Fast Monte Carlo Algorithms for Permutation Groups

Laszl6 Babail'?, Gene Cooperman?®, Larry Finkelstein®, Eugene Luks?*, and Akos Seress®

Department of Computer Science ?Department of Algebra
University of Chicago Eotvos University

Chicago, Illinois 60637 Budapest, Hungary H-1088
3College of Computer Science 4Department of Computer Science
Northeastern University University of Oregon

Boston, Mass. 02115 Eugene, Oregon 94705

’Department of Mathematics
The Ohio State University
Columbus, Ohio 43210

Mailing address: Laszl6 Babai
Department of Computer Science
University of Chicago
1100 E 58th St
Chicago II. 60637

e-mail: laci@gargoyle.uchicago.edu

Fast Monte Carlo Algorithms for Permutation Groups

Laszl6 Babai''?, Gene Cooperman?®, Larry Finkelstein®, Eugene Luks*, and Akos Seress®

Department of Computer Science ?Department of Algebra
University of Chicago Eotvos University
Chicago, Illinois 60637 Budapest, Hungary H-1088
3College of Computer Science 4Department of Computer Science
Northeastern University University of Oregon
Boston, Mass. 02115 Eugene, Oregon 94705

’Department of Mathematics
The Ohio State University
Columbus, Ohio 43210

Abstract

We introduce new, elementary Monte Carlo methods to speed up and greatly simplify the
manipulation of permutation groups (given by a list of generators). The methods are of a com-
binatorial character and use elementary group theory only. The key idea is that under certain
conditions, “random subproducts” of the generators successfully emulate truly random elements of
a group.

We achieve a nearly optimal O(n?log®n) asymptotic running time for membership testing,
where n is the size of the permutation domain. This is an improvement of two orders of magnitude
compared to known elementary algorithms and one order of magnitude compared to algorithms
which depend on heavy use of group theory.

An even greater speedup is achieved for normal closures, a key ingredient of algorithms in
computational group theory, now constructible in Monte Carlo time O(n*log®n), i.e. essentially
linear time (as a function of the input length).

As a by-product, for low rank systems of linear equations we achieve a speedup over Gaussian
elimination.

On the other hand, some of the new techniques are so general, that they allow polynomial time
implementations in the very general model of “black box groups” (group operations are performed
by an oracle). In particular, the normal closure algorithm leads to polynomial time Monte Carlo
algorithms to test solvability and nilpotence of such groups, and a number of further applications
to matrix groups.

It should be stressed that our randomized algorithms are not heuristic: the probability of error
is guaranteed not to exceed a bound ¢ > 0, prescribed by the user. The cost of this requirement is
a factor of | loge| in the running time.

1. Introduction

1.1. A brief summary

We introduce new, simple, and efficient Monte Carlo algorithms to perform basic manipulation of
permutation groups.

I Research partially supported by NSF Grant CCR-8903952.

1

The permutation groups considered are given by a list of generators. The basic task is to
transform this into a data structure called a strong generating set (SGS). Given an SGS, one can
rapidly determine the order of G and decide membership in G.

Strong generating sets were introduced by Sims [Si] in the 60’s and have been used extensively
in computational group theory. Variants of Sims’s elementary algorithm for construction of a SGS
have been known to have ©(n®) worst case behavior, where n is the cardinality of the permutation
domain. It was only with extensive references to consequences of the classification of finite simple
groups that a much more involved algorithm of Babai, Luks, and Seress reduced the worst case
running time to O~ (n*) [BLS2] where the tilde refers to a (logn)® factor.

Using randomization in a novel way, we achieve considerable further speedup in basic permu-
tation group manipulation. We are able to construct an SGS in Monte Carlo time O~ (n?), nearly
matching the running time of Gaussian elimination which is a (very) particular case. As a conse-
quence, we can determine the order of G in Monte Carlo time O~(n®) and subsequently perform
membership tests in O(n*) time per test.

The most impressive speedup is achieved for normal closures, a key ingredient of algorithms
in computational group theory, previously thought to depend on prior construction of an SGS. We
can now construct normal closures in Monte Carlo time O~(n?), i.e. essentially linear time. (The
input typically consists of O(n) permutations and thus has length O(n?).)

As a by-product, for low rank systems of linear equations we achieve a speedup over Gaussian
elimination.

On the other hand, some of the new techniques are so general, that they allow polynomial time
implementations in “black box groups” (group elements are encoded by strings of uniform length,
and the group operations are performed by an oracle). In particular, the normal closure algorithm
leads to polynomial time Monte Carlo algorithms to test solvability and nilpotence of black box
groups (given, as all our groups, by a list of generators). These results apply to matrix groups over
finite fields (since their elements are encoded automatically as strings of uniform length; the oracle
is replaced by matrix multiplication /inversion routines). Nontrivially, the results also apply to finite
matrix groups over the rationals and over algebraic number fields [BBR]. (Finiteness of such groups
can be tested in polynomial time [BBR].) The normal closure algorithm is used extensively in [BeB],
resulting in polynomial time Las Vegas algorithms to find the order and structural elements such
as a composition chain in finite matrix groups over an algebraic number fields, and to uncover a
considerable portion of the structure in matrix groups over finite fields. We should mention that
E. M. Luks [Lu] found polynomial time deterministic algorithms to test solvability and nilpotence
of matrix groups. He also found the order and many structural elements of solvable matrix groups
assuming (as does [BeB]) in the case of finite fields the tractability of certain arithmetic problems
(factoring integers of the form p* — 1 and discrete logarithm), inherent already in the abelian case.

On the other hand, no deterministic polynomial time solution of the normal closure problem
has yet been found for matrix groups.

Our algorithms are nearly optimal, as indicated, for large classes of permutation groups. For
the important subcase of groups with small (polylogarithmic size) bases, nearly linear time Monte
Carlo algorithms have been found, using entirely different methods. These are described in a
separate paper [BCFS].

1.2. Strong generators, normal closure

Given a chain G = Gg > Gy > ... > G, = 1 of subgroups of a finite group G, a strong generating
set (SGS) with respect to this chain is a set 7" C G such that T'NG; generates G; for each ¢. Sims [Si]
introduced this concept with respect to the point stabilizer subgroup chain for finite permutation
groups acting on n points. In that case G acts on the set @ = {1,...,n}, and G; is the pointwise
stabilizer of the initial segment {1,...,7} (and m < n).

2

Strong generatings sets provide the basic data structure in essentially all polynomial time
algorithms for permutation groups.

Let GG be a group given by a list of s generators. The first asymptotically analyzed variant of
Sims’s SGS algorithm [FHL] ran in time O(n® 4+ sn?). This was subsequently improved by Knuth
[Kn] and Jerrum [Je] to O(n® + sn?). Knuth’s version follows Sims’s most closely. It is also shown
in [Kn] that if G is given by a certain randomized list, then the algorithm actually requires Q(n®)
time on average.

Subsequent asymptotic improvements are most conveniently stated in the O~ (“soft-oh”) no-
tation which we define.

Notation. Let f, g be two real-valued functions over the positive integers. We say that f(n) =
O~ (g(n)) if there exists a positive constant ¢ such that for every sufficiently large n,

f(n) < g(n)(logn)°.

If f and g are functions of more than one variable, the argument of the log will be the product
of those variables, e. g.

f(n,s) < g(n, s)(log(ns))°.

The notorious n® bound was brought down by Babai, Luks and Seress [BLS2] in an O~ (n*+sn?)
algorithm which digs deeply into the normal structure of G' and requires several consequences of
the classification of finite simple groups for its analysis. This algorithm was recently improved to
O~ (sn®) ([BLS3], [BLS4]). We note that it is reasonable to assume s < n and in fact often s is
much smaller (s = 2 is a frequent case).

In the present paper we achieve considerable Monte Carlo speedups over the previously known
algorithms. (Monte Carlo algorithms will be defined in the next section.) A further advantage
of the new algorithms is that their analysis is completely elementary; and purely combinatorial in
nature.

One of the first difficulties to overcome is the growth of the number of generators for subgroups
constructed. Although any set of > 2n generators of a permutation group of degree n is redundant
[Ba2], we may not know which generators to delete. Our first result solves this problem:

Theorem 1.1. One can construct O(n) generators for a permutation group of degree n from an
initially given set of s generators in Monte Carlo time O(snlogn).

Henceforth when using the expression “we construct a subgroup”, it is understood that we
construct a list of O(n) generators for that subgroup; and, if not specified otherwise, the input
groups are also assumed to be given by lists of O(n) generators.

Here are our main results for permutation groups G < Sym(2) where |Q| = n.

Theorem 1.2.

(i) Given a group G and a subgroup H, each by a list of s generators, we construct the normal
closure of H in G in Monte Carlo time O~ (n* + ns);

(ii) Given a group G' by a list of s generators and a point z € €, we construct the stabilizer of x
in Monte Carlo time O(ksnlogn), where k is the length of the orbit of z;

(iii) Given a group G' by a list of s generators, we construct the point stabilizer chain (SGS) in
Monte Carlo time O~ (n® +ns). We can determine the order of G within the same time bound,
and set up Jerrum’s “labeled branching” data structure which supports membership tests for
G in O(n?) time per test. — The algorithm can be upgraded to Las Vegas, running in time
O(n* 4 snlogn) (no hidden log factors).

(Las Vegas algorithms are randomized algorithms that never err. See Section 1.3 for more about
this concept.)

Using Jerrum’s “labeled branching” data structure [Je] we keep the space required by these
algorithms at O~(n? + ns), i.e. linear compared to a typical input of O(n) permutations.

The O~ (n?) time bound is optimal within a polylog factor in the sense that it includes Gaussian
elimination as a very special case.

The Las Vegas upgrade is obtained by combining our Monte Carlo algorithm with the O(n*)
deterministic strong generation test of Cooperman and Finkelstein [CF1]. This might be signifi-
cant in implementations because it allows to take advantage of favorable circumstances by early
termination.

Previous polynomial-time randomized algorithms for permutation groups have been largely
limited to heuristic algorithms which were difficult to analyze. Faster base change algorithms [Bal, CFS]
were some of the first algorithms to provide a rigorous analysis for the use of uniformly distributed
random group elements. However, no method is known to generate uniform random elements of
G without first constructing a strong generating set. (A random walk method exists to construct
nearly uniformly distributed random elements in a group directly, in polynomial time [Ba3]. While
near-uniformity would suffice for our purposes, the time bounds in [Ba3] are not competitive com-
pared to those presented here.)

The main idea elaborated in the present paper is that under certain circumstances, products
of random subsets of the generators can successfully emulate truly random elements (see Section
2.2). This idea seems to have appeared first in the superfast Las Vegas handling of the symmetric
group by Babai, Luks and Seress [BLS2]. There, it is shown that O(logn) random subproducts
are likely to generate a subgroup H with orbit structure identical to G'. This yields in particular
O(logn) generators of a doubly transitive subgroup in Monte Carlo time O(|S|nlogn) assuming
G = (9) is doubly transitive. Both the number of generators thus obtained and the time required
are almost an order of magnitude smaller than the O(n) generators obtained deterministically in

time O(]5|n?).

1.3. Reliability, and spreader sets of permutations

A Monte Carlo algorithm is a randomized algorithm that may give a wrong answer or report failure
with guaranteed small probability.

We note that many heuristic randomized algorithms are known to perform well in the practice
of computational group theory. We should stress here that our bounds on the probability of
error/failure are guaranteed and are prescribed by the user.

A Las Vegas algorithm is a Monte Carlo algorithm that never gives a wrong answer. (The
term was introduced in [Bal], cf. [Joh],p. 437.)

The running time of a Monte Carlo algorithm is defined with respect to error/failure probability
1/4. The penalty for requiring the probability to be < ¢ is an increase by a factor of O(log(1/¢))
in the timing. (Run the algorithm many times and take majority vote.)

Our Monte Carlo algorithms are not Las Vegas, so we shall never be sure of the correctness
of the output. The probability of error, however, can be made less than exp(—(logn)®) for any
constant ' within the time bounds stated.

Combining our algorithm with the deterministic O(n*) time “strong generating test” of Coop-
erman and Finkelstein [CF1], we obtain an O(n*) Las Vegas SGS algorithm, which requires ele-
mentary group theory only. (Note, however, that now, an O~ (sn?) deterministic SGS algorithm
also exists; but, that algorithm invokes the classification of finite simple groups [BLS4].) [BeB] pro-
vides further examples where the Monte Carlo normal closure routine is employed in a Las Vegas
algorithm (determining the order and a composition chain in finite matrix groups over algebraic

number fileds).

It would be desirable to increase the reliability of our algorithms to exponential without the
loss of an extra order of magnitude in running time. This depends on whether or not an explicit
construction can be found to replace a set of random permutations used in the algorithm. We state
this problem below.

Let M ={1,....m}, M = MU{0,m+1}, HC M,and H=HU{0,m+1}. For z € H, let

bp(r)= min [z -yl
yeH\{xr}

(Distance to nearest neighbor.) Define 6(H) = > .5 0m(x) and spread(H) = 6(H)/m. Obviously,
0 < spread(H) < 1. We use this quantity, the spreading factor of H, to measure how evenly the

set H is spread out within M. We say that H is e-spread if spread(H) > ¢.

Definition 1.3. Let P = {my,..., 7} be a set of permutations of the set M = {1,2,...,m}. We
call P an (e, m)-spreader if for every nonempty set H C M, at least one of the sets H™ is e-spread
(j=1,...,7). The greatest such ¢ is the spreading factor of P.

Theorem 1.4. With large probability, a set of r = O(logm) random permutations is a (e, m)-
spreader, where ¢ is an absolute constant.

We shall show in Section 3 that ¢ & 1/15 can be achieved, but this result is probably not the
strongest possible. We conjecture that the spreading factor of O(log m) random permutations is
considerably better, possibly even ¢ = 1/4.

Spreaders will be a key component of some of our algorithms, including the superefficient
normal closure. The reliability of the random spreaders given by Theorem 1.4 is 1 — m~¢ for
an arbitrary constant ¢/. Because of the crucial role they play, it would be of great importance
to construct guaranteed spreaders either by way of a Las Vegas construction or by an explicit
construction, or at least to improve their reliability to exponential.

1.4. Black box groups

Some of the new algorithms are so general, they work even in the “black box group” model. In
this model, introduced in [BSz], group elements are encoded by strings of uniform length n, and
group operations are performed by an oracle (the black box). If the group G is given by the strings
representing a set of generators, then G is called a black box group. Note that the order of such a
group is |G| < 2".

The most important implementations of the black box group model are matriz groups over
finite fields and over algebraic number fields (see the comments in Section 1.1). Over finite fields,
even the membership problem is unlikely to be solvable in polynomial time since, even in the case
of 1 x 1 matrices, membership is closely related to finding discrete logarithms, a task not believed
to be solvable in polynomial time. (However, using an oracle for discrete log, a lot can be achieved
in polynomial time; cf. the comments in Sec. 1.1.)

While the rudimentary task of membership testing remains intractable, some global structural
properties of the group can be determined in Monte Carlo polynomial time, even in the general
context of black box groups.

Theorem 1.5. Let G be a black box group with elements encoded as strings of length n. Suppose
G is given by a list of s generators. Then the number of generators can be reduced to O(n) by
a Monte Carlo algorithm consisting of O(slogn) group operations. Moreover, if both G' and a
subgroup H are given by O(n) generators, then the normal closure of H in G' can be constructed
by a Monte Carlo algorithm consisting of O™ (n) group operations.

5

Corollary 1.6. Let G be as in Theorem 1.5. Then one can perform each of the following tasks in
Monte Carlo polynomial time: (a) construct the commutator subgroup; (b) decide whether or not
G is (b1) solvable; (b2) nilpotent. If G is solvable, the commutator chain can be constructed; and
if G is nilpotent, the descending central series can be constructed.

The proof of these results is a simple combination of the algorithm to reduce the number of
generators and the fast normal closure algorithm (cf. Sections 2.2 and 3). It uses the observation
that the length of a chain of subgroups of a black box group G is < n (since |G| < 27).

1.5. Pruning redundant systems of linear equations

There is a curious consequence of the generator pruning algorithm to low rank matrices. If a matrix
over a field /" has m rows and rank r then Gaussian elimination requires ©(mr) row operations to
determine the rank or to solve a system of linear equations.

If r = o(m) but r itself is not bounded, we can achieve considerable savings by first replacing the
m rows by a set of O(r) rows using reduction of generators (Theorem 2.7). With large probability,
the rows obtained will generate the same row space. The new rows are obtained as sums of subsets
of the original rows and will require O(m logr) row operations to compute. Subsequently we can
complete the work by Gaussian elimination, using O(r?) row operations.

Corollary 1.7. A system of m linear equations of rank r can be solved (or found inconsistent) by
a Monte Carlo algorithm using O(r? + mlogr) row operations.

(Note that Gaussian elimination would require O(mr) row operations.)

A “repeated doubling” trick achieves this complexity even if no a priori estimate of r is avail-

able.

2. Random subproducts

In this section, random subproducts are defined and our first technical goal, reduction of the
number of generators, is achieved. This algorithm works in general even for black box groups. The
application to low rank systems of equations stated in Section 1.5 follows immediately. As another
application, we achieve a second main goal, efficient computation of generators for a stabilizer
subgroup in a permutation group.

2.1. Estimating sums of dependent random variables

In the algorithms here and throughout the paper, progress will be measured by the sum of random
dependent (0,1)-variables with guaranteed lower bounds on their expectations, given any history of
preceding steps. In estimating the probability that sufficient progress has been made, the following
lemma will come handy. The result appears to be folklore but we have not found a convenient
reference.

Let £1,&,... be a sequence of random variables. A history for & is a condition of the form
Ui =4& = a1,..., &1 = a;—1}. We shall say that & has expectation > p under any history if
E(&|U;) > p for any history U;. We say that the sequence {{;} dominates the sequence {(;} if
& > (i (with probability 1). A Bernoulli trial with expectation p is a (0,1)-variable 7 such that
Prob(r =1) =p.

Lemma 2.1. Let 0 < p < 1. Let &,&,, ... be a sequence of random (0, 1)-variables such that each
& has expectation > p under any history. Then there exists a sequence 71,7y, ... of independent
Bernoulli trials with expectation p, dominated by &1,&s,

Proof. We use the sequence &1, ..., &; to construct the variable 7;. Given a history U; of &;,...,&_1
as above, let Prob(§; = 1|U;) = ¢. By assumption, ¢ > p. Let ny, be a Bernoulli trial with

6

expectation r = p/q. We assume that the 7y, are independent of each other and of all the ¢
collectively. Now we set ; := &;n,.

It is clear that 7; is a random (0, 1)-variable and 7; < §; (always). Moreover, E(r;|U;) =
E&|U)E(nu,) = q-(p/q) = p. It is immediate then that F(r;|V;) = p holds under any combined
history V; of the ; and the 5y, (j < i—1), and therefore the same holds under any history of the ;.
Consequently the 7; are fully independent (their distribution does not depend on their histories).
We also have E(r;) = p. [

It follows that Chernoff’s powerful bound for the sum of independent Bernoulli trials can be
applied directly to our dependent variables.

Corollary 2.2. Under the conditions of Lemma 2.1, the following inequality holds for any positive
integer t and any ¢ > 0.
i
Prob (Z &< (1- 5)pt> < e~ Pt/2,
i=1

Proof. This is what Chernoff’s bound asserts for the 7; in the place of the &;. [

2.2. Reduction of generators

Definition 2.3. A subproduct of a sequence of group elements (g1, 9a,...,¢gx) is a product of the
form ¢{'g5* -+ - g where e¢; € {0,1}. To obtain a random subproduct, select the e; independently
from the uniform distribution over {0,1}. A random subproduct of length { is obtained as follows:
first select a subsequence of length ¢ of the g; uniformly from the (]Z) possibilities; then form a
random subproduct of them (with respect to the inherited ordering). (Note that in this terminology,
a random subproduct of length (is expected to be a product of £/2 terms.)

Suppose now that G acts on the set and assume that K C 2 is not stabilized by GG. Then, as
observed in [BLS2, section 6.2], with probability > 1/2, K is not stabilized by a random subproduct
of the generators of G. The following statement is easily seen to be equivalent to this observation.

Lemma 2.4. If K is a proper subgroup of the finite group G and (¢1, g2, - . ., gx) are generators of
G, then for a random subproduct g = gy g5* - - - g%, we have Prob(g ¢ K) > 1/2.

Proof. For completeness, we adapt the proof from [BLS2, section 6.2]. Let j be the largest subscript
such that g; ¢ K. Then g = ag;jb where @ depends on e,...,e;_1 only, and b € K. Let us now
fix the values of all the e; except e;. There are two cases to consider. If @ € K then e; = 1 implies
g& K;ifag K then e; = 0 implies g ¢ K. Thus in either case, Prob(g & K) > 1/2. [

Theorem 2.5. Let G = (S) be a finite group. Let |S| = s, and let I be a known upper bound
on the length of all subgroup chains in G. Then, using O(slog L) group operations, one can with
fixed but high probability find a generating set S’ with |S'| = O(L).

Proof. Assume s > 41, or else there is nothing to do. Starting from S’ =), successively place in 5’,
¢l random subproducts each of length s/L. We claim that after this phase, with high probability,
all but L of the elements of S are in (5').

Here is a heuristic reason. If the claim were false then, for a randomly chosen g € 5, we would
have Prob(g & (S")) > L/s. So each of the ¢L random subproducts would have probability at least
a:=(1-(1-1/s)*")/2 ~ (1 —1/e)/2 ~ 0.316 of not being in the previously constructed (S').
For sufficiently large ¢, this would violate the bound L on the length of subgroup chains.

The reason why this argument is not precise is that under a condition on the outcome (such
as the condition that that we end up having many elements left out of (5')), our choices are no
longer uniform and independent.

An application of Corollary 2.2 will help make this argument precise. Let g1, g2, ... denote the
random subproducts constructed by the procedure, and let GG; denote the subgroup generated by
{g1,...,9:}. Let & be the indicator variable taking value & = 1 if either |5\ G;| < L or G;_1 is
a proper subgroup of G;; else set & = 0. Now it is clear that for every i, Prob(§; = 0| U;) < a,
where U; is a condition fixing the values of ¢1,...,g;_1 arbitrarily.

It follows that the £; satisfy the conditions of Lemma 2.1 and therefore by Corollary 2.2 we
obtain that for any constant ¢ > 1/(1 — a) = 1.462, it is exponentially likely (as a function of)
that Efﬁl & > L. But then, this inequality implies that |S \ G.r| < L, since a subgroup chain
cannot grow more than I times..

Now let us continue the description of the procedure. Our initial phase capitalized on the
intuition that initially, even relatively short random subproducts have a fair chance of increasing
the current subgroup (5').

After the initial round discussed above, we continue augmenting 5’ with subproducts of S of
increasing lengths for log I more rounds. (We can suppose that L = 2% for some integer k). Let
T; denote S’ after the ith round, so we are very likely to start with Ty satisfying |5\ (To)| < L. In
the ith round, the goal is to reduce the number d; = |\ (7})| below L/2¢. To this end, we fix a
new constant ¢/ and in the ith round add ¢’L/2¢ random subproducts of S of length 2¢='s/L.

Suppose our goal has been met in round 7 — 1: d;_; < L/2i~'. We claim that under this
condition, Prob(d; < L/2) > 1 — e~ " L/2" for some constant ¢” > 0 not depending on ¢'.

Let the random subproducts generated in the ith round be g1, g2, Set H; = (Ti_1,¢1,...,9;-1)
(the current group) and R; = S\ H; (the generators remaining outside).

Let &; denote the indicator of the event that either |R;| < L/2¢ or g; (considered as a product
of elements of ') contains ezactly one element of R;. In the former case the goal of the ¢th phase
has already been achieved; in the latter, |R;+1| = |R;| — 1. Clearly, if ngc'lg/w' £ > lg/2 then
fewer than /5 /2% elements of S are not in T;. Hence Corollary 2.2 implies that in order to prove
our claim, it is enough to give a positive constant lower estimate for Prob(§; = 1).

Let B; denote the set of those elements of S selected in order to create the random subproduct
g; (|Bj| = 2i71s/L). If L/2°=1 > |R;| > L/2° then the probability that B; contains exactly one
element of R; is

ts/L-1

L gim ,
s — | Ry E 21 s—|Rj|—k _ 1 L2 iy 1
: . X = | — - J N e — s .
|RJ|(22—13/L—1)/(22—15/L) |31 L kli[() s—k > 2(5—22—15/L) =

If B; contains a unique element of h € R; then with probability 1/2, A will occur in g;. Hence
Prob(&; = 1) > 1/(4€?).

The bounds we obtained for error probabilities for each round form a geometric progression
dominated by the last term which is an arbitrarily small constant, depending (exponentially) on
our choice of ¢/. [

An alternative algorithm uses spreaders (cf. Section 1.3) with similar efficiency (cf. Section
3.2.) In applying this result to permutation groups, we require the following lemma from [Ba2],

[CST].
Lemma 2.6. Any subgroup chain in S, has length at most 2n — 3.

Consequently, L = 2n is a valid bound for permutation groups of degree n.
When applying Theorem 2.5 to black box groups where elements are encoded by binary strings
of length n, we may use the obvious upper bound log |G| < n on the length of subgroup chains.

8

2.3. Group closure systems

The proof of Theorem 2.5 actually yields the following more general result. Let U be an arbitrary
set and ® a family of subsets of U closed under intersections, such that U € ®. We call the pair
(U, ®) a closure system. The members of ® are called closed sets; and the closure cl(.9) of a subset
S is the intersection of all closed sets containing 5. The set 5 is said to generate its closure.

We call (U, ®) a group closure system, if in addition, U is a group under a certain operation,
and all closed subsets are subgroups. (Note that not all subgroups need to be closed.)

FExamples of group closure systems abound: consider groups with any sublattice of their sub-
groups, e.g. the normal subgroups; or rings with any sublattice of their subrings, e.g. their ideals;
or vector spaces and their subspace lattice.

Theorem 2.7. Let (U, ®) be a group closure system. Assume that U is generated by a finite set
S, |S| = s, and let L be a known finite upper bound on the length of all chains of closed sets. Then,
using O(slog L) group operations, one can with fixed but high probability find a generating set 5’
with |S'| = O(L).

The proof is identical with that of Theorem 2.5. An application of this result to the subspaces
of the row space of a matrix justifies the argument given in Section 1.5. (Take L to be the rank of
the matrix.)

2.4. Schreier generators and point stabilizers

Our next task, of great importance for permutation groups, is to construct generators for subgroups.
The common technique is Schreier generators, which we now define.

Definition 2.8. A (right) transversal of the subgroup H in the group G' is a complete set of (right)
coset representatives of H in G.

Definition 2.9. Let G = (5) be a group, H a subgroup, and T a transversal of H in . For each
t€T and g € S, let t' be the unique element of T such that tg € Ht'. Then the element tgt'~' is
called a Schreier generator of H.

The total number of Schreier generators is || - |T].
Fact 2.10. The Schreier generators generate H .

See [Ha, Lemma 7.2.2] for a proof.

The difficulty with (repeatedly) using Schreier generators is in their rapidly growing number.
This obstacle is removed using Theorem 2.5: first we construct the Schreier generators; then we
reduce their number to O(L). All this takes O(|S]||T|logL) group operations, assuming we can
quickly determine ¢’ from tg (t € T, g € 5).

We apply this result to the point stabilizers in permutation groups.

Theorem 2.11. Let G = (5) < Sym(f2) be a permutation group of degree n = ||, |S| = s, and
let x € Q. Then we can find a set of O(n) generators of the stabilizer subgroup G, in Monte Carlo
time O(nsklogn) where k is the length of the G-orbit of z. The storage requirement is O(n?* + sn).

Proof. To construct a transversal of G, in GG, we consider the action of the generators of G' on the
orbit 2%. This is described by a graph which has sk (directed) edges, labeled by generators. A
coset representative corresponding to point y of this orbit can be obtained as the product of labels
along the z — y path in a spanning tree. This requires a total of O(sk + kn) time.

Now the sk Schreier generators are constructed in time O(nsk). Finally the reduction of their
number to O(n) is accomplished via Theorem 2.5 in time O(nsklogn).

9

Computing all Schreier generators at the same time requires O(skn) storage which, at a typical
application with s = ©(n),k = O(n), gives the prohibitively large @(n?). In order to avoid this
blowup, we store only the elements of the transversal for G, in G. Whenever a Schreier generator
is needed (as an element of a random subproduct in the reduction procedure of Theorem 2.5), we
compute it from the transversal and then we discard it. This modification multiplies the running
time only by a constant factor and reduces the storage requirement to O(n?) (besides the O(sn)
storage required for 5). [

It follows that we can construct the entire stabilizer chain in Monte Carlo time O(n*logn),
by repeated application of Theorem 2.11, using the trivial bound & < n.

We have thus obtained a strikingly simple SGS construction in O~(n*) Monte Carlo time. (An
analogous deterministic bound but with a few extra log factors, has previously been reached using
the classification of finite simple groups [BLS2].) Combined with the O(n?*) deterministic strong
generation test of Cooperman and Finkelstein [CF1], this Monte Carlo algorithm is upgraded to
Las Vegas without loss of efficiency.

We mention that with a slightly different application of random subproducts, one can achieve
a little better, O(n*) Las Vegas time [CF2].

3. Asymptotically very fast Monte Carlo normal closure

The normal closure of a subgroup H in a group G is the smallest normal subgroup of GG containing H .
The methods of the previous section can be used to construct the normal closure in time O(n?)
in permutation groups of degree n.
In this section we shall use spreaders (cf. Section 1.3) to achieve an even faster algorithm.

Theorem 3.1. If H < G < 5, then the normal closure of H in G can be constructed in Monte
Carlo time O(n®log* n).

Here we assume that both G’ and H are given by lists of O(n) generators. This assumption is
justified in view of Theorem 2.5 (cf. Lemma 2.6).

The key concept responsible for the speedup is random prefizes. The idea is that once we
computed a long product of generators, it seems wasteful to use it only once. Since all the prefixes
have been computed along the way, we wish to use the prefixes as well. We randomize the prefixes
in two different ways. First, we randomize the order in which the elements are multiplied together;
and then we select at random which prefix we want to use.

In order to ensure that a random prefix will indeed behave like a random subproduct in the
sense that it will have a good chance of adding something to our current subgroup, we require
that the order in which the elements are arranged spreads out the generators which are not in our
current subgroup. Since we don’t know which are these generators, instead we require that every
nonempty set be spread out, i.e. we need a spreader set of permutations (cf. Section 1.3).

3.1. Random spreaders

We use the terminology and notation introduced in Section 1.3.

Lemma 3.2. Let H be a random subset of size h # 0 of M = {1,...,m} and 1/30 < ¢ < 1/15.
Then Prob(spread(H) >) > 1 — c*, where ¢ = (15¢)'/4.

Proof. If |H| > e(m + 1) then spread(H) > |H|/(m+ 1) > ¢ with probability 1.
If 1 <h<4and h < e(m+1) then we compute the ratio g of h-element subsets a; < a3 <
-+» < ap, of M such that a; —a;41 > [e(m+1)/h] for 1 <i < h+1, with ap := 0 and ap4q := m+1.

10

For such sets H, spread(H) > hle(m+ 1)/h] > e. Introducing the notation d = [e(m + 1)/h] — 1,

H%@mmdﬂﬁzgzq:(m_w+lw)(m)>(m—h+1—w+1ﬂ)h

_ (h+1)d \" (h+1)d (ht De(m+1)

_(1 m—h+1) UM mhr ! m—h+1
h+1 1

1_(+ 1)e(m +)>1—(h—|—1)€(15/14)>1_(155)h/4'

(L—e)(m+1)

In the case 5 < h < ¢(m + 1), we consider H as the range of an injective function f from
Hy :={1,2,...,h} to M. We also define Hy := Ho U {0,h + 1} and extend f by setting f(0):=0
and f(h4+1):=m+ 1.

Let k := |h/2]. We estimate the probability of the event A(c) that there exist k distinct
elements of Hy, Q1 1y eeey O iy s G2 15 eeey @2 gy oeey Gl 15 ooy Qi fyy 2 < Ky <3 for 1 < i<, Y k; =k, such
that f(a; ;) < f(ai;+1) < flaij)+e(m+1)forall 1 <i<I,1<j<k;—1. Such k elements can

be chosen
h+1 l (h+2-1)!
(7)) G
ways, since the elements aq1,as 1, ..., a1 are from Hg \ {h + 1}; from this set, we have to choose a
k — 2l-element subset to determine those a;; which have k; = 3; finally, fixing the two subsets of
the a; 1, there are (h+2 —1)(h+1—1)---(h+ 3 — k) choices for the remaining a; ;.
Fixing the set of a; ;, we can define f by first choosing the (random) values f(a;) for 1 < <1
and then continuing with the choice of f(a; ;) for j > 2. The probability that f(a; ;4+1) falls between
fla; ;) and f(a;;)+ e(m+1)is at most ¢(m+1)/(m+1—(k—1)), hence

provcae < ("1 (, 1) 2ol (i

Since k < h/2 <e(m+1)/2< (m+1)/30,(m+1)/(m+1—Fk)>30/29. We claim that

h+1 L \(h+2-D1 (29 ot)
l k—2l)(h+2-k) 4 ’
and so Prob(A(e)) < (15¢h/2)*~".
For h < 200, (*) can be checked by computer. For larger values, we use Stirling’s formula. Note
that the sequence v27rn(n/e)”/n!, n = 0,1,... is monotone increasing with limit 1, so substituting

the appropriate v/27n(n/e)" for the factorials gives an upper estimate for the left-hand-side of ().
Using that for 1/3 <z < 1/2

(3z — 1)% 71 (1 — 22)1 727 > 47(29¢/8)“ 1,

(31 — k)3 =%(k — 21)k=2! can be estimated from below by k'4!(29¢/8)'=*. Also, (h +2 — k)'*+2=F >
e?(h/2)*2=*. Using these estimates, it is straightforward to check that () holds.

If A(c) fails then for at least & — k elements z € H, 6g(z) > ¢(m + 1). In particular, if A is
even then we choose ¢ := 2¢/h and obtain that spread(H) > (h — k)c = ¢ with probability greater
than 1 — (15¢)*=! > 1 — (15¢)"/4. Tf h is odd then we choose ¢ := 2¢/(h + 1) and obtain that
spread(H) > (h — k)c = ¢ with probability greater than 1 — (15¢h/(h + 1))*=t > 1 — (15¢h/(h +
1)=1/% > 1 — (15¢)"/4. (The last inequality is the only point in the proof where we used the
lower bound ¢ > 1/30.) [

Now we are ready to prove Theorem 1.4.

11

Theorem 3.3. Let 1/30 < ¢ < 1/15, C > 0, r > (44+4(C + 1)logm) /log(1/(15¢)), and P =
{p1,...,pr} a set of r random permutations of {1,2,...,m}. Then P is an (¢, m)-spreader with
probability at least 1 — m™C.

Proof. Let H be a nonempty subset of {1,2,...,m} and |H| = h. By Lemma 3.2, the probability
that spread(H) < e for all permutations in P is at most (15¢)""/4. Hence the probabity that not
all nonempty subsets are e-spread is at most

m

3 (7;;)(155)”/4 = (1+ (155)7’/4)m ~ 1< 2(156)4m < m=C,
h=1

where the last inequality is equivalent to the condition imposed on 7. []

3.2 Random prefixes and fast normal closure

Definition 3.4. A random prefiz of a sequence of group elements (g1, 92, ..., gx) is an instance of
a product of the first i elements, for i a random integer chosen uniformly from 1 through k.

Random prefixes provide an alternative to random subproducts. Given G = () and an (¢, |5])
spreader P, |P| = 7, the elements of P define r orderings of S. We say that ¢ is a random prefiz
of S obtained from P if g is a random prefix of S in the ordering defined by a randomly chosen
element of P.

Lemma 3.5. Let G = (5), P an (e,|S5]) spreader, |P| = r, and K < G, K # G. Moreover, let g
be a random prefix of S obtained from P. Then Prob(g ¢ K) > ¢/(2r).

Proof. let H:={s € S:s¢ K} and let a1 < az < ... < aj, denote the positions corresponding
to the elements of H in the randomly chosen permutation p € P. We also define ag := 0 and
ap+1 = |5+ 1 and let g; denote the random prefix of S corresponding to the first j elements of
p. Then, for a fixed 1 <7 < h, either g; ¢ K forall a;_1 < j <a;org; € K forall a; <j < aj4q
(it is also possible that both of these events occur). So Prob(¢g ¢ K) > spread({a4,...,a3})/2 and,
since P is an (¢, |S|)-spreader, spread({a1, ..., an}) > ¢ with probability at least 1/r.

Lemma 3.5 provides a method to reduce the number of generators of G' with roughly (up to a
logarithmic factor) the same efficiency as Theorem 2.5. Given a bound L on the length of subgroup
chains of G, a combination of Lemma 3.5 and Corollary 2.2 immediately gives that ¢Lr/¢ random
prefixes of 5 obtained from P generate G with exponentially small error.

Our main goal in this section is the fast generation of normal closures. This application is
based on the following lemma.

Lemma 3.6. Suppose that H < G but H is not a normal subgroup of G. Let G = (Sg), H = (Su),
P an (e,|S¢g|) spreader, |P| = r1, and Q an (e,|Sg|) spreader, |Q| = r2. Moreover, let g and h
be random prefixes of S and Sy, respectively, obtained from P and Q. Then Prob(h? ¢ H) >
52 /(47’17’2).
Proof. By hypothesis, K := {k € G : H* = H} # (. Hence, by Lemma 3.5, Prob(g ¢ K) >
e/(2r). If g ¢ K then X := HY ' N H # H. Thus, by Lemma 3.5, Prob(h ¢ X) > ¢/(2r,).
Combining the two probabilities, we obtain Prob(h? ¢ H) > €2 /(4ryry). [

Our main result applies to black box groups where n is the length of the strings representing
each group element. It also applies to permutation groups of degree n. In both cases, we know
that all subgroup chains have length O(n).

12

Theorem 3.7. Let G and K < G be finite groups and assume all subgroup chains in G have
length O(n) where n is a parameter. Assume further that G and K are given by generating sets
of size O(n). Then one can construct O(n) generators for the normal closure of K in G with fixed
but arbitrarily high probability using O(nlog4 n) group operations.

Proof. The algorithm for constructing a sequence T of generators of the normal closure, denoted by
(K%), is described first. Fix € > 0, say ¢ = 1/100, and construct an e-spreader P = {my,...,7,} C
Sy for some large enough value of m (m will be of the order O(nlog® n)) where r = O(logm) =
O(logn). (According to Theorem 3.3, a set of random permutations will suffice.)

Let Sk and S4 be sequences of the generators for K and G. Initially set T to Sg. Pre-compute
all 7(|T|+ |Sg|) prefixes resulting from the members of P being applied to T" and to S separately.
(We use the identity element for padding, i.e. to fill slots if m is greater than S or the current
size of T'.) Since T" will be augmented at each step, the prefixes corresponding to 7" must be stored
in balanced search trees, in the following way: the elements of T" are stored, in the given order, at
the leaves of a balanced binary tree (including those elements to be computed in the future; their
current value is the identity). Each internal node will represent the product of the elements at
the leaves in the corresponding subtree. A new element of T is inserted by replacing the identity
element (which currently occupies its leaf) by its actual value. Note that each insertion-update
costs O(log m) group operations only. We maintain one such tree for each ;.

Now select two members 7; and 7; of P at random. Take a random prefix 7 of 7™ and
conjugate it by a random prefix of ng.

By Lemma 3.6, if (T') # (K<) then, with probability at least ¢2/(4r?), the new conjugate ¢
will belong to (K&)\ (T).

Append ¢ to T" and update each of the r trees. (One would like to add the conjugate to T
only if it is not already in (7"), but this cannot be efficiently tested.)

Stop when Cnr? conjugates have been added to 7. Finally reduce the number of generators
of (T') to O(n).

The usual application of Corollary 2.2 shows correctness. The timing is dominated by the time
it takes to update the dynamic trees. There will be O(nr?) updates, each at the cost of O(logn)
group operations on each of r trees. Noting that r = O(logn), we obtain the stated time bound. [

4. Point Stabilizer Chains in Monte Carlo O(n?log* n)

4.1. The result

Finally, enough machinery has been developed to present the faster algorithm for constructing point
stabilizer sequences, and solving the group membership problem.

Theorem 4.1. Given O(n) generators of a finite permutation group GG acting on n points, one can
construct a strong generating set of size O(nlogn) for G'in O(n®log* n) Monte Carlo time. The
space requirement of the procedure is O(n*logn).

The result, a strong generating set U, is returned as a sequence corresponding to a chain of
subgroups G = Gy > G1 > ... > G, = 1 of length k£ < 2n such that U;?:iU[j] is a set of generators
for G;.

It is possible that U is not a strong generating set of G for any subgroup chain consisting
of pointwise set stabilizers in a permutation action of G; in any case, no such action will be
evident from the algorithm. Each member G; of the chain will act on its own domain 2;, where
Q=0 C---CQand || < 2n.

However, U will enable us to generate uniformly distributed random elements of G in O(n?)
time per element and so, by a method of Cooperman, Finkelstein, Sarawagi [CFS], we can construct

13

an SGS V for the pointwise stabilizer subgroup chain on the original permutation domain Q in
O(nlog? |G|) = O(n®log®n) time, justifying the title of this section. This new SGS supports
membership testing in O(n? logn) time and requires O(n? log n) space. Furthermore, in O(n*logn)
time, it is possible to construct a labelled branching from V on , supporting membership testing
in O(n?) time and requiring O(n?*) space by Cooperman and Finkelstein [CF1].

In contrast to the previously fastest published algorithm [BLS2], this new algorithm does not
require results from the classification of finite simple groups. The algorithm does run faster if
appeal is made to the result from the classification that only 5, and A, are 6-transitive, and so
the algorithm is presented in a form which takes advantage of that result. An old result [Wi]
by Wielandt shows that among permutation groups of degree n, only 5, and A, are 3logn-
transitive. A weaker result by Jordan [Jo] states that only S, and A, are ¢-tramsitive where
t = clog® n/loglogn. (The algorithmic foundation for the routine Fast_Giant below is provided
by a simple proof of the last result by Babai and Seress [BS].) Using one of these weaker results on
transitivity adds a factor of logn and log2 n, respectively, to the running time.

4.2. A lemma on primitive groups

First we recall certain concepts from permutation groups, which form the basis of a divide-and-
conquer strategy. The point stabilizer subgroup (defined in the first section) stabilizing z is denoted
G,. The pointwise set stabilizer subgroup containing all group elements fixing {aq,...,a;} is
denoted Gy, . o;3- For G acting on 1, the orbit O C Q of z € Q under G is denoted ¢ =
{z9: g € G}. A trivial orbit consists of a single point. G is transitive on Q (or just transitive, where
the action is clear) if € contains only one orbit under G. G is intransitive otherwise. G is doubly
transitive if G acts transitively on the set of n(n — 1) ordered pairs of distinct elements from . For
U C Q such that ¥¢ = ¥, we denote by GV the set of permutations of G restricted to mappings
on ¥ alone. If there exists a set B C Q with |B| > 2 and B # Q such that for each g € G either
B9 = Bor BSN B =, then B is a block of imprimitivity of G. G is imprimitive if it is transitive
and has a block of imprimitivity. If G is transitive and not imprimitive, then it is primitive. A
primitive group which is not doubly transitive is called uniprimitive.

One of the elements of our strategy is an “anti-greedy” choice of the point to be stabilized in
the current permutation domain: this point will always be selected from the smallest non-trivial
orbit under the current group action. This choice is motivated by Theorem 2.11 which says that
the cost of computing the stabilizer of a point is proportional to the length of its orbit.

To ensure that this strategy is indeed effective, we need to bound the total length of all orbits
visited. These orbits are by no means disjoint, yet we require an O(nlogn) bound on their total
length (Lemma 4.4). The bound will be based on the following combinatorial lemma for primitive
groups, of interest in its own right.

Lemma 4.2. Let G be a primitive permutation group. Assume the stabilizer G, has an orbit of
length d > 2. Then every nontrivial subgroup of G, has a non-trivial orbit of length < d.

Proof. Let A C denote an orbit of G, of length d. (£ is the permutation domain.) Consider
the orbital graph X corresponding to A. X is a directed graph with vertex set 2 and edge set
{(z%,y9) : g € G,y € A}. Note that in X, every vertex has out-degree d. Clearly G acts as
automorphisms of X. Since G is primitive, X must be strongly connected (directed paths exist
between any pair of vertices). Indeed, otherwise the strongly connected components would be
blocks of imprimitivity; therefore they would be singletons, ruling out directed cycles. But every
vertex has out-degree d > 0, therefore directed cycles exist.

If H < G is nontrivial then there exists a point not fixed by H. Let us consider a directed
path z = zg,z1,... connecting z to such a point. Let z; be the first point on this path, not fixed by
H (i > 1). Then all points in the orbit z are out-neighbors of z;_; in X (since 2, = {z;_1}). [

14

4.3 The strategy

Roughly speaking, the algorithm always tries to compute generators for the stabilizer of a point
in the smallest orbit of the group at hand and add the transversal of the point stabilizer to U,
the SGS to be constructed. Moreover, it tries to work in primitive groups; hence, if the action on
the smallest orbit is imprimitive then it adds blocks of imprimitivity to the permutation domain,
and first computes the pointwise stabilizer of these blocks. The last consideration is that if the
primitive group at hand is a giant (symmetric or alternating group) then, counting transitivity, the
algorithm recognizes it and switches to a routine designed especially to handle the giants.

The algorithm will proceed in phases. Initially we set the current group to Gy = G and the
current domain to g = €. Phase 7 begins with possibly augmenting the domain to ; D £;_; and
constructing a proper subgroup G; < G;_1.

As discussed above, there will be two types of phases: point-stabilizing phases and giant-
elimination phases. In the former case, GG; is the stabilizer of a point in €; from an orbit with
primitive G;_j-action. In the latter case, G; is the pointwise stabilizer of the orbit @ on which
(G;_1 acts as a giant.

Along the way, the algorithm constructs the set U of strong generators. Initially, U = . In
a point-stabilizing phase, a transversal of GG;_1 in G; is added to U. In a giant-elimination phase
on orbit O, an SGS for GY ;| is added to U, encoded in a labelled branching [Je] using |O| — 1
permutations (in order to satisfy the space constraints).

Definition 4.3. A group element g is sifted through a subgroup chain G = Gy > Gy --- > Gy
with residue h if g can be factored as g = huy - - -u; where u; is a (right) coset representative of G;

in G;_1 and h € Gj.

Labelled branchings allow to sift group elements, test membership, and generate random group
elements as fast as complete coset tables. For completeness, we recall their definition in the case
of giants. In the case of Sym(0), O = {21,232, ..., 2}, the labelled branching consists of m — 1
permutations py, pa, ..., Pm—1 such that for all 1 < k < m — 1, p; fixes z1,...,25_1 and wik = Tk41-
For Alt(Q), the labelled branching contains pi, ps, ..., pm—2 as above while p,,_1 fixes z1,...,Zm_3
and 2775 = 2.

Since we always move to proper subgroups, the length of our subgroup chain will be less than
2n (Lemma 2.6).

Our fast normal closure routine plays a critical role in constructing the pointwise stabilizer of
an orbit O with giant action.

We say that a set T" C K is a set of normal generators for the group K if K is the normal
closure of T.

Normal generators for the pointwise stabilizer of an orbit with giant action come from two
sources: the residues of sifting the generators of GG;_; through the stabilizer chain of O (accom-
plished via the labeled branching representation of an SGS for the giant action on O); and the
defining relations of the giant (see [BLS2, Lemma 7.2]).

4.4. The procedure

Throughout the algorithm, the points of the permutation domain are marked by integers, denoting
the priority, which ones we want to stabilize first. Initially, each point has mark 0; if G is not
transitive then the points of the smallest orbit get mark 1; if the action on this orbit is not
primitive, a system of blocks of imprimitivity is added with mark 2; etc. Higher mark mean higher
priority.

The main routine is SGS(H, ¥) where H is a group acting on the set ¥. In the notation of the
previous subsections, H is G; and V is the corresponding domain 2; with the fixed points deleted.

15

The output is a strong generating set. Descriptions of the subsidiary routines are deferred for
later.

Given a group G acting on , one initially sets the global variable n to |Q|, U = 0, and
transitivity to 0. Groups always will be given by O(n) generators (by Theorem 2.5, we may
suppose that GG is given this way). We set the mark m(z) = 0 for all z € ©. SGS(G,Q) is
then called. All internal calculations on permutations are carried out on all n points and possibly
additional points (such as points corresponding to the action on blocks).

Procedure SGS
Input: (H,¥) where H is a group acting on V.
Global variables: n, transitivity.
Output: strong generating set in the form of the sequence U described above.
If ¥ =0 then STOP.
mark — max{m(z):z € ¥}
O — {z € ¥ :m(z) = mark}
CASE:
HO is intransitive:
transitivity « 0
Let (7 — smallest orbit of H®
For z € Oy, m(z) «— mark + 1
Call SGS(H, V)
H is imprimitive:
Let B — Blocks(H,Q)
v —BUVY
For z € B, m(z) — mark + 1
Call SGS(H, V)
Else: [H© is primitive]
transitivity = transitivity 41
If transitivity > 6 then
[HC is Sym(O) or Alt(0)]
Call Fast_Giant(H,O, V)
[It adds an SGS of HC to U]
T < Normal_Generators(H,0, ¥\ O)
H — Normal _Closure(7, H,¥\ O)
Call SGS(H, ¥\ O)
Else
z — first(O)
H, — Point_Stab(H,z,0, V)
U «— UU (transversal of H, in H)
Call SGS(H, ¥ \ {z})

The subsidiary routines are now described and timings given. With the descriptions of the
subsidiary routines, it will be clear that the algorithm is correct. Descriptions of the routines are
given first, followed by a proof of timing for Theorem 4.1.

In previous sections, timings were first calculated in terms of the number of group operations;
the actual timing (in terms of pointer manipulations) being n-times the result. Here we deviate
from this method and report directly the number of pointer manipulations, in order to make the
accounting compatible with the cost of the graph theoretic subroutines.

Recall that n refers to the the full set of points on which G originally acts, while we may
consider the action of a subgroup H (or its homomorphic image) acting non-trivially on a set ¥. In

16

all cases, we assume that H is defined by O(n) generators Gen(H). Further, we can always assume

that |¥| < 2n, since adding the action on blocks of imprimitivity is the only way in which ¥ can

grow. Doing so, adds a new orbit with at most half as many points as the original orbit on which
the group was acting.

Blocks(H,O): Returns blocks of imprimitivity for H acting on . This assumes that H is transitive
on O. It can be done in time O(|Gen(H)||O]*) < O(n|O|?) [At].

Point Stab(H,z, 0, ¥): This returns O(n) generators for H, in O(]O|n* log n) Monte Carlo time,
by appeal to Theorem 2.11. In that process, a transversal for H,, in H is also constructed.
Fast_Giant(H, O, ¥): If the restriction of H to act on @, H®, is either Sym(Q) or Alt(O) then the
routine adds a set of size O(|0|) to U whose restriction to O is a strong generating set for H©°.
Given O(n) generators of H, one can find O(log |O|) group elements of H which generate H©
in their action on O in time O(n?log(|0|), by a technique using random subproducts described
in [BLS2 (section 6.2)]. Then O(|O|log|O|) Schreier generators for a point stabilizer subgroup
of H® can be constructed in time O(n|O|log|O|). Since the point stabilizer subgroup of H°
must also be symmetric or alternating, continuing the same method one can alternately find
reduced generating sets of size O(log|O|) and point stabilizers. Altogether, an SGS for H® is
constructed in O(n|O|?log? |O|) time such that each point stabilizer is generated by O(log |O|)
elements. In O(n|O|?) further time, the two generators of H® needed for the presentation of
H® in [BLS2(section 7)] and a labelled branching constructed from these two generators can
be obtained. We add this labelled branching to U/. Note that since |O] = O(n), the total time

requirement of this subroutine is O(n?|0|log? |O)).

Normal Generators(H, O,V — O): Group elements 7’ (called normal generators) are constructed
whose action on O is trivial, such that (T'H) = HY~9. TFor a general description, see
[BLS2(Lemma 7.1)]. In this setting, the routine is invoked only when O is an orbit on which #
acts as the symmetric or alternating group. Having constructed a point stabilizer chain for the
points of O, all generators of H are sifted through the point stabilizer chain in time O(n?|Q)),
until their residue acts trivially on (. The residues are added to the set T. Then, a presen-
tation for H of size |O| is added to T and the conjugates {h? : g € Gen(H),h € Gen(H?)}
are sifted as in [BLS2]. (Note that H® has only two generators.) Thus the overall timing to
create the normal generators will be O(n?|Q)).

Normal Closure(T, H, ¥\ @): The normal closure can be executed in time O(n? log* n) by Theo-
rem 3.1.

4.5 Timing
We estimate the total time requirement of calls to these subroutines during the execution of the
algorithm.

First we observe that |;]| < 2n for all 7. Indeed, Q forms the set of leaves of a forest defined
in an obvious manner with nodes corresponding to certain blocks of imprimitivity. All auxiliary
points added to Q are internal nodes of this forest with at least two children each.

Next we claim that > |O| < 2n, where O runs over orbits of intermediate groups H such
that Fast_Giant(H,O, V) is called. This is true since since these orbits are disjoint. We obtain
immediately that calls to Fast_Giant add O(n) permutations to U and the total time requirement
for calls of Fast_Giant, Normal Generators, Normal Closure is O(n®log® n).

To estimate the total cost, we need the following lemma.

Lemma 4.4. The total length of all orbits selected during the procedure is O(nlogn).

Proof. As we have seen in the previous paragraph, the total length of orbits in calls of Fast_Giant
is O(n). Hence, it is enough to estimate the total length of orbits in calls of Point_Stab. This is
where Lemma 4.2 will be required.

17

Fach recursive call of Point_Stab has its “current orbit” O; let us call the points of O active
in that phase. We claim that each point is active in O(logn) phases only. Since the total number of
points is < 2n, the conclusion follows by counting the incidences of current orbits and their (active)
points in two ways.

Let z be a point (original or auxiliary). Let Oy D Oy D --- D O, be the sequence of current
orbits containing z and let n; = |O,].

We claim that either n;4; = n; — 1 or n;31 < n;/2, and that the former cannot occur more
than five times in a row. Clearly, this implies the claimed O(logn) bound.

The former case (minimum descent) occurs exactly when the action on the action on the
current orbit is doubly transitive and its stabilizer is primitive. If this continues more than five
times in a row, the orbit experiences 6-transitive action, hence a giant, and the next recursive call
terminates the orbit.

The action on the current orbit is always primitive. Suppose now that it is not doubly transitive.
Then the stabilizer is intransitive, therefore at least one of its orbits has size d < (n; — 1)/2. But
then, by Lemma 4.2, whenever z becomes active again, the smallest orbit has size < d, therefore
g1 < TLZ/Q

Suppose now that the current orbit is doubly transitive but its stabilizer is imprimitive. Then
we switch to a new orbit consisiting of auxiliary points representing blocks of imprimitivity of O,
and we shall have fixed all of those points before making z active again. This means O, 41 is
included in a block of imprimitivity of O,, hence n;y; < n;/2. 0

Lemma 4.4 and Theorem 2.11 immediately imply that the total cost of calls of Point_Stab is
O(3n*|O]logn) = O(n®log? n). Lemma 4.4 also implies that the number of transversal elements
added to U is O(nlogn). As a third application of Lemma 4.4, we observe that the total cost of
calls of Blocks is O(Y_ n|O|?) = O(n®logn). This concludes the proof of Theorem 4.1.

5. Open problem

The following problem, mentioned in Section 1.3, is of considerable interest because it affects the
reliability of our most efficient algorithms.

Problem. Construct an ezplicit set P, of O(logm) permutations of a set of m elements such that
P,, is a (¢, m)-spreader for some constant ¢ > 0.

(See Section 1.3 for the definition of spreader.)

References.

[At] M.D. Atkinson, “An algorithm for finding the blocks of a permutation group”, Math. Comp.
29 (1975), pp. 911-913.
[Bal] L. Babai, “Monte Carlo algorithms in graph isomorphism testing”, Université de Montréal
Tech. Report D.M.S. 79-10, 1979.
[Ba2] L. Babai, “On the length of chains of subgroups in the symmetric group”, Comm. in Algebra 14
(1986), pp. 1729-1736.
[Ba3] L. Babai, “Local expansion of vertex-transitive graphs and random generation in finite groups”,
Proc. 23rd ACM STOC, 1991, pp. 164-174.
[BBR] L. Babai, R. Beals, and D. Rockmore, “Deciding finiteness of matrix groups in deterministic
polynomial time”, Proc. ISSAC’93 (Internat. Symp. on Symbolic and Algebraic Computation),
Kiev 1993, ACM Press 1993, pp.117-126.
[BCFS] L. Babai, G. Cooperman, L. Finkelstein, and A. Seress, “Nearly linear time algorithms for
permutation groups with a small base”, Proc. of the 1991 International Symposium on Symbolic
and Algebraic Computation (ISSAC ’91), Bonn, pp. 200-209, 1991.

18

[BLS1]

[BLS2]

[BLS3]

[BLS4]
[BS]
[BSz]
[BeB]
[CST]
[Ch]
[CF1]

[CF2]

[CES]

L. Babai, E. Luks, and A. Seress, “Permutation groups in NC”, Proc. 19 acm STOC(1987),
pp- 409-420.

L. Babai, E. Luks, and A. Seress, “Fast management of permutation groups”, Proc. 28!h IEEE
FOCS (1988), pp. 272-282.

L. Babai, E. M. Luks, and A. Seress, “Computing composition series in primitive groups”, In:
“Groups and Computation”, (L. Finkelstein and W. M. Kantor, eds.), DIMACS Ser. in Discr.
Math. and Theor. Comp. Sci. Vol 11, A.M.S. 1993, pp. 1-16.

L. Babai, E. Luks, and A. Seress, “Fast Deterministic Management of Permutation Groups”,
in preparation.

L. Babai and A. Seress, “On the degree of transitivity of permutation groups: a short proof”,
J. Combinatorial Theory: Series A 45(2) (1987), pp. 310-315.

L. Babai and E. Szemerédi, “On the complexity of matrix group problems 1”7, 25th IEFE FOCS,
Palm Beach FL (1984), pp. 229-240.

R. Beals and L. Babai, “Las Vegas algorithms for matrix groups”, Proc. 25th ACM STOC,
1993, Palo Alto CA, pp. 427-436.

P.J. Cameron, R. Solomon, and A. Turull, “Chains of subgroups in symmetric groups”, J. of
Algebra 127 (1989), pp. 340-352.

H. Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations”, Annals of Math. Statistics 23, (1952), pp. 493-507.

G. Cooperman and L. Finkelstein, “A strong generating test and short presentations for per-
mutation groups”, J. Symbolic Computation 12 (1991), pp. 475-497.

G. Cooperman and L. Finkelstein, “Combinatorial tools for computational group theory”, Pro-
ceedings of DIMACS Workshop on Groups and Computation (L. Finkelstein and W.M. Kantor,
eds.), DIMACS-AMS 11, AMS, Providence, RI. 1993, pp. 53-86,

G. Cooperman and L. Finkelstein, “A randomized base change algorithm for permutation
groups”, J. Symbolic Computation, to appear. (See preliminary version: G. Cooperman, L.
Finkelstein, and N. Sarawagi, “A random base change algorithm for permutation groups”,
Proc. of the 1990 Internat. Symp. on Symbolic and Algebraic Manipulation (ISSAC-90), ACM
Press and Addison-Wesley, 1990.)

M. Furst, J. Hopcroft, and E. Luks, “Polynomial time algorithms for permutation groups”,
Proc. 215t IEEE FOCS (1980), pp. 36-41.

M. Hall, Jr., The Theory of Groups, Macmillan, New York, 1959.

M. Jerrum, “A compact representation for permutation groups”, J. Algorithms 7 (1986),
pp- 60-78.

D. S. Johnson, “The NP-completeness column”, J. Algorithms 5 (1984), pp. 433-447.

C. Jordan, “Nouvelles recherches sur la limite de transitivité des groupes non alternés”, Bull.
Soc. Math. France 1 (1873), pp. 35-60.

D.E. Knuth, “Notes on efficient representation of perm groups” Combinatorica 11 (1991),
pp. 57-68 (preliminary version circulated since 1981).

E. M. Luks, “Computing in solvable matrix groups”, In: 33rd IEEE FOCS, IEEE Comp. Soc
1992, pp. 111-120.

C.C. Sims, “Computation with permutation groups”, in Proc. Second Symposium on Symbolic
and Algebraic Manipulation, edited by S.R. Petrick, ACM, New York, 1971.

H. Wielandt, “Abschatzungen fiir den Grad einer Permutationsgruppe von vorgeschriebenem
Transitivitdtsgrad”, Dissertation, Berlin, 1934. Schriften Math. Seminars Inst. Angew. Math.
Univ. Berlin 2 (1934), pp. 151-174.

file cooperman.dir/stoc91.dir/journal.tex

19

