.H = H. It suffices to show G;H is normal in G;_1H for each i. Since
H normalizes both G; and H, it suffices to show G;_1 normalizes G;H, for which it suffices to show
h* € G;H for h € H, z € G;_1. But h* = h[h,.il?] € h[G, Gi—l] C hG; = G;h.

(#4i) = (iv) Let H < G. Then H is subnormal in G and there is a series H = Hy<H1<...<H, =G
If ¢ is the least positive integer such that H # H;, then H = H;_1 < H; and H; < Ng(H).

(iv) = (v) If M is a maximal subgroup of G, then M < Ng(M), so by maximality Ng(M) = G
and M <« G.

(v) = (vi) Let P be a Sylow p-subgroup. If P is not normal then Ng(P) < G, and there exists
a maximal subgroup M of G such that Ng(P) < M. M is normal by hypothesis. By the above
exercise, Ng(M) = M which contradicts the normality of M.

(vi) = (vii) There is exactly one Sylow p-subgroup for each prime p since all such are conjugate.
The product of all the Sylow subgroups is clearly direct and it must equal G.

(vii) = (viii) It suffices to show (vii) holds for a finite p-group G for Z*(G1 xG2) = Z*(G1)x Z*(Ga).
But then it suffices to show that Z(P) # 1 for a finite p-group P # 1 (P acts on underlying set P
by conjugation; orbit sizes must divide |P|; at least one orbit has size 1, namely {1}; conclude that
some other orbit {z} has size 1; x € Z(P)).

(viii) = (i) Suppose 1 = Z°(GQ) < ZYG) < Z*(G) < ... < Z"(G) = G is the upper central
series. From the definitions, and by induction on i, it is immediate that L(G) < Z"~(G), for
i=20,1,...,r. In particular, L"(G) = 1.

Exercise: Use condition (vii) to find a polynomial time test of nilpotency.

13

Solution: Given G = (A). First compute |G|. Let |G| = pi™p2™...p, ", where the p;’s are
distinct primes. Let ¢; = |G|/p;™ for 1 < i <.

If r =1 then condition (vii) is satisfied (by Sylow’s theorem) and G is nilpotent.

G = (A) is a product of its Sylow p; subgroups <= each Sylow p;-subgroup is normal <= P; =
({a% | a € A}) is a normal subgroup and |P;| = p;"

Since, NORMAL? and ORDER are in P, the above paragraph gives another polynomial time test
of nilpotency. [

Problem: SUBNORMAL?

Given: H,G groups with H < G

Question: Is H <<G?

Problem: SUBNORMAL SERIES (SS)
Given: H <<G

Find: Generators for each group L; in a normal tower from H to G.

Fact: H <<G <= H <<HEC.

Proof: (<) Immediate, since HY «G. (=) Let H< L; 4... <G be a subnormal series for H in
G. Then intersect each group in this series with H% and obtain a subnormal series for H in H%[]

Claim: SUBNORMAL? and SS are in P.

Proof: The above observation suggests the following subnormality test and construction of a
subnormal series. Let L1 = HY. Inductively, let L;;1 = H%. Stop when L;;1 = L;. If L; = H
then H < <G, otherwise not.

Definition: A group H < Sym(n) will called recognizable if there is polynomial-time test (for
some fixed polynomial in n) for membership in H.

Example: H could be the subgroup of G that stabilizes some subset.

Definition: For H < G < Sym(n), we shall say that H has small index in G if [G : H] is
polynomially bounded (for some fixed polynomial in n).

Problem: GENERATORS FOR A RECOGNIZABLE SUBGROUP OF SMALL IN-
DEX (GRS)

Given: Generators for G, and a specification of H, a recognizable subgroup of small index.

Find: Generators for H.

Claim: GRS is in P.

14

Proof: If we can find a complete set of right coset representatives for H in G, then we can find
Schreier generators for H. A naive search for these coset representatives works:

Algorithm:

R ={1}
{ apply generators (on the right) to elements of R}
For each r € R,a € A

if ra ¢ Hr' for any r’ € R then R« RU{ra}

Note: Testing membership of ra € Hr' can be performed by testing rar’~! € H, for which we have
a polynomial time algorithm. The above algorithm runs in time proportional to |A||R|?running
time of the membership test for H. Note that, if rar’~! € H, then it is a schreier generator for H.

An application to graph isomorphism.

Definition: Let C'G}y be the class of vertex-colored graphs of color multiplicity < b, b a fixed
constant, i.e. there are at most b vertices of a given color.

Exercise: Before reading further, give a polynomial time non-group-theoretic algorithm for
testing isomorphism of two graphs in C'Ga.

Polynomial Time Algorithm for ISO of graphs in CG,

We reduce (using the observations in the first lecture) ISO for graphs X;, Xo € CGy to finding
automorphism groups for graphs in CGg, (namely, find Aut(X), where X = X;UX5 and X1, Xo
are connected). As noted in the first lecture, if we view X as uncolored, Aut(X) is precisely the set
stabilizer Sym (V) gy, where E C (‘2/) , X = (V, E), and there is no polynomial time algorithm for
set stabilizer. However, in the current context, the problem is more constrained. We must not only
stabilize E, but also each color class. Let V = C; U...UCCy be a decomposition of V into disjoint
color classes. Then Aut(X) < G = Sym(Cy) x...x Sym(Cy). We can easily find generators for G.
Furthermore, if we let E; ; = {e € E | one of the endpoints of e is a vertex of Cj, the other a vertex
of C;}, and we let H = G, ;, i.e. the subgroup of G' (as before, viewed as acting on (g)) that fixes
the set of edges from color class C; to color class Cj, then surely Aut(X) < H < G. We can find
generators for H using the algorithm for GRS since [G' : H] = the number of images of C; — C;
edges = |E; ;| < 2/CxCil < 2(2)* (a crude overestimate) and we can test membership in H, so H is
polynomial time recognizable. Having found generators for H, continue to find generators for the
subgroup of H that stabilizes edges between another pair of color classes. (This can be done using
GRS by the same argument as above). Repeat this process until all pairs of color classes have been
exhausted. Then H converges to Aut(X).

Remark: The above argument is essentially due to Babai, who described a random (Las Vegas)
algorithm for the problem. Furst, Hopcroft, and Luks observed that Sims’s methods obviate the
randomness.

Intersection of permutation groups.

Problem: INTERSECTION
Given: G = (A),H = (B) < Sym(Q).
Find: GN H.

15

Proposition: STAB <p INTERSECTION

Proof: As, Gia) = Sym(Q){A} N G and we can find generators for Sym(Q){A}, where A C Q,
easily. [

Definition: Let G, H < Sym(fQ), then G normalizes H if Vg € G,HY = g 'Hg = H.

Note: Given G = (A) and H = (B), G normalizes H <= B4 ={b*|bec B,ac A} C H.
Therefore we can check if G normalizes H in polynomial time.

Exercise:

(i) If L normalizes H and M < L then [LH : MH] < [L: M].

(ii) If M < L and N any group, then [LNN: M NN] < [L: M].

Solution:

(i) If L =Ux;M then LH = Uz; M H, therfore [L : M] > [LH : M H]

(ii) Distinct cosets of M NN in LN N correspond to distinct cosets of M in L.

Problem: INTERSECTION-N
Given: G = (A), H = (B) < Sym(Q), such that G normalizes H.
Find: GN H.

Proposition: INTERSECTION-N is in P.

Proof: We have the following series of subgroups.
G=GM>G?>.. . >ar" D=1
GH=GYH>GPH>...>G""VH=H (since G normalizes H).
G=GYWHNG>G?PHNG>...>G"VHNG=HNG.

We'll find G N H, by successively finding GNGWH fori=1...n—1. Now, GNGYH = G and
we have generators for it. Assume we have generators for GNG® H. Then, by the above algorithm
for GRS, we can find generators for G N G H, since G N GUHD H is a recognizable subgroup of
G NGYH of small index. (For this, note that [NGO H : G N GHVH] < [GOH : GV H] <
[G) : GGHD] < n [recall the above exercise], and G N GO+ H has a polynomial time membership
test [simply test membership in G and test membership in G'T1H, the latter being generated by
generators of G'*! together with generators of HJ.) [J

The above Proposition can be restated as: if H<(G, H), then GNH can be found in polynomial
time. The following easy extension will be useful

Problem: INTERSECTION-SUBN
Given: G = (A),H = (B) < Sym(2), such that H <<(G, H)
Find: GN H.

Proposition: INTERSECTION-SUBN is in P.

16

Proof: Exercise.

Solution to exercise: The test for subnormality is constructive in that it inserts the intermediate
groups in H = L, <---< Ly = (G, H). Since H N L; normalizes L; 1, repeated application of the
above algorithm for INTERSECTION-N yields generators for all H N L;.l]

17

Lecture #3 17 April 1990

Algorithms for intersection and set stabilizer
problems in nilpotent groups, with application
to trivalent graph isomorphism

Recall from the last lecture: H «<(G, H) = can find G N H.

Also recall: G is nilpotent <= every subgroup of G is subnormal.

Problem: INTERSECTION-NIL
Given: G, H, subgroups of a nilpotent group V.
Find: GN H.

Remark: A last reminder that, unless specified otherwise, groups are input and output via
generators.

Problem: STAB-NIL
Given: Nilpotent G < Sym(2), A C
Find: G{A}

Claim: There is a polynomial time algorithm for INTERSECTION-NIL.
Proof: (G,H) nilpotent (=) H <<(G,H) (=) can find GNH. [

This algorithm will give us an application to ISO, but before we can use it, we’ll have to develop
some related comments.

It is promising to be able to do some group intersection, because of the following reductions:

ISO <p STAB <p INTERSECTION.

The first of these reductions, ISO <p STAB, we proved in the first lecture. The second reduction,
STAB <p INTERSECTION, follows from observing that Ga} = GN Sym(Q){A}, and noting that
it is easy to give generators for Sym() ,y, (Ezercise!).

In fact, STAB and INTERSECTION are polynomial time equivalent. This follows from the follow-
ing reduction:

Claim: INTERSECTION <p STAB.

Proof: For this reduction, suppose that both G, H < Sym(f2). Then G N H acts on Q x Q. Let
Diag(Q x Q) = {(w,w) | w € Q}. Tt is easy to check that (GX H)pjagiax0)} = {(a,a) | a € GNH}.
0

One of our short term goals is a polynomial time algorithm for STAB in nilpotent groups. Note,
though, that our polynomial time algorithm for INTERSECTION for nilpotent groups is not suf-
ficient for this, since the above reduction of STAB to INTERSECTION transforms an instance of
STAB-NIL to an instance of INTERSECTION of a nilpotent group and a non-nilpotent group,
which is not an instance of INTERSECTION-NIL.

18

Claim: There is a polynomial time algorithm for STAB-NIL.
For this we will:
1. Reduce STAB-NIL to STAB-P (set stabilizer for p-groups).
2. Solve STAB-2 and briefly indicate how this solution generalizes to STAB-P.
3. For this, we will have to investigate the structure of Sylow p-subgroups of Sym(f).

Proof: (of 1.) Without loss of generality, we may assume G is a p-group. (Recall that if H < G,
nilpotent, then H = (PN H | P the Sylow p-subgroup of G, for each p dividing |G|), so that
G{A} = PI{A} X ... X Pk{A}-) {

Form a structure forest for G

Focus, for the moment on any node, v, in this forest. Lift G’s action to the entire forest. By
construction, G, acts primitively on the children of v.

Claim: G a primitive p-group = G is cyclic of order p and acts on a set of size p.

Proof: G primitive on 2 = G, is a maximal subgroup of G. Maximal subgroups of p-groups
have index p. The index of a point stabilizer, [G : G| is precisely the size of the orbit containing
w, which, in this case, is all of {2, since G is transitive on 2. Therefore, G is a primitive p-group
acting transitively on a set of size p, so G must be cyclic of order p.

Corollary: The structure forest for a p-group consists of complete p-ary trees.
Sylow p-subgroups of Sym(Q2)

For simplicity, consider first the case p = 2. To construct a Sylow 2-subgroup, build a forest of
complete binary trees whose leaves are points of 2, subject to the criteria that the trees in this
forest be as “large” as possible (in the sense that no two trees have equal height, since those
could be joined to form a single larger tree). [Call such forests mazimal.] Then the group of all
automorphisms of this forest induces on €2 precisely a Sylow 2-subgroup. Note that if n = b4...b1bg
is the binary representation of n, then for each b; = 1 there will be a complete binary tree of height
¢ in this forest.

Note: If we have one Sylow 2-subgroup of Sym(f2), we “know” them all, since all Sylow 2-
subgroups are conjugate. (It is easy to see that conjugacy in Sym(n) amounts to renaming the
points: the permutations ¢ and 09 = g~ 'og have the same cycle structure, in fact, the cycles of o9
are obtained from o by replacing each i € {1...n} by 9.

One can check that the construction above indeed gives a Sylow 2-subgroup by comparing its order
with the order with the largest power of 2 dividing n!. The order of the group may be computed
as the product of the sizes of the automorphism group of each tree in the forest.

Exercise: (1) Find the order of the automorphism group for a complete binary tree of height m.
(2) Show that the above construction yields a Sylow 2-subgroup of Sym(n).

Let G be a 2-group < Sym(2). We can embed G in a Sylow 2-subgroup of Sym(Q2) (i.e. find
a Sylow 2-subgroup of Sym(2) containing G) by finding the structure forest for G, extending it
to a maximal complete binary forest, and considering the automorphism group of this forest. See
[Aho, Hopcroft, Ullman] for a description of polynomial time algorithms for testing isomorphism
of trees. From the methodology presented there, it is possible to develop an algorithm for finding
automorphism groups of trees (Ezxercise!).

19

Recall the original motivation: we wanted to obtain G}, for G' a 2-group in Sym(2). We noted
that Giay = G N Sym(2)(a}. The above observation suggests obtaining Gya} as the intersection
of G with the A-stabilizer of a Sylow 2-subgroup of Sym(), i.e. Giay = G N P(ay, where P is a
Sylow 2-subgroup of Sym({2) containing G.

Claim: Let P < Sym(f2) be a Sylow 2-subgroup of Sym(£2),A C Q. Then we can find Py in
polynomial time.

Proof: (sketch) Form the structure forest for P. Distinguish in some way the leaves which are
points of A (by marking the leaves that are in A, for example). Now take the automorphism group
of this modified (marked) tree to obtain Pya}.

We can now combine these ideas into an algorithm for finding set stabilizers in 2-groups:

Proposition: Let G < Sym(f2) be a 2-group, and A C 2. There is a polynomial time algorithm
for finding G(a}.

Proof: Algorithm: 1. Embed G in a Sylow 2-subgroup P. 2. Find P(a). 3. Form G'N Pay,
which of course is G(a}. (For 3. note that G and Py are subgroups of a common nilpotent group
(P), so we may apply the algorithm for INTERSECTION-NIL.)

Generalization from 2-groups to p-groups

Essentially, all the above discussion for 2-groups extends naturally to p-groups. Instead of complete
binary trees, complete p-ary trees will now arise. In a p-group, G, the stabilizer G, of a node v
in the structure forest for G will act primitively on the children of v, necessarily a set of size p.
Of course, now, just having the tree isn’t enough for our purposes, we will require some cyclic
orientation of the children of each node v in the tree (i.e. obtained via a generator for G,).

Problem: STAB-P
Given: G < Sym(Q), a p-group, A C Q

Find: G{A}

Claim: There is a polynomial time algorithm for STAB-P.

Proof: Same as algorithm given above for 2-group case, with the necessary modifications (e.g.
we’re now using p-ary trees with cyclic orientations on the children of each interior node).

Since, as noted above, STAB-NIL reduces to STAB-P, we now have a polynomial time algorithm
for STAB-NIL.

Corollary: If G, H are nilpotent, we can find GN H.
Proof: The same technique used for the reduction of INTERSECTION to STAB works here:
(Work with G x H, a nilpotent group, acting on Q x 2.)

Isomorphism of Trivalent Graphs

The reduction of trivalent graph isomorphism to STAB for 2-groups is given in see section 2 of
[E.M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial-time, J. Comp.
Sys. Sci., v.25 (1982) pp. 42-65]. (In that original paper, instead of STAB, one finds the equivalent

20

problem of finding color automorphisms in a 2-group, that is, finding the subgroup fixing each of
several “colored” subsets; clearly the problem is polynomial-time equivalent to STAB).

(Editorial comment by lecturer: Note-takers felt the above reduction could be omitted since the
lecture did closely approximate the discussion in the cited paper. That was not the case for STAB-
NIL; see remarks at start of next lecture).

21

Lecture #4 23 April 1990

Algorithms for computing centers, centralizers
with application to solvable normal subgroup

Remarks: In the previous lecture we reduced TRIVALENT GRAPH ISOMORPHISM to STAB
for 2-groups. We also solved the latter, more generally STAB in nilpotent groups. The method
offered herein was included because of its easy dependence on two basic, attractive ideas: the
subnormality of subgroups of nilpotent groups and the nature of Sylow subgroups of Sym(n). Ac-
tually, the first announcement of a polynomial-time algorithm for finding set stabilizers in 2-groups
followed a somewhat different approach [E.M. Luks, Isomorphism of graphs of bounded valence can
be tested in polynomial-time, J. Comp. Sys. Sci., v.25 (1982) pp. 42-65]. That technique follows
more directly a divide-and-conquer based upon the orbit and imprimitivity structure. It has the
additional advantage of extending to an algorithm for finding G N H where there is no assumption
made about H, while G is only assumed to have bounded noncyclic composition factors (e.g., G
could be solvable) [ibid, section 4.2].

Groups that arise in the (general) bounded valence d-case are not necessarily p-groups, not even
solvable for d > 6. They do have the property that the primes in the order of the group are
bounded. In fact the composition factors of the group are embeddable in Sym(d — 1). It has since
been observed that just the fact that the noncyclic composition are bounded implies the primitive
groups that arise in the course of the algorithm have polynomially bounded order [Babai, Cameron,
Palfy]. This plays an important role in simplifying the algorithm (see comments in [Luks, ibid]).

Note: A nilpotent primitive group (acting on Q) has order = |Q|.

Center and Centralizer

Problem: CENTER
Given: G = (A4) < Sym(Q).
Find: Z(G) = {g € G | gh = hg,Vh € G}.

Problem: CENTRALIZER
Given: G = (A) < Sym(Q),h € Sym(Q).
Find: Cg(h) = {9 € G | gh = hg}.

Note: CENTER <p CENTRALIZER. Cut G down in stages. At each stage centralize an
additional generator of G. Therefore, repeated application of an algorithm for CENTRALIZER
(once for each generator of GG), gives an algorithm for CENTER.

Proposition: STAB <p CENTRALIZER.
Proof: Want to find Gjay = {g € G | AY = A}, where A C Q.

Let G act naturally on the disjoint union Q = QU of two copies of Q. Let h € Sym/(Q) switch the
corresponding elements in the two copies of A while it fixes every other point. Then Cg(h) = Giay
(Ezercise: Verify this.). [

22

Note: (i) STAB reduces to finding centralizers of involutions. (ii) In the above reduction, h ¢ G

(considering G < Sym(Q2)). If h € G then Cg(h) is called Internal Centralizer. We can reduce
STAB to INTERNAL CENTRALIZER, by finding Cg 4 (h). As the set B = {{w,s'} |w € Q} is a
block system for (G, h), each generator of Cq 5)(h) induces a permutation in Sym(B) = Sym/(Q).
These induced permutaions give generators for C(h).

Definition: Let g € Sym(€), then the graph of g is Ay = {(w,w?) |w € Q} CQ x Q.
Let Sym(£2) act on © x Q in the natural way: (a, 5)Y9 = (a9, 39).
Facts: Let g, h,hy,ho € Sym(Q),
(i) An, = Ap, <= hy = ho.
(i) (An)? = Aps.
(iii) gh =hg <= (Ap)9 = Ap.
Proof:
(i) Clear, by the definition of graph.
(i) (An)¢ = {(w9,wh) |we Q} ={(m,79 ") | 7€ Q} = Ay = Apo.
(i) gh=hg <= g thg=h <> Aginy = An by ()] <= (An)9 = Ay [by (i)

Remark: CENTRALIZER <p STAB. By (iii) above, Cg(h) = G(a,}- Hence by a previous
proposition, CENTRALIZER =p STAB.

Remark: Since CENTRALIZER is as hard as STAB, and so at least as hard as ISO, we will not
attempt to solve this in our attack on CENTER. The critical observation that will put CENTER
in polynomial-time is that the solution to the problem is a normal subgroup. In fact, we will solve
the more general problem of finding the centralizer of a normalized group.

Exercise: If G,H < Sym(Q2) and G normalizes H, then Cg(H) <« G.
Solution: For any g, H, note that g~'Cq(H)g = Cq(g~ ' Hg).

Problem: CENTRALIZER-N
Given: G = (A), H = (B) < Sym(Q), where G normalizes H.

Find: Cq(H) ={g9 € G| gh = hg,Vh € H}.

Proposition: CENTRALIZER-N is in P.

Proof: For each b € B form Ay C Q x Q. Then Cg(H) ={g € G| Ay = Ay, Vb € B}. By the
exercise above Cg(H) < G.

Define an equivalence relation ~ on Q x Q as follows: for o, € Q@ X Q, a ~ [< «,f lie
in exactly the same Ap’s for b € B. Let the induced partition IT consist of equivalence classes
I, I, ...10,; then Cg(H) ={g € G | II;Y = 1I;,V1 < i < r}. Now, for any x € G, the cells in
the partition I1® = {IT¢,T1%,...TI*} are stabilized by 2~ *Cs(H)x = Ce(H). Hence Cg(H) is the
subgroup of G fixing the classes in the common refinement, {II; NIIY | IT; NI # 0,1<i,7<r}, of
IT,II”. Thus, it follows similarly that C(H) is the stabilizer of the cells in the coarsest refinement
II of II that is compatible with the action of G, i.e., such that II* =1I for z € G.

23

It is easy to obtain this refinement: while Ja € A such that IT # II%, replace II by the common
refinement of IT and I1* (in particular, increasing the number of cells). When done, G acts on the
collection of cells in the partition II, and the kernel of this action is Cg(H). Finding generators for
the kernel of an action reduces to finding pointwise set stabilizers, which can be found in polynomial
time.[]

Note: The problem of finding the coarsest partition compatible with the action of G is closely
related to the problem of finding minimum-state finite automata and fast techniques for the latter
may be applied in this setting.

Corollary: If G < Sym(n), then G/Z(G) — Sym(n?).

Remark: G/Z(G) = Inn(G), the inner automorphism group of G.

Remark: Repeating the algorithm to find Z(G/Z(G)), would seem to involve an additional
squaring of the set size (n?> — n*). Repeating the process to find the upper central series, will
result in an exponential blow up in the size of the set. Therefore computing the upper central

series seems to be difficult. Nevertheless, it can be computed in polynomial time [Kantor-Luks],
although the algorithm depends upon the classification of finite simple groups.

Exercise: Given G < Sym(f), find Cgyp0)(G). (The above method cannot be used as Sym(Q2)
need not normalize G.)

Note: An algorithm to find Cgy, () (G), gives another algorithm for CENTRALIZER-N. For, if G
normalizes H, then G normalizes Cgyp () (H). As Cg(H) = GNCgyp(q)(H) and INTERSECTION-
N is in P, this gives the required algorithm. (This method, too, does not seem to be of use in finding
the upper central series.)

Application: Solvable normal subgroup

Problem: SOLVABLE NORMAL SUBGROUP (SNS)
Given: G < Sym(Q)

Question: Does G have a non-trivial solvable normal subgroup, 1 # H < G? If so find H.

Remark: We will show that SNS is in P. But eventually we want to find the maximal solvable
normal subgroup. The maximal normal subgroup is unique, as H1, Hy solvable, normal = (H1, Hs)
is solvable, normal.

Proposition: SNSisin P
Proof: For now, assume we know a proper normal subgroup N,1 # N <G, in polynomial time.
Procedure to solve SNS for G given 1 # N « G

Solve SNS for N
If some solvable 1 # H < N is found then output HE
Else Solve SNS for C¢(N)
If some solvable 1 # H <« Cg(N) is found then output HY
Else output “G does not have a non-trivial solvable normal subgroup”.

Correctness: Suppose G has a non-trivial solvable normal subgroup (say) H. If H N N # 1 then
SNS for N will return some solvable group Hy and H,% will be solvable (HlG is solvable as it is
generated by solvable normal subgroups of N, namely the G-conjugates of Hy). If HNN = 1, then
H < Cg(N) in which case SNS for C(N) will return some solvable group.

24

Timing: Let T(G) denote the time required to solve SNS for G. Assuming we can find a proper
normal subgroup N of G in polynomial time, we have T(G) = T'(N) 4+ n¢, (for some fixed constant
c) if N does not have a solvable normal subgroup, and otherwise T'(G) = T'(N) + T(Cg(N)) + n°.
The key observation is that we only have to consider C¢(N) when SNS returns “no” for N, and
in that case, C¢(N)NN = Z(N) = 1 (since Z(N) is a solvable normal subgroup of N). Thus,
if the second recursive call to SNS is invoked, we know that |G| > |N||Cq(N)|. It follows that
T(G) = O(log(|G|)n®), and hence SNS is in P.

Next time: Special case of Proper Normal Subgroup, that is when G has a solvable normal
subgroup.

25

Lecture #b5 25 April 1990

Algorithm for a special case of proper normal subgroup

In the previous lecture we saw that SNS can be solved in polynomial time if we can find a proper
normal subgroup in polynomial time. We would like to find proper normal subgroups, but to solve
SNS we need to do this only for the case when the group has non-trivial solvable normal subgroups
(the algorithm for the general case is more involved and uses the classification of finite simple

groups).

Problem: PROPER NORMAL SUBGROUP FOR SNS (PNS-S)
Given: G = (A) < Sym(Q), |G| is not prime.

Find: A proper normal subgroup of G or report that G does not have a non-trivial solvable normal
subgroup.

Note: (i) If |G| is prime, then G is solvable, and SNS can output G. (ii) In PNS-S, the “or” in the
find statement is not exclusive, i.e. even if G has no non-trivial solvable normal subgroup PNS-S
may return a proper normal subgroup.

Our approach will be to create a set of actions with the property that if a proper normal subgroup
exists, then at least one of these actions will have a nontrivial kernel.

If A is a non-trivial orbit (i.e. |A| > 1), then find Ga, the kernel of the action of G on A. If
GaA # 1, then we're done (output Ga). Otherwise, we may assume G acts transitively on 2 (G
acts faithfully on A, so we may replace 2 with A). If G is not primitive, then let B be a block
system. If Gg # 1 then we're done (output Gp). Otherwise, we may assume G acts primitively on
Q (G acts faithfully on the blocks B so we may replace 2 with B).

Remark: Suppose ¢; : G — Sym(Q2), and we have some auxiliary action ¢2 : G — Sym(A). We
can find the kernel of the action of G on A by viewing g € G < Sym(2U A) as the product of two
permutations ¢ = ¢1(g)p2(g) and take the pointwise set stabilizer Ga in this action. (This idea
has already been implicit in earlier lectures).

Subgroups described in terms of an induced action

In response to queries, we expand a bit on the last remark. More generally, whenever we are
computing a subgroup H of G in its action on A, we can also obtain the “pullback” of this subgroup
on the original action on the set Q (i.e. {¢1(g) | #2(g) € H}) as follows. View group elements as
ordered pairs (¢1(g), #2(g)). As our algorithm for computing H with respect to A directs us to
form products, take inverses, etc. of our generators in the second coordinate, we simply duplicate
the identical computations in the first coordinate as well. Our “answer” back on the original set
Q, then, will be generated by the set of resultant first coordinates, together with generators for the
kernel of the action of G on A.

Alternatively, we could simply compute H on A, (computing with the second coordinates, ignoring
the first coordinates), then “lift” these permutations on A to permutations on QU A, (as outlined
in the proof of the following claim) and restrict these permutations to .

Claim: (Membership of Partial Permutations) Let G < Sym(Q), A C Q. Let f : A — Q be given.
Then it is possible to find (in polynomial time) an extension of f to an element g € G, (in fact, to
find all such extensions) if one exists, or to determine that there are none.

26

Discussion and Proof: It is not difficult to extend basic (Sims’s) membership testing algorithm
to this case of partial permutations (though we may have obscured the issue with a particularly
high-level approach to MEMBER in lectures 1,2). However, it seems worth observing another
approach that reduces the problem directly to point stabilizer (i.e., the case when f is the identity
on A). This approach is reminiscent of the reductions such as ISO to finding automorphism group
and of SET-TRANSPORTER to STAB (Ezercise: Explore that!). Also, it is particularly useful
in a parallel (class NC) approach to the partial permutation problem for the ordinary (sequential)
membership test is not available, though pointwise set stabilizers are.

We assume that we have an algorithm for pointwise set stabilizers. Note first that if g € G is
any extension of f then the set of all such extensions is given by Gag.

The group G x G acts naturally on Q x Q (via (o, 3)9") = (a9, 8")). Define z € Sym(Q x Q)
by (a, f)* = (B,) and let H = (G x G,x) (thus, H is the wreath product G Z;). Let A =
{(6,f(8)) | 6 € A}. Find L = Hx.

(1) If L < G X @G then there is no g € G extending f,
else take y € L — G x G; then yz = (g,h) € G X G and
(2) g is an extension of f. [

Exercise: Prove (1) and (2) above.

Returning to main track -

Definition: A subgroup H < @ is a characteristic subgroup if H is invariant under all automor-
phisms of G, i.e. for all 0 € Aut(G),0(H) = H.

Exercise:

(i) A characteristic subgroup H < @ is a normal subgroup of G.

(ii) For any group G, G’ the commutator subgroup of G, is a characteristic subgroup.
(iii) If K is characteristic in H and H <« G then K < G.
)

(iv) If K is characteristic in H and H is characteristic in G then K is characteristic in G.

Recall from the previous page that we have reduced PNS-S to the case where G is primitive. If
G has a solvable normal subgroup 1 # H < G, then G has an abelian normal subgroup (the last
non-trivial term in the derived series of H is an abelian subgroup, and by the above exercise, it is
normal in G).

Definition: G < Sym(Q) is regular if G is transitive and Yw € Q, H,, = 1.
Exercise:

(i) G isregular <= Va,p € Q3! g € G such that o9 = . (= |G| = |Q)).
(ii) G transitive and abelian = G regular, and Cgyp)(G) = G-

Hence, if G is primitive and has an abelian normal subgroup H, then H is transitive (orbits of
normal subgroups of G are blocks for G) and hence regular (by exercise above). H must be proper,
otherwise G would be a regular primitive group, hence of prime order, a case excluded in the
problem statement. If we actually had generators for H, we’d be done.

27

In fact, however, we have only generators for G and a “promise” that G has an abelian (and
therefore regular) normal subgroup H. To find a proper normal subgroup of G it suffices to
produce a nontrivial primitive action of G for which H is not regular. Such an action cannot be
faithful, so the kernel of that action will be a proper normal subgroup.

It suffices to produce a transitive action 7 : G — Sym(A) in which 3§ € A such that Hs # 1.
For, if GG is transitive on A and Hs # 1 for some § € A, then the same holds for any block system
on A, so a primitive action of G for which H is not regular can be obtained.

It is sufficient to find a cycle ' of any 1 # h € H. For, let A = {T'9 | g € G}, then I'Y is a cycle
for h9 = g~'hg € H, and any edge in 'Y determines the unique element of H inducing it (as H
is regular on 2, and by (i) of exercise above), and hence determines the whole cycle. Therefore

|A| < n?%, and we can use a transitive closure algorithm to form all the I'’s. So G acts transitively
on A, and 31 # h € H such that h fixes the point T" € A.

Note: If we knew h € H, then all we need to output is (h)“ and we would be done.

We need to find a cycle for some 1 # h € H (but don’t have h). Take any «, 3 € Q,a # . Then
3! h € H such that o = 3. We want to complete the cycle (¢ — 8 — ...) of that h. Observe that
it is sufficient to know (" (i.e. three points are sufficient to complete the cycle). For, let v = g%
Find g € G such that (a,)Y = (8,7). Since BT = 4 = Bl = g lhg = h (h is the unique
element in H that maps § to 7), = " = 7971’19 = 79. An easy induction argument shows that the
cycle of g containing « is the same as that of h.

Although we don’t know such a -, we consider all points of {2 as potential candidates, and try them
all:

Algorithm
Fix a,8 € Q, a # 5.
For each v € Q2 do
If there exists g € G such that « EN 15} EN ~, Then
I’ «+ cycle of g containing a.
A + G-images of T' (if > n? such, reject 7)
B < a minimal block system of G’s action on A.
K < the kernel of the primitive action of G on B.
If K #1 Output K.
Else reject 7.
Else reject 7.
If all v € Q are rejected, Output “G does not have a non-trivial solvable normal subgroup”.

Note that if G has an abelian normal (and regular) subgroup, then one of the actions considered
in this algorithm will have a nontrivial kernel, and the algorithm will succeed in finding it. If no
infaithful action is found, G couldn’t have had an abelian normal subgroup, hence it couldn’t have
had a solvable normal subgroup.

Comment: If G is primitive and has a regular normal subgroup H which is not abelian, then the
algorithm above could fail to find a nontrivial kernel, since the fact that H is abelian guarantees
that H is regular in any faithful primitive action of G. Of course, if on A, G is faithful and

primitive, but H isn’t regular, then |A| < ||, in fact |A]| = % < :|H| = 39|

28

Lectures #6, 7 30 April, 1 May 1990

Algorithms for computing radical and fitting subgroups

Definitions: Let G be any group.
(i) The Radical of GG is the maximal solvable normal subgroup of G, denoted by Rad(G).
(ii) The Fitting subgroup of G is the maximal nilpotent normal subgroup of G, denoted by
Fit(G).
(iii) The p-Core is the maximal normal p-subgroup of G, denoted by Fit,(G) or Opy(G).
Remarks: (i) The subgroups defined above are all unique, as the subgroup generated by two

normal solvable/nilpotent /p-subgroups of G is again a normal solvable/nilpotent /p-subgroup of G.
(ii) The term “radical”, for maximal solvable normal subgroup is not standard.

Note:
(i) 0p(G) < Fit(G) < Rad(G).

(11) Flt(G) = prrime OP(G>
(iii) Op(G) = Ngeg P9, where P is a Sylow p-subgroup of G.

Remark: Finding O,(G) via (iii) would require use of classification of finite simple groups, which
is presently essential for polynomial-time computation of Sylow subgroups [Kantor].

Problem: RADICAL
Given: G = (4) < Sym(Q)
Find: Rad(G).

Claim: There is a polynomial time algorithm for RADICAL.

Proof: Since we know how to find a solvable normal subgroup H of G (invoke SNS with input
G), one might suppose we could recursively invoke SNS with G/H. However, we have no faithful
permutation representation of G/H.

Instead, we proceed as follows. Let 1 # H <G, with H abelian (if K is the solvable normal subgroup
returned by SNS with input G, then let H be the last nontrivial term in the derived series for K).
Let A1, Ay, ..., A, be the orbits of H, and HA',H”? ... ,H”" be the constituents of H (the
constituent of H on A;, denoted H®¢ is the group induced by H on A;). H?i is transitive and
abelian, so it is regular on A;, and |H%| = |[A;|. Let & = Uj<;<, H® (disjoint union). Then
IZ| = |9, and G acts on ¥ as follows: let g € G, and h; € H®, and suppose A9 = A (the orbits
of H are blocks for G), then h;? is g~1h;g restricted to A; (note that the identity of H Ai is mapped
to the identity of H2). Let G 5 Sym(X) denote this action, and K = Ker(r) < G. Then H < K
(as H fixes A; and commutes with H®#). K stabilizes A; (since, in the action on ¥ it fixes the
identity of H2) and K¢ centralizes H®i so K = H® (Hi is its own centralizer in Sym/(A;)).
Hence K is an abelian normal subgroup of G, and G/K — Sym(X). Now, equipped with this
faithful action of G/K, we can recursively find the Rad(G/K). Since Rad(G/K) = Rad(G)/ K, we
finish by forming the pullback of Rad(G)/K in G (see lec. 5, p. 1).

Exercise: Verify that the above algorithm runs in polynomial time.

29

Problem: CORE-p
Given: G = (4) < Sym(Q), and a prime p.
Find: O,(G).

Problem: FITTING
Given: G = (A) < Sym(Q).
Find: Fit(G).

Note: FITTING <p CORE-p, as Fit(G) = [1, prime Op(G)-

Problem: CORE-p-SOLVABLE
Given: A solvable group G = (A) < Sym(2), and a prime p.
Find: O,(G).

Claim: CORE-p <p CORE-p-SOLVABLE

Proof: Let N G and Oy(G) < N, then O,(G) = O,(N) since Op(N) is characteristic in N and
hence it is normal in G. (e.g N = Rad(G)). Therefore O,(G) = Op(Rad(G)), where Rad(G) is
solvable, and can be found in polynomial time. [

The rest of this lecture indicates some polynomial time algorithms for CORE-p.
Version 1
Claim: There is a polynomial time algorithm for CORE-p-SOLVABLE.
Proof:

Algorithm
P + Sylow p-subgroup of G (see next Remark)
While P is not normal in G do
Find g € A such that P9 # P
P+~ PnNnPYI
Return P

The algorithm will return Op(G) (as Op(G) = NgeaP?). U

Remark: Sylow subgroups of solvable groups can be found by “elementary” methods [Kantor-
Taylor| (later simplified further by Kantor) in distinction to known polynomial-time methods for
Sylow subgroups in general groups, which require the classification of finite simple groups [Kantor].
If the reader is not concerned about this distinction then he/she can ignore the reduction to the
reduction to solvable G and accept the above as a direct algorithm for CORE-p.

Version 2

A more direct algorithm for CORE-p can be obtained by modifying the algorithm for RADICAL.
Our ability to locate solvable normal subgroups in polynomial time played a crucial role in the
algorithm for RADICAL. Similarly, for CORE-p, we need to find normal p-subgroups in polynomial

30

time. The SNS algorithm, with some minor modifications, can be used to find normal p-subgroups.
The only tricky point is showing this algorithm runs in polynomial time. Recall that in the algorithm
for SNS, we recursively called SNS with input NV and C (V) where N was a proper normal subgroup
of G, and we noted that if the second recursive call is invoked then |G| > |N||C¢(N)|. If we modify
SNS to find just p-normal subgroups, then the above inequality may not hold.

Exercises: (1) Verify that the modified SNS algorithm to find p-normal subgroups runs in
polynomial time. (Hint: Always check first that p divides the group order).

(2) Complete the algorithm for CORE-p.

Version 3

Algorithm
H + an abelian normal subgroup of G
If p J/ |H| then
G+ Cg(H)
{ From now on, we can assume that H < Z(G)}
Y+ {A1,Aq,...,A}, the set of orbits of H
Let G = Sym(X) denote the action of G on &
K < Ker(n)
G+ Cg(K’)
Q/K « 0,(x(G))
{ Then Q = O0,(G) x K}
Output the generators of @ raised to the p’ part of |G|
Else {p|[H|}
H <+ minimal normal p-subgroup of G (details to follow)
G+ Cc;(H)
Y {A1,Ag,..., A}, the set of orbits of H
Let G 5 Sym(Z) denote the action of G on &
K + Ker(n)
Q/K « 0,(x(G))
Output generators for @)

Correctness: We can assume we have 1 # H < G, with H abelian (if N is the solvable normal
subgroup returned by SNS with input G, then let H be the last nontrivial term in the derived
series for N). Let Ay, Ag,...,A, be the orbits of H. Let G = Sym(X) denote the action of
G on ¥ = {A1,As,...,A;}, and K = Ker(m). If p does not divide |H|, then O,(G) < Cg(H)
(as H, Op(G) «G and H N Oy(G) = 1). Note that H < K and K has the same constituents as
H (as K commutes with H), so K is an abelian, normal p-prime subgroup of G. 7(0p,(G)) <
O,(m(G)) = Q/K = 0p(Q) < Q<G = 0,(G) = 0,(Q). Let P be any Sylow p-subgroup of @Q,
then |P||K| > |Q| as Q/K is a p-group, so Q = PK. Since P < Cg(K) so @ = P x K and P is
normal in Q. Hence O,(G) = 0,(Q) = P, Q = 0,(Q) x K.

If p divides |H| we don’t know that O,(G) < Cq(H).

Ezercise: If H is a minimal normal p-subgroup of G then O,(G) < Cg(H) and H is elementary
abelian.

Solution: [H,H] is a characteristic subgroup of H, so it is normal in G. By minimality of H,
[H,H] = H or 1. Since H is solvable (H is a p-group) [H,H] =1, so H is abelian. The subgroup
H), of H generated by all the elements of order p, is characteristic in H and hence normal in G.
Since Hp # 1 therefore H, = H and hence H is elementary abelian.

31

Let K = Oy(G), then [H, K] < H and is normal in G (since both H, K < G). By the minimality
of H [H,K]=1or [H,K] = H. Since H is nilpotent, [H, K] = 1. [

If we can find a minimal normal p-subgroup H of G (in polynomial time) then the action 7 of G on
the orbits of H, has a p-subgroup K as kernel, and so Op(7(G)) = Op(G)/K, and we can recurse
to find O,(G).

Given any non-trivial normal p-subgroup, we can find an abelian normal p-subgroup and then an
elementary abelian normal subgroup (Ezercise. Verify that!). Thus we assume H is an elementary
abelian normal p-subgroup. Then G acts on H, by viewing H as a vector space and the actions
are linear transformations. Hence, finding minimal normal subgroups of a group G is reduced to
finding an irreducible subspace for a set of linear transformations of a vector space over a finite
field. The latter was an open problem for some time and was proposed by Kantor, to complete this
approach to O,(G). This problem was solved by Rényai.

An amusing aspect of the above version is that, ignoring Rényai’s ultimate contribution, Kantor
had reduced finding a maximal normal p-subgroup to finding a minimal normal p-subgroup.

Version 3’

This is merely a hybrid, not a different approach. We observe that method in the algorithm
for RADICAL enables us the avoid the problem of finding minimal normal p-subgroups (for which
Ronyai has to introduce considerable machinery, including a constructive version of the Wedderburn
theory for rings). An alternative approach to the second case (p||H|) above is to use the action =
on the set of constituents of an abelian normal p-subgroup H. In this case, the kernel, K, of 7 is
an abelian, normal p-subgroup of G and so K < O,(G) and Oy(7(GQ)) = Op(G)/K.

Remark: There is another algorithm due to P. Neumann.

32

Lecture #8 7 May 1990

The structure of primitive permutation groups

The next two lectures focus on the structure of minimal normal subgroups and socles. We’ll
look first at general (finite) groups, then concentrate on primitive permutation groups. Primitive
groups arise naturally as the base case in certain divide-and-conquer algorithms. In a sense, this
base case occurs when naive combinatorial divide-and-conquer has been exhausted. Additional
decomposition of the problem is often possible but now uses the structure of the group itself. To
get at this structure, we develop a portion of the O’Nan-Scott Theorem for permutation groups.
Studying particularly the nature and action of the socles of primitive groups provides the key to
obtaining further divide-and-conquer decompositions. In these lectures, our immediate goal is to
reveal the composition factors of a group. The machinery also plays a key role in the parallelization
of (most of) the algorithms we’ve seen so far in the course.

Definition: The socle of a finite group G, denoted Soc(G), is the subgroup generated by all
minimal normal subgroups of G.

Proposition: The group generated by some collection of minimal normal subgroups of G is a
direct product of a subcollection of them.

Proof: Let N = (B). Let M = {Mj,...,M,} be a maximal subcollection of B such that
K = (M) = M; x ... x M,. Our goal is to show N = K. It suffices to show that for every
minimal normal subgroup M € B, M < K. Suppose, to the contrary, there is some minimal
normal subgroup M € B such that M £ K. Then M N K =1 (M is minimal normal), and K x M
contradicts our choice of K. []

Corollary: Soc(G) is a direct product of minimal normal subgroups of G.
Definition: A group H is characteristically simple if it has no proper characteristic subgroups.
Claim: H is characteristically simple <= H is a direct product of isomorphic simple groups.

Proof: (<) Let H be a direct product of isomorphic simple groups M; X ... x M,. Suppose first
that the M; are abelian: then H is a vector space over a finite field, subgroups are subspaces and
Aut(H) is the group of linear transformations of H; give any proper subspace N, there is a linear
transformation that does not preserve IN; hence IV is not characteristic. Suppose next that the M;
are nonabelian: clearly Aut(H) induces all permutations of the factors {M;}; let N be a proper
normal subgroup of H, then N = M;, x ... x M;, for some 1 <i; < ... <i, <r (Ezercise: prove
this!); since N is proper, i.e., s # 0,7, there exists a permutation of {M;} that does not stabilize
{M;,,...,M;,}; hence N is not characteristic.

(=) If H is characteristically simple, then H = Soc(H) (the socle is always a characteristic sub-
group). It follows that H = My X ... X M,, the direct product of minimal normal subgroups of
H. Moreover, the M;’s are simple, since if K <« M;, then K < H (since M; is a direct factor of H),
which contradicts the minimality of M;. Let M be the collection of all minimal normal subgroups
of H that are isomorphic to My, and K = (M). Then K is characteristic in H, and so (by the
characteristic simplicity of H) K = H. By the earlier proposition, H is the direct product of some
of the M’s in M. [

Corollary: If M is a minimal normal subgroup of a group G, then M is the direct product of
isomorphic simple subgroups.

Proof: Minimal normal subgroups are characteristically simple. [

33

Remark: Soc(G) = My X ... X My, where the M;’s are minimal normal in G. The socle is
therefore a direct product of simple groups.

Note, finally
Lemma: Any two minimal normal subgroups of a group centralize each other.

Proof: If M;, M are distinct minimal normal subgroups in G then [M;, Ms] <G, and [M;, Ms] <
M N My < M. By the minimality of M;, [M;, My] = 1. (This also follows directly from the first
Proposition in this lecture). [

Note that above M; and My “commute” not just in the weak sense that MMy = My M, but

additionally that each of these groups centralizes the other.

Socles of primitive permutation groups

Let G < Sym(Q2) be a primitive group. Let N = Soc(G). Recall that any normal subgroup of a
primitive group is transitive. If N = M; x ... x M,, (each M; minimal normal in G) then each M;
acts transitively on Q. If s > 1, then each M; commutes with each of the other M;’s (i # j), So
for example, M7 and M, are commuting, transitive groups.

Remark: We will soon see that s < 2.

Definition: A group K < Sym(Q) is called semiregular if its point stabilizers, K, for w € Q,
are trivial. (So a group is regular iff it is transitive and semiregular).

So, if K is semiregular and «, 5 €) then there is at most one element in G mapping « to
(for all such elements lie in the same right coset of K).

Lemma: If K is centralized by a transitive group H, then K is semiregular.

Proof: K, = K," = K. = Kg, if a? = B. Since H is transitive, for each § € Q,3h € H such
that o = 3. It follows that K, = Kz VB8 € Q, i.e. K, =10

We use this to show

Proposition: If My, Ms are commuting transitive groups then M; and M, are both regular and
M, = CSym(Q)(M2>7 My = CSym(Q)(Ml)'

Proof: By the previous lemma, M; and M, are both regular. Since Cgyp()(M1) commutes
with the transitive group M, it contains, for any «, 8 € €2, at most one element mapping «a to S.
But there is already such an element in My < Cgypn(q)(M1). Hence My = Cgypyq)(M2). Similarly
My = Cgyma)(M). U

From this discussion we immediately get

Corollary: If M;, M, are distinct minimal normal subgroups of a primitive group G < Sym(2)
then M; and My are both regular and M1 = Cgypma)(M2), M2 = Cgyp(a) (M1).

Since My could have been any minimal normal subgroup distinct from M, it follows immedi-
ately that

Corollary: A primitive group has at most two minimal normal subgroups.
In fact, if there are exactly two minimal normal subgroups, we can say more.

Let G be a group. G acts on itself via right multiplication: p : G — Sym(G),g” : h — hg. This
action is called the right regular action of G on itself. We can also define the left regular

34

action of G: X\ : G = Sym(G),g" : h = g~ 'h. Ezercise: verify that p and)\ are actions, (i.e.
homomorphisms), and that these actions commute.

When a group G acts regularly on a set €2, we may identify 2 with G by distinguishing some point
w € Q and for each g € G, identifying g with w9. It is clear that with this identification, G’s
action on (2 is precisely the right regular action on itself. If there is some other group H that acts
regularly on Q and commutes with G, we know by the Proposition that it must be the left regular
action. (The left regular action is some commuting action, the remark tells us it is the only one.)
Thus, G = H.

In particular, distinct minimal normal subgroups of a primitive group are isomorphic.

We note also that an abelian normal subgroup of primitive group is necessarily regular and
self-centralizing (apply the proposition - it commutes with itself).

We summarize some important implications of the foregoing discussion that we’ll need later in the
following:

Theorem: If G is primitive, then Soc(G) = M; or Soc(G) = My X My, where M; = M, and
M, M5 are the minimal normal subgroups of G. In either case, Soc(G) = T1 X ... X T, where the
T;’s are all isomorphic simple subgroups.

Remark: If Soc(G) is abelian, then Soc(G) is an elementary abelian p-group, each Tj is cyclic of
order p, and every minimal normal subgroup of Soc(G) is also cyclic of order p (it is a “subspace”
of Soc(G@)). In this case, {T1,...,T;} is a subset of the set of all minimal normal subgroups of
Soc(G). If Soc(G) is nonabelian, {71, ...,T,} actually comprises all minimal normal subgroups of
Soc(G). Moreover, the only normal subgroups of Soc(G) are direct products of some of the T;’s.

We now turn our attention to analyzing the structure of point stabilizers of socles of primitive
groups. This structure plays a key role in the algorithm for finding composition factors, and is an
important ingredient in the machinery for parallelizing much permutation group machinery.

Point stabilizers of socles of primitive permutation groups

First consider the case where G is a primitive solvable group. N = Soc(G) is abelian. Since N is a
direct product of isomorphic simple subgroups, it must in fact be an elementary abelian p-group,
N = 7,4 Since N is transitive and abelian, it is also regular, and || = |N| = p?, and we may
identify Q with N via the right regular action. (Recall we fix a point w and identify n € N with
w" e Q)

This endows with a vector space structure. Since N is abelian, we’ll use additive notation for
the group operation in N. N’s (right regular) action on induces the full group of vector space
translations on Q: for a point w™ € Q, and an element ny € N, p(ng) : W™ — (W)™ = Y1172,

Since w is identified with 1 € N, it is natural to view w as the origin of the vector space 2. Consider
the point stabilizer G,. Since G is primitive, we know G = G,N (in fact this is true whenever N
is normal and transitive). Since N is regular, N, = G, NN =1, so G is the semidirect product
of N and G,,. Therefore, to understand G’s action on {2, it suffices to know N’s action and G,’s
action on). We've already noted that IV acts on 2 as the full group of vector space translations.

G, acts on (via the original given action of G on 2); it also acts on N via conjugation, and hence
on € via the identification we’ve made between elements of N and points of 2. These two actions
are in fact the same! Consider n € N and its associated point w™ € 0, and let g € G,,. We need to
verify that the point ¢ maps w™ to (in the original given action G — Sym(f2)), and the point in

35

that corresponds to n9 = g~ 'ng, are the same. The former point is w™, the latter is w™ = w9 ng,

Note that g fixes w, so W™ = w9 , which is exactly what we needed to show.

Since G,,’s action on {2 is precisely G,’s action on N by conjugation, G,’s acts faithfully on 2 as
a group of linear transformations. (Faithful because any element of G, in the kernel of that action
would have to centralize N, but N is an abelian, transitive and is therefore its own centralizer and
is regular, so the centralizer of N in G, is N, = 1.) So G, = GL(d,p).

G is the semidirect product G = G, N, and we now know that G, is a subgroup of the set of linear
transformations of 2 and N is the full group of translations of Q. Therefore G — AGL(d,p), the
affine group of a vector space of dimension d over a field of characteristic p.

In fact we can say even more: G, acts irreducibly in €. For if there were a proper invariant
subspace of Q, (bearing in mind that Q and N are identified), this subspace would constitute a
normal subgroup of G, properly contained in N, contradicting the minimality of N.

Remark: All primitive groups with an abelian socle have this structure. To build examples of
primitive groups with abelian socles, pick d,p, form Q = Zpd, and include in a set of generators
enough translations to generate the full translation group, and enough linear transformations to
guarantee an irreducible action on 2.

Exercise: For G primitive in Sym(n) with abelian socle, verify that |G| < n!Tlos™,

Point stabilizers in socles of primitive groups with no regular normal subgroup

Let G < Sym(Q) be primitive, N = Soc(G) = Ty X ... x T,, where the T;’s are isomorphic,
nonabelian simple groups, and N is the unique minimal normal subgroup. Then G acts by congu-
gation on N by permuting the set {71,...,7;}. This action must be transitive, since otherwise a
nontrivial orbit would generate a normal subgroup of G properly contained in N, contradicting the
minimality of V.

For a point w € Q, G = G, N but since G has no regular normal subgroup, N, = G,NN # 1. Hence
although G factors as G = G, N, G is not the semidirect product of these two subgroups. Since NV
acts trivially on {71,...,T,}, and G acts transitively, G, must act transitively on {771,...,7,} as
well.

Consider the group NV,. This is a G,-invariant subgroup, and 1 < N, < N.
Claim: N, is a mazimal G-invariant subgroup of V.

Proof: Suppose there is a G,-invariant subgroup H such that N, < H < N. Since G, normalizes
H, G,H is a group, and G, < G, ,H < @. Since G is primitive, G, is a maximal subgroup, so
either G,H = G, or G,H = G. Consider the first possibility: G,H = G, implies H < G,. Since
we also know that H < N, we find that H < G, NN = N,. So in this case, we find H = N,.
Now consider the second possibility: G, H = G implies H <« G (it is normalized by both G, and
H), but, as N is the unique minimal normal subgroup, N < H. Since, by hypothesis, H < N, we
must have H = N. [I

36

Lecture #9 9 May 1990

The structure of primitive permutation groups: II
Case I

We’ll define a case I group to be a primitive group G with a regular normal subgroup. This
includes as a subcase the situation described in detail in the last lecture: Soc(G) abelian, hence
regular.—It also includes the case where G has more than one (therefore exactly two) minimal
normal subgroups, each of which is regular. In addition, it includes the case where G has a regular,
nonabelian socle, which we do not need to analyze further.

In both case IT and case ITI, G has no regular normal subgroup. Assume now that G has no regular
normal subgroup.

Here N = Soc(G), G acts primitively on Q. N =T x...xT,, where the T;’s are nonabelian simple
isomorphic groups. G, (w € Q) acts transitively (by conjugation) on {771,...,7,}. Our interest
again focuses on the structure of point stabilizers of N. N, < N =T; X ... xT,. Let m; be the
i-th projection function 7; : N — T; given by n + n; wheren =nq...n,,andn; € T; Vi=1,...r.
Let S; = m;(N,). Note that while S; is clearly a subgroup of 7;, S; may not be a subgroup of N,,.
Claim: @, acts transitively on {S1,...,S,}.

Proof: To see that G, acts on {S1,...,S,}, we verify that, for g € G, such that T;9 = T}, we
additionally have S;Y = Sj; that G, acts transitively on {Si,...,S,} will then be clear since G,,
acts transitively on {71,...,T,}.

Let s; = m;(s), where s = s1...s, € N,. For an element g € G, s9 € N, because N, < G,,. Since
Gy acts on {T1,...,T;}, and s; € S; < T;, we have s;9 € T; (where T; = T?). It follows that
mi(s9) = mj(s19...5:9) = 59, s0 §;9 < Sj; similarly S;rl < Sj,s089=058;.1

Note: Since G, acts transitively on {S1,...,S,}, if S; = T; for any i, then S; = T; for all
1=1,...,r.

Case 11

We define a case II group to be a primitive group G with no regular normal subgroup and 7;(N,) =
S; < T; for each i. Furthermore, S; # 1, otherwise N would be regular.

Claim: N, = (T1)y X ... %X (T3)y =51 X ... X S,.

Proof: Let H = (S1,...,S5,) = S1 X ... x S,. We know N, < H < N. The latter inclusion is
proper, since S; < T;. Since H is a G, -invariant subgroup containing N, a mazimal G ,-invariant
subgroup (see the last claim of the last lecture), N, = H. In particular, S; < N, for each i. Thus,
(T})w < S; < N, NT; = (T;),,, proving the claim. [

Note: Since N is transitive, we may identify points of {2 with cosets of N,. Since N, =
(T1)w X ... X (T})w, we may identify a coset N,n with an r-tuple ((71)ut1,---, (T3)wtr)), where
n =t1...t,. If we define Q; = {(T;)wt; | t; € T;}, then the set 2 may be identified as a product:

Q=0 x...xQ and |Q| = || = (%)T We don’t explicitly use this result but it does

lead to an alternative (perhaps more intuitive) motivation of a step (specifically Step 6) in the
simplicity-test algorithm.

37

Case 111

We define a case III group to be a primitive group G with no regular normal subgroup and m;(NV,,) =
T; for all i. Our analysis of this case will depend critically on the following (folklore) lemma, to the
proof of which we devote the remainder of the lecture.

Lemma : Let G — H =T x ... x T} be a subdirect product (i.e. 7;(G) = T;), where each T; is
a simple nonabelian group. Then after some rearrangement of the factors, we may write

H:(Tlx...xTi)><(TZ~1_|_1><...><TZ~)x...x(iI}(k_l)Hx...xZI}-k)
such that Tj, 11 2 Tj42 = ... 2 T;,, forall 0 < j <k —1 (where ig = 0), and
G =diag(Ty x ... x Tjy) x diag(Ti 41 X ... X T;,) X ... X diag(Ti,_, 11 X ... X T,),

(i.e. after appropriate identifications, G = {(a...a)(B...8)... (k... K)}).

Proof: Define a relation on {1,...,r} such that i ~ j <= Vg € G,m(g) =1 = 7(g) =1, ie.
ker(m;) < ker(m;), or equivalently, m;(ker(m;)) = 1.

Claim: ~ is an equivalence relation. Proof: Reflexivity and transitivity are immediate, so we
verify symmetry. Suppose i ~ j. We need to show j ~ i, i.e. L = m;j(ker(n;)) = 1. ker(m;) <G =
L = mj(ker(m;)) «mi(G) = T;. Suppose L # 1. Then we must have L = T;, since T; is simple. Let
g € G such that 7;(g) # 1 (this is possible since G is a subdirect product). Then there exists some
h € ker(m;) such that m;(h) = m;(g) (since L = T;). Now m;(gh~!) = 1, but 7j(gh~!) # 1. But this
contradicts our assumption that i ~ j. [

Next we show that the equivalence classes of this relation correspond to diagonal blocks of G. Let
{B1,..., By} be the equivalence classes. For i =1,... ,k,let D; ={g € G| mj(g) =1Vj ¢ B;}.

Claim: 7s(D;) = Ts,Vs € B;. Proof: Let s € B;. D; <G = w4(D;) «Ts. Since T; is simple, it
suffices to show that 74(D;) # 1. Pick g € G such that 74(g) # 1 and |{l | m;(g) # 1}| is minimal. It
suffices to show that g € D; (since then 1 # 74(g) € m5(D;)). Suppose, to the contrary, that g ¢ D;.
Then there is some j ¢ B; such that 7;(g) # 1. Let gs = m4(g). There exists t; € T, such that
lgs,ts] # 1 (Z(Ts) =1 since Ty is nonabelian simple). Since s € B; and j ¢ B;, we know that s £ j.
This implies that 74(ker(m;)) = Ts and so there exists h € ker(m;) such that 7,(h) = t,. We will
complete the proof by showing that the element [g, h| contradicts our choice of g, i.e. mws([g,h]) # 1
and [{l | m([g,h]) # 1}| < {I | m(g) # 1}|. Observe that 7,([g, h]) = [ms(g), 7s(h)] = [gs,ts] # 1.
Since mm(g9) = 1 = mm([g, h]) = 1, we have U = {l | m([g,h]) # 1} CV = {l | m/(g) # 1}. However
7309, H]) = [m5(9), i (h)] = [rs(a) 1] = 1, 50U C V (j € VAU). D

By this claim we know that Vs € B; 75 : D; — T is surjective, and D; N ker(ws) = 1. So for all
s € B; we have 7, : D; — T is an isomorphism, and D; = diag([[scp, Ts)-

All that remains is to show that G = D1 X ... X Dy. Clearly G > Dy x ... X Dy. For g € G, we
need to show that g € D1 X ... X Dy. For each i, 1 <1 <k, pick an s; € B; and h; € D; such that
7s;(hi) = ms;(g). Then 7g,(g(h1hg...hg)™t) =1 for all i, so m(g(hihy...hg)™t) =1 for all | € B;
and for all 4, which implies that g(hihg...ht)™ ' = 1ie. g = (hiha...hy) € Dy X ... x Dy. This
completes the proof of the lemma. [

38

Lecture #10 17 May 1990

The structure of primitive permutation groups: III
and an algorithm for testing simplicity

Case 111

Recall from lecture 9 the definition of a case III group: A primitive group G with no regular normal
subgroup where N = Soc(G) =Ti X ... x T, T; nonabelian simple and 7;(N,,) = T; for each .

N, is a subdirect product, so the lemma from lecture 9 applies and we may assume:

N, = diag(Th % ... X Tj;) X diag(Ti41 % . .. X Tog) X ... X diag(T(j—1)p41 X - - - X Tig) = D1 X ... X Dy.

Additionally, (as suggested by the notation), each diagonal block is composed of the same number
of T’s. This follows from the observation that the equivalence relation on {1,...,r} (defined in
the last lecture), is G,-invariant, i.e. it’s respected by the conjugation action of G, (because the
diagonal groups D; are the minimal normal subgroups of N,, so G, must be permuting them).

Here in case III, || = % = % = |T1|*-D! = |T1|"*. Recall that in case II, |Q| = (—|(|£1)L|)T-

Claim: If G’s action on § falls into case III then the size of G is O(n°9/%9") where n = |Q).

Proof: Observe |N| = T3 | < |T1|?*~V! = n2. Since Cg(N) < G and {T;}1<i<, is the set of all
minimal normal subgroups of G, Cg(N) = 1 (for if not, then 7} < Cg(N) < Cg(Tj) for some
J, which implies that T} is abelian, a contradiction). Therefore G — Aut(N). Now, |[Aut(N)| <
|Aut(T1)|"r!, and |Aut(T1)| < |T1|? (using the fact from the classification of simple groups, that
every simple group is generated by two elements). So we get |Aut(Ty)|” < |T1|*" < |N|? < n*.
To estimate r!, we observe that n > |T1\T/ 2 > (/60)" (since the smallest nonabelian simple group
is As), which implies r € O(log(n)), and therefore r! € O(n!°8°8™)) Hence |G| < |Aut(N)| <
|Aut(T1)["r! € O(nlogllogn)+4)]

Remarks: This estimate will not be used in these lectures, having arisen only as a digression in
answer to a query about the lecturer’s suggestion that Case III groups are “small” in relation to
the permutation domain. However, arguments of this sort have proved useful in other algorithmic
studies.

The intuition that was actually being offered was the fact that, if a given abstract group G
with Soc(G) =T x ... x T, acts primitively in a case II fashion on ©; and in case III fashion on €5,
then it seems most likely that || < |€22| will usually hold (comparing the expressions preceding
the claim). The simplicity test will take advantage of this (in Step 7).

Normal subgroups
Problem: PROPER NORMAL SUBGROUP (PNS)

Given: G = (4) < Sym(Q)

Find: Generators for a proper normal subgroup of G or report that G is simple.

Remark : Testing for simplicity is in Co-NP, for a subgroup can be verified to be a normal
subgroup in polynomial time. Our goal is to show that PNS can be solved in polynomial time.

39

Problem: PNS-1

Given: G = (A) < Sym(Q)

Find: One of the following:

(i) Generators for a proper normal subgroup of G.
(ii) The report “ G is simple”.

(iii) A faithful action of G on a domain of size at most |Q2|/2.

Note : Clearly repeated application of PNS-1 when the output is of type (iii) yields an algorithm
for PNS. Hence PNS <p PNS-1 and the running time for PNS is log(|€2|) times the running time of
PNS-1. It would suffice (in PNS-1) to produce in (iii) a faithful action of G on any domain of size
smaller than ||, in which case the running time for PNS would be a factor of || slower than the
running time of PNS-1. However it is useful for application in the parallel algorithms to observe
that the size of the domain is halved.

Claim : PNS-1 (and hence PNS) can be solved in polynomial time.
Proof : Let G < Sym(Q2) be given. We may assume that G < Sym(Q2) has no orbits of size 1.

Algorithm (for PNS-1)

Step 1:
If G is not transitive then
A « the second largest orbit of G’s action on Q. (Therefore, |A| < []/2.)
Let G = Sym(A) be the induced action on A.
K + Ker(n).
If K # 1 then {K is a proper normal subgroup of G since |A| > 1.} output K .
Else output G < Sym(A) where |A| < |Q/2.
Else {G is transitive.}
Step 2:
If G is not primitive then
B <« a non-trivial block system. (Then, |B| < |€|/2.)
Let G = Sym(B) be the induced action on the blocks.
K + Ker(n).
If K # 1 then {K is a proper normal subgroup of G since G is transitive.} output K .
Else output G < Sym(B) where |B| < |Q]/2.
Else {G is primitive.}

We may now assume that G is primitive on Q.

Remark : We could look for proper normal subgroups by computing G’ or Z(G), and if they were
not proper we could assume G = G’ etc. but this would not get us too far.

Step 3:
If |G| = |©2] = n then output “G is simple of prime order”

|G| = || implies that G is regular (acts on itself). Moreover G is primitive so it has no proper
subgroups (the cosets of a proper subgroup would form a non-trivial block system for this regular
action) and hence it is of prime order.

40

Step 4:
Else |G| > Q] =n
{90,91,---,9n} < n+ 1 distinct elements of G.
For0<i<j<ndo
Hij + <9i9j_1)G-
If H;; # G output Hj;.

Since |G| > || = n, we can find n + 1 distinct elements, go, g1,...,9n, of G. Hj; = (gigj_l)G #1
since the g;’s are distinct. If H;; # G then we have found a proper normal subgroup and we are
done. Otherwise we know that G does not have a proper normal subgroup of index < n. For
suppose N < G with |G : N| < n, then (by pigeon hole) 3 0 <i # j < n such that Ng; = Ng; and

so H;; would have been a proper normal subgroup ((gigj_l)G <N <G).

Note : The above does not give us an algorithm to find a proper normal subgroup of small index.
It merely produces some proper normal subgroup if there is a proper normal subgroup of small
index.

We may now assume that G' does not have a normal subgroup of index < n.

Remark : If G’ < G then G has a normal subgroup of index < n (since G/G’ is abelian, the
pullback of a maximal normal subgroup of G/G’ would be of prime index in G). If we had tested
for G’ = G earlier we would have either found a proper normal subgroup G’ or would be in this
case. Hence testing for a proper G’ is superflous.

Step 5:
{G has no proper normal subgroup of index < n.}
Fix a, 8 € Q, a # 3.
For each v € Q do
If there exists ¢ € G such that o % 8 5 v, then
I' «+ cycle of g containing a.
A + G-images of T' (if > n? such reject 7).
Find a minimal block system B = {B;} for this transitive action of G on A.
Let G & Sym(B) be this primitive action.
K <« ker(m).
If K # 1 output the proper normal subgroup K.
Else if |B| < [€]/2
output G < Sym(B).
Else reject .
Else reject v.

If all ~y are rejected then we know that G has no regular normal subgroup. For if there was a regular
normal subgroup IV then for some v we would find a g € G such that « ENEN 7, (and as seen in
lecture 5) we would find a primitive action of G in which N does not acting regularly. If this action
is faithful then [B| = [{B;}| = |N|/|Np,}| < [N[/2 = n/2 and this gives a new primitive action of
G on a set of size < n/2.

We can now assume that G is primitive on €2, does not have a proper normal subgroup of index
< n = 9|, and does not have a regular normal subgroup.

41

Lecture #11 21 May 1990

An algorithm for testing simplicity — contd.

Problem: PNS-1

Given: G = (4) < Sym(Q)

Find: One of the following:

(i) Generators for a proper normal subgroup of G.
(ii) The report “G is simple”.

(i) A faithful action of G on a domain of size at most || /2.

Recall from last lecture, that the problem of finding a proper normal subgroup PNS, reduced to
PNS-1. The goal is to show that PNS-1 can be solved in polynomial time. In the previous lecture
we began describing a polynomial time algorithm for PNS-1. We saw that if G is not primitive, or
if G is primitive and has a normal subgroup of index < €|, or has a regular normal subgroup then
the algorithm (described so far) would have terminated with an appropriate output.

The rest of this lecture completes the description of the algorithm for PNS-1.

We can now assume that G is primitive on (2, does not have a proper normal subgroup of index
< n = |Q|, and does not have a regular normal subgroup. In the previous lectures #9,#10, we
classified primitive permutation groups into 3 cases. Since G does not have a regular normal
subgroup, G is not in Case I under this classification.

Algorithm (for PNS-1) contd:

Step 6:
Fix a € Q.
For all 8,v,§ € §2 do
H <Gaﬁ,G'yt5>-
If G = H reject {8,7,0}.
Else A < a minimal block system for G’s transitive action on the cosets of H.
Let G Sym(A) be this primitive action.
K <« ker(m).
If K # 1 output the proper normal subgroup K.
Else if |A| < |9]/2
output G < Sym(A).
Else reject {3,7,0}.

Claim: Suppose the action of G on is in Case II (see lecture #9) with » > 1 or Case III (see
lecture #10) with [> 1. If step 6 is reached, the algorithm will halt there.

Proof: In these two cases we have

(a) Soc(G) =Ny x ... X Np,, with m > 1

(b) G acts (by conjugation) transitively on {Ni,..., Np,}
(c) For any a € 2, Soc(G)o = (N1)a X ... (Nm)a

(d)

(N;)q is a proper normal subgroup of N;.

42

where
in Case II: m =r, and N; = T;, and n = (|T1|/|(T1)a)"
in Case IIT: m =1, and N; = T(;_1)g41 X --- X Tig, (Nj)a = diag(N;), and n = Ty |7~

Fix some o € Q. In running step 6 we will try some 5 = a™ # « for some ny € Ny (by
(d)). Then (N1)g = (N1)ar2 = na ™' (N1)an2 = (N1)a (since Ny, Ny commute). Hence (Ni), =
(N1)g < Gqop. Since G acts on {N;}1<i<r, 5o does Gop. Subclaim: G,g normalizes No. Proof: Let
g € Gup and N9 = g71Nyg = N;. Then g lnog € Nj, and a9 'm29m2”" = o By (c) we have
Ny = (N1)g X ... X (N;)a. Therefore g7 nogno™" € (Ni)q X ... X (N;)o where g7 nog € N; and
no~! € Ny. By the unique factorization in the direct product, we must have j = 2 (otherwise
g7 n2g € (Nj)o and ny~t € (N3), which contradicts 8 = @™ # «). This proves the subclaim.

By (d) again, there exists v € Q such that (N1), # (IN1)a. Corresponding to this v there exists
0 € Q such that (N1)y = (N1)s (so (N1)y < Gy5) and G5 normalizes No (by the same argument
as in the last paragraph).

Since [(N1);] = [(M)al (by () but (N1)y # (Ni)a, we have (N)a < ((NMi)as (N1)s). Also,
((N1)as (N1),) < H = (Gap, Gys)- Since Gap and G5 normalize Ny, H < Ng(N2) and Ng(N2) <
G (because G acts transitively on the N;’s). Therefore for this {3,7,0}, H # G and the non-trivial
action of G on a minimal block system A for G’s action on the cosets of H is constructed. Let h € A
be the block containing the coset H. If this action is not faithful then the kernel is a proper normal
subgroup. Otherwise we have a (faithful) primitive action of G in which 1 # ((N1)q, (N1),) < H =
Gy < Gp.

If the action of G on Q is in Case II then the primitive action of G on A is also in Case II (since
1# (V1)a < (N1)p, = (T1)p and in the other cases (Case I and III) (771), = 1 (Note: we only have
to exclude subcases of Case 1 where there is a unique minimal normal subgroup but this relation
holds in the third subcase as well). In this case the size of the new set A = (|T1|/|(T1)n])" <
(IT3l/21(T1)al)” < (1/2)|0). O

If the action of G on €2 is in Case III then the primitive action of G on A is also in Case III, for
(N1)q projects onto Ty and (IN1)p > (N7)o implies (N7)p also projects onto 77, which shows that
it is not in Case II. It is not in the subcases of Case I with unique minimal normal subgroup since
(N1)p # 1. Since Ny =T x ... x Ty, and (N1)p > (N1)a, (N1)p, must be a product of diagonal
subgroups corresponding to a proper partition of {1,...,k} into cells of size k' < k. Hence if
I'=r/K, then ' >l and |A| = T = 1| Y1 = 10/|T)" T < |9)/2. O

Step 7:
For all o, 8 € Q2 do
L {a, B},
A < a minimal block system for G’s action on T'.
Let G = Sym(A) be this primitive action.
K « ker(m).
If K # 1 output the proper normal subgroup K.
Else if |A| < |Q]/2
output G <5 Sym(A).
Else reject {a, 8}.

Claim: Suppose the action of G on (falls into Case III with [= 1. If Step 7 is reached the
algorithm will halt there.

Proof: Let ¢; € 17 have order 2 (such a ¢; exists by the Feit-Thompson Theorem). Therefore

43

there exists a, 3 such that o # 3 and af* = . If no kernel was found in the action of G on T
then in the faithful primitive action of G on A, t; has a fixed point (say &), namely the block
containing {a,}. Therefore this action is a case II action and A = (|T1]/|(T1)a|)"- Since G’s
action on (2 is a case III action we have |Q| = |T1|""1. Subclaim: |A| < |Q]/2. Proof: Suppose
not. Therefore |T1|"/|(T1)a|” > |T1|"~'/2. This implies that |Ty| > |(Ty)n|"/2 > 2"1. Now
n= "1 > 20r=1)(r=1) > r1. Since G acts transitively on {Ti}1<i<r the kernel of this action has
index < r! < n. This contradicts the fact that G has no proper normal subgroup of index < n. [l.

Step 8:

Output “G is simple (nonabelian)”

By the above, if Step 8 is reached, the action of G must fall into Case II with » = 1. Thus
Soc(G) = T is a nonabelian simple group. Let G = Aut(T};) be the natural map (77 < G). Then
ker(m) = 1, for otherwise ker(w) = Cq(Th) # 1 = Ce(T1) NTy = 1 (since T} is nonabelian simple)
= T3 is not the unique minimal normal subgroup, which contradicts Soc(G) = T;. Hence we have
T =2 Inn(Ty) — G — Aut(Ty). Also, G = G’ (otherwise as remarked in the previous lecture, G
would have a normal subgroup of index < n). By the Schreier conjecture (which is proved due to the
classification of simple groups), Aut(71)/Inn(T}) is solvable. Hence G = T} (since G/T} is solvable
and (G/T1) = G/T1). Note that is is the only place in the algorithm where the classification of
finite simple groups is needed.

This proves the claim (in the previous lecture) that PNS-1 can be solved in polynomial time. [

44

Lecture #12 25 May 1990

An algorithm for composition factors

Problem: MAXIMAL NORMAL
Given: G = (4) < Sym(Q).

Find: A maximal normal subgroup N of G and a faithful permutation group representation for
G/N or the report “G is simple”.

Remark: We can invoke the algorithm for PNS to find a proper normal subgroup N of G, but
N may not be maximal. To find a maximal normal subgroup we can invoke PNS with input G/N
provided we have a (reasonable) permutation representation for G/N (even an infaithful one).
Neumann has an example for which G/N can be represented only on a exponential size set.

Claim: MAXIMAL NORMAL can be solved in polynomial time.
Proof:

Algorithm
N + PNS(G)
If N is the report “G is simple” then output N.
Else {N is a proper normal subgroup of G.}

Repeat
j < min{i | GON > GEHIN}.
{So G = GUIN)}

A « {cosets of GUTUN in G = GUIN}.
{1A] < [GW): UV < 10| - j}
Let m: G — Sym(A) be the action of G on A.
K + Ker(m). { So N < K}.
N «+ K.
L « PNS(G/N).
{G/N < Sym(A)}
If L is a proper normal subgroup of G/N then
M/N « L.
N« M.
Until L is the report that G/N is simple.
Output N and 7 : G/N — Sym(A).

The above algorithm runs in polynomial time since PNS does. It easy to see that it solves MAXI-
MAL NORMAL.[

Problem: COMPOSITION SERIES

Given: G = (A) < Sym(Q)

Find: A composition series G = Ny Ny ...> N = 1 and faithful representations of the quotients
Nz/N(H—l)

Claim: COMPOSITION SERIES can be solved in polynomial time.

45

Proof: Repeated application of MAXIMAL NORMAL gives an algorithm for COMPOSITION
SERIES. [

The polynomial time library for permutation groups

There is somewhat more to be said about the expanding toolkit for polynomial-time computa-
tion in permutation groups. For a summary, with references, of the status of the field as of Spring
1990, we refer the reader to [W.M. Kantor and E.M. Luks Computing in quotient groups,, Proc.
22nd ACM Symposium on Theory of Computing, May 1990, pp. 524-534]. This is available as a
Technical Report [CIS-TR-90-07] from the Department of Computer and Information Science, Uni-
versity of Oregon, Eugene, OR 97403. (The TR has a footnote updating two of the open problems
of the STOC version).

46

