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Suppose we are given a set of generators for a group G of permutations of a colored set A. 
The color automorphism problem for G involves finding generators for the subgroup of G 
which stabilizes the color classes. It is shown that testing isomorphism of graphs of bounded 
valance is polynomial-time reducible to the color automorphism problem for groups with 
composition factors of bounded order. The algorithm for the latter problem involves three 
divide-and-conquer maneuvers. The problem is solved sequentially on the G-orbits. An orbit is 
broken into a minimal system of imprimitivity blocks. At that point, the hypothesis on G 
guarantees the presence of a subgroup P of “small” index which acts a p-group on the blocks. 
Divide-and-conquer is then used on the group, trading the problem on G for a small number 
of similar problems on P. In the trivalent case p = 2, P = G and the analysis requires only 
elementary notions. For higher valence, the justification requires some new observations about 
primitive permutation groups. 

INTRODUCTION 

It is well known that testing isomorphism of graphs is polynomial-time reducible to 
the problem of finding a set of generators for the group, Am(X), of automorphisms of 
a graphX. We recall the reduction: 

We may suppose that we wish to compare two connected graphs X, , X,. Form the 
disjoint union X=,X, U X,. Then X, and X, are isomorphic if and only if an 
automorphism of X switches the two connected components. Furthermore, if such 
automorphisms of X exist, at least one must turn up in any set of generators of 
Aut(X). 

The problem of determining generators for Aut(X) is, in turn, reducible in several 
ways to inherently algebraic questions. In this paper, we shall deal with the 

Color Automorphism Problem. Input: A colored set A and generators for a group 
G of permutations of A. Find: Generators for the subgroup consisting of the color 
preserving maps. 

Computing Aut(X) is a special case: Let G be the group of all permutations of the 
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vertex set 7 ‘(X) but view G as acting on the set A of unordered pairs of vertices; 
color A with two colors to delimit edges and non-edges of X; then Aut(X) is the 
color-preserving subgroup. Notice that, for any graph X, we arrive at a color 
automorphism problem with G a complete symmetric group S, (acting on an 
( ; )element set). We shall see that, for special classes of graphs, there are independent 
reductions to color automorphism problems involving other groups. In fact, it is 
crucial to the timing of our fundamental algorithm that the group have a property 
(specifically, small composition factors) not shared by S,. 

Though such reductions of the problem have long been available, few papers on 
isomorphism testing have utilized, in a substantive way, the machinery, both 
theoretical and computational, of permutation groups. Thus, an important 
breakthrough occurs in the recent work of Babai 121. He considered vertex-colored 
graphs with bounded color classes and described a polynomial-time probabilistic 
(R n coR) algorithm for computing Aut(X). The algorithm uses, in a significant 
manner, the fact that Aut(X) is contained in a given direct product of small groups. 
Babai’s success inspired a closer look at permutation group algorithms and their 
relation to graph isomorphism by Furst et al. [8,9]. In particular, it was shown that 
Babai’s methods could be made deterministic with no essential loss of efficiency. In 
fact, similar algorithms already lay (unanalyzed) in the computational-group-theory 
literature. 

We remark that soon after Babai’s announcement, Hoffman Ill ] described an 
algorithm for “cone graphs.” The graphs were designed to admit a recursive 
application of Babai’s methods and it was claimed that the isomorphism test required 
only ~2”~’ time. This, in turn, led to an announcement of an nlog” algorithm for 
trivalent graphs by Furst et al. [8 1. The latter report reduced trivalent-graph 
isomorphism to cone-graph isomorphism using the natural binary tree structure of 
Sylow 2-subgroups of S,. Though the reduction remains intact, there seems to be a 
gap in Hoffman’s analysis which would invalidate the n’“’ ’ claim for the algorithm in 
18 1 as well. 

The present paper begins a deeper probe into the underlying group theory. We 
present some new algebra as well as some new algorithms. Isomorphism testing of 
graphs of valence <t is reduced to the color automorphism problem for groups whose 
composition factors are subgroups of S,- , . For this class of groups two naive 
(though previously overlooked) divide-and-conquer tricks are introduced on the 
underlying set. It is then an elementary exercise to exhibit a polynomial time-bound 
in the trivalent case. The key fact is that the divide-and-conquer only gets “hung up” 
when it is faced with a primitive group. However, in the trivalent case, the groups are 
2-groups and primitive 2-groups can only have order 2. Well, more generally, 
primitive p-groups can only have order p. This implies the color automorphism 
algorithm is actually uniformly efficient over p-groups. That phenomenon is exploited 
to speed up the process for higher valence. Although the primitive groups that arise 
are not p-groups, they are almost so. To be precise, we show that they have p- 
subgroups of polynomial index and that such subgroups can be located in polynomial 
time. These observations form the core of the extension to higher valence. Thus. a 
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third divide-and-conquer strategem is introduced, breaking the problem into a small 
number of similar problems for p-groups. 

We introduce terminology and recall some basic facts and algorithms in Section 1. 
In Section 2, we describe the algorithm as it applies to trivalent graphs. The extension 
to graphs of bounded valence is described in Section 3. The group-theoretic 
justification of the procedure is presented in subsection 3.2. We conclude in Section 4 
with some remarks concerning extensions, other applications, and open problems. 

Finally, we remark that, as is clear to those familiar with the literature, the major 
result right now is that this problem is in P. Thus, we avoid the unnecessary 
complications that would result from an attempt to justify precise upper bounds. In 
fact, we do not always present our “best” algorithms (see 4.1). 

1. PRELIMINARIES 

1.1. Notations and Background 

For a graph X, ir ‘(X) denotes the set of vertices, 8’(X) the set of edges, (u, w) 
denotes an edge joining vertices v and w, Aut(X) denotes the group of automorphisms 
of X, Aut,(X) the subgroup fixing the edge e. 

The group of permutations of an n-element set is denoted by S, or, if the set 
requires explication, by Sym(A). A subset G of Sym(A) is said to stabilize B GA if 
a(B) = B for (T E G. In some instances we refer to the action of a group G on a set B; 
that is, we suppose only that there is a homomorphism G-+ Sym(B). Such actions 
arise quite naturally in this paper since, given G c Sym(A), we shall often consider 
the induced action on G-stable subsets of A and on collections of subsets of A. The 
action of G on B is called faithful if the homomorphism G + Sym(B) is injective. If G 
acts on B and b E B, the G-orbit of b is the set {u(b) 1 u E G); we say G acts tran- 
sitively on B if B is a G-orbit. Let G be a group acting transitively on a set A. A G- 
block is a subset B of A, B # 0 or A, such that, for all c, r E G, o(B) = s(B) or 
a(B) n t(B) = 0. (We depart from tradition in not insisting that IB 1 > 1.) If B is a G- 
block we call the collection (u(B) 1 u E G) a G-block system in A. The group G then 
acts transitively on the blocks of the system. We say that G acts primitively on A (or 
if G s Sym(A) we call G a primitive group) if there are no G-blocks of size > 1. A G- 
block system is said to be minimal if G acts primitively on the blocks. (Note: It is the 
number of blocks that is minimal.) The number of blocks in a minimal G-block 
system is not, in general, uniquely determined. However, one knows 

LEMMA 1.1. Let P be a transitive p-subgroup of Sym(A) with IA 1 > 1. Then any 
minimal p-block system consists of exactly p blocks. Furthermore, the subgroup P’ 
which stabilizes all of the blocks has index p in P. 

Proof: The quotient P/P’ is a primitive p-group (acting on the blocks) and so the 
order of P/P’ = the number of blocks = p [ 10, p. 661. # 
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For further background on permutation groups, we refer the reader to ] 121 or 126 ]. 
If @ is a subset of the group G, (@) denotes the subgroup of G generated by @. If 

H is a subgroup of G then [G : H] denotes the index of H in G. We denote the 
identity element of a group and the trivial subgroup it constitutes by 1. We write 
N a G if N is a normal subgroup of G. A composition series for a group G is a chain 
of subgroups of the form 

l=Gma . . . a G2 aG' a G'=G. 

in which the quotients G’/G’+’ are simple groups. By the Jordan-Holder Theorem 
] 10, 12) the collection of quotient groups is independent of the choice of composition 
series. The groups in this collection are called the composition factors of G. 

1.2. Some Basic Algorithms 

Since any group G has a generating set of cardinality log /G/ or less, subgroups of 
S, can be specified in space which is polynomial in n. The succinctness of such 
presentations raises the issue of whether fundamental questions about the group can 
be answered in polynomial time. The quest for eflcient techniques for handling large 
permutation groups has, of course, a long history (see 1241). Still, complexity 
analyses of the algorithms have only recently appeared. In 191, the author, jointly 
with Furst and Hopcroft, demonstrated that several basic computational problems 
have polynomial-time solutions. The basic tool (the subgroup chain (G,}), however, is 
apparently due to Sims [23,24] and has been in use for some time. We extract from 
] 9 ] the following 

LEMMA 1.2 [Furst-Hopcroft-Luks]. Given a set of generators for a subgroup G 
of S, one can determine in polynomial-time 

(i) the order of G; 
(ii) whether a given permutation o is in G; 

(iii) generators for any subgroup of G which is known to have polynomially 
bounded index in G and for which a polynomial-time membership test is advailable. 

For the reader’s convenience we review the algorithms for Lemma 1.2. Suppose G 
is a subgroup of Sym(A), where A = {a, ,..., a,}. Denote by Gi the subgroup of G 
which fixes all of the points in {a, ,..., ai}. Thus we have a chain of subgroups 

l=G,p,c... G G, G Go = G. 

The algorithm for Lemma 1.2(i) involves a simultaneous construction of complete 
sets of coset representatives, Ci, for Gi modulo Gi+ , , 0 < i < n - 2. Then (G] is the 
product ( Co / . ( C, ] . . . ] C, _ z ]. The building block in this construction is the following 
subroutine. The input is an element a E G. The lists Ci contain (not necessarily 
complete) sets of left coset representatives for Gi modulo Gi+ , . 
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procedure Filter (a) 
fori=Ountiln-2do 

begin 
ify-‘aEGi+,forsomeyECi 

thenacy-‘a 
else add a to Ci ; return 

end 
return 

Thus the subroutine searches for a representative of the coset of a modulo G, in the 
list C,. If it is not found, then a represents a previously undiscovered coset and it is 
added to the list. If it is found in the guise of y then y-la is in G, and its class 
modulo G, is sought in C, , etc. Since, for u E Gi, membership in Gi+ , is testable in 
constant time, the procedure requires only polynomial time. Observe that the result of 
calling Filter for a E G is that (the original) a is in C,C, . .. C,_,. This holds 
whether a caused an increase in some Ci or whether it “survived” the filtration. 

The algorithm for Lemma 1.2(i) is now easily stated: 

(1) Initialize Ci t ( 1 } for all i. 
(2) Filter the set of generators of G. 
(3) Filter the sets CiCj with i > j. 

Of course, calls to the subroutine may result in an increase in some Ci, thus 
demanding more runs of (3). However, we know a priori that, at any stage, lCij < 
[G, : Gi+ ,] < n - i. Thus the process terminates in polynomial time. The result of (2) 
is that the original generating set is contained in C,C, ..a C,-,. The actual outcome 
of (3), given (I), is that CiCjcCjCj+, ... C,_,. These facts can be used to prove 
[9] that G= C,C, ‘a. C,_,. That Ci represents Gi modulo Gi+, is then immediate. 

Given Lemma 1.2(i), an algorithm for Lemma 1.2(ii) is an immediate consequence 
of the observation: u E (@) if and only if I(@, a)/ = I(@ Digging a little deeper, we 
observe that this membership test might be implemented by a construction of the lists 
{Ci} for (QJ) followed by the call Filter (0). Then u is in G if and only if it survives 
the filtration (i.e., it doesn’t force an increase in some Ci). 

For Lemma 1.2(iii), we alter the group chain to 

l=H,-,s... sH,sH,cHcG 

and apply the same algorithm to generate complete sets of coset representatives. Note 
that the polynomial index of H in G and the requirement that membership in H be 
polynomially decidable guarantees again that the entire process takes only 
polynomial time. Ignoring the first list, namely the representatives of G modulo H, 
the remaining lists comprise a set of generators for H. (Another description of the 
essence of this algorithm can be modeled after the proof of Proposition 3.10.) 

Given generators for G c Sym(A) it is an easy matter to determine the G-orbits 
using a transitive closure algorithm and this process will be used routinely. We shall 
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also need, in the transitive case, to be able to decompose the set further relative to the 
group action, namely, into non-trivial blocks of imprimitivity (if such exist). We 
observe now that this goal, too, is achievable in polynomial time. To be precise, we 
fix a EA and for each b E A, b # a, we generate the (unique) smallest G-block 
containing {a, b}. As Sims has observed [22], this is precisely the connected 
component of a in the graph X with Y‘(X) = A and g’(X) = the G-orbit of (a, 6) in 
the set of all (unordered) pairs of elements of A. If G is imprimitive, the block must 
be proper for some choice of b. In that case, the connected components of X define a 
G-block system. Then, repeating the process, as necessary. with the induced action of 
G on the blocks, we actually have an algorithm for 

LEMMA 1.3. Given a set of generators for a subgroup G of S, and a G-orbit B. 
one can determine, in polynomial time, a minimal G-block system in B. 

We remark that Atkinson [ 1 ] has described a particularly efficient implementation of 
the above ideas. In our applications it will be necessary to determine. as well. the 
subgroup of G which stabilizes all of the blocks. 

LEMMA 1.4. Let G, B be us above. Generators for the subgroup of G which 
stabilizes all of the blocks in a G-block system in B can be found in polynomial time. 

Lemma 1.2(iii), for example, guarantees this. Let C(i) denote the subgroup which 
stabilizes each of the first i blocks. Then (taking G = G,,,) 

[G,,, : G,i+,,] <number of blocks - i. 

2. THE TRIVALENT CASE 

2.1. Reduction to the Color Automorphism Problem 
We demonstrate that the problem of testing isomorphism of trivalent graphs is 

polynomial-time reducible to the Color Automorphism Problem for 2-groups. The 
first step is a modification of the reduction to an automorphism problem. The 
motivation is Tutte’s observation (Proposition 2.2) that Aut,(X) is a 2-group. 

PROPOSITION 2.1. Testing isomorphism of trivalent graphs is polynomial-time 
reducible to the problem of determining generators for Aut,(X), where X is a 
connected trivalent graph and e is a distinguished edge. 

Proof. Assume we possess a polynomial-time algorithm which returns generators 
for any such Aut,(X). Once again, it suffices to be able to compare two connected 
trivalent graphs X, , X,. Fix an edge e, E 8(X,). For each edge e, E p(X2) we can 
test whether there is an isomorphism from X, to X, which maps e, to e2 as follows: 
Construct a connected trivalent graph X from the disjoint union X, U X, by (i) 
inserting new vertices v, in e, and v, in e2, and (ii) joining v, to v2 with a new edge e. 

571/25/l-4 
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Then there is an isomorphism from X, to X, mapping e, to e2 if and only if some 
element of Am,(X) transposes U, and v2. Furthermore, if such automorphisms exist, 
any set of generators of Au&(X) will contain one. 1 

We now fix a connected trivalent graph X with ] 5” ‘(X)] = n. The group Aut,(X) is 
determined through a natural sequence of successive “approximations,” Aut,(X,), Y = 
1, 2,..., where X, is the subgraph consisting of all vertices and all edges of X which 
appear in paths of length <r through e. So X, is e itself and X,-, =X. The groups 
are related via the induced homomorphisms 

R,: Aut,(Xr + 1) -, A%(Xr) 

in which r,(a) is the restriction of u to X,. Thus, assuming we know Au&(X,), the 
determination of Aut,(X,+,) breaks up into two problems: 

(I) Find a set, 9, of generators for K,, the kernel of R,. 
(II) Find a set, .Y, of generators for ?r,(Aut(X,+ ,)), the image of n,. 

Then, if 9” is any pullback of .yi in Au&(X,+ ,) (i.e., n,.(,i*‘) = ,V’), .R U .Y ’ 
generates Aut,(X,+ i). 

We shall see that the essential, and difficult, problem is (II). We remark that it is 
this problem that was reduced to cone graph isomorphism in 181. 

To investigate these problems we consider 7 ‘(X,, ,)\7’ ‘(X,). Each vertex in this set 
is connected to one, two or three vertices in X,. We codify this relationship as 
follows: Let A denote the collection of all subsets of 7’ ‘(X,) of size one, two, or three. 
Define 

f: “/ ‘(Xr + 1 >\r IX,) + A 

by f(u) = { w E T+’ IX,) I (v, w) E g’(X) 1. 

EXAMPLE. 

LA2 “/kaW5 

“(Xr+1 1 \“cq 

wi w2 J w4 
V(X$ 

Here 

ml> = Iw, 13 f(b) = Iw 7 %I, f(%) = f(v4) = (6 3 w4, ws 1. 

We call v, u’, for v # v’, twins iff(v) = f(v’) (Note: Triplets cannot exist). In the 
above example v3 and v4 are twins, v, and v2 are not. Now, 

0 E Aut,(Xr+,) implies f@(v)) = W(v)). c*> 

Thus, in particular, if u E K, (i.e., u fixes all elements of X,) thenf(v) = f(u(v)); so 
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either v = O(U) or v and a(u) are twins. It follows that K,. is precisely the elementary 
abelian 2-group generated by the transpositions in each pair of twins. 

Since 1 Aut,(X,+ ,)I = /Image n,l . IK,.I, an induction argument recovers 

PROPOSITION 2.2 (Tutte). For each r, Aut,(X,) is a 2-group. 

To get at (II), observe that (*) implies any u E 7r,(Aut,(X,+ ,)) stabilizes the set of 
fathers with one son, i.e., 

A, = (a E A / a = f(u) for some unique u E ?’ ‘(XC,+ ,)\7 ‘(X,)}. 

Furthermore any u E x,(Aut,(X,+ ,)) must stabilize the subset of A consisting of the 
fathers of twins, i.e., 

Now, aside from the edges from 7 ‘(X,, ,)\7 ‘(X,), there are elements of 
a(X,+ ,)\&Y(Xr) which join two vertices in P-(X,). These correspond to the subset 
ofA, 

An element of rc,(Aut,(X,+,)) must also stabilize A’. However, we have now 
summarized the condition that u E Aut,(X,) be in the image of rr,.. Namely, 

PROPOSITION 2.3. rc,(Aut,(X,+ J) is precisely the set of those cr E Aut,(X,) which 
stabilize each of the collections A,, A,, A’. 

Proof. We need only now show that, if o stabilizes A,, A,, A’, it does indeed 
extend to an element of Aut,(X,+i). For such u, we define the extension as follows. 
For each “only child” u,f(v) E A, implies u(S(v)) E A,, so map u to the only child 
of udf(u)). For each pair of twins u, u’, f(u) E A, implies au(u)) E A, so map 
{u, u’ ) to the twin sons of u(f(u)) in either order. By construction, this extension 
stabilizes the set of edges between Y(X,) and Y(X,+ i)\P“(X,) (note that f(u) and 
u(f(u)) automatically have the same cardinality as subsets of ‘7.(X,)). That it 
stabilizes the “new” edges between “old” points was implicit, before the extension, in 
the condition u(A’) = A’. a 

Let A, = A\(A, U A,). In order to isolate the essential problem, we color the set A 
with six colors to distinguish the six disjoint regions 

A,nA’, A,nA’, A,nA’, Ao\P’, A,\p’, A,\p’. 

(The astute reader might observe that only five of these cases can actually occur. 
That fact is immaterial to the present discussion.) We are now looking for the color 
preserving elements in Au&(X,) in its action on A. Thus Trivalent Graph 
Isomorphism is polynomial-time reducible to the following: 
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Problem 1. Input: A set of generators for a 2-subgroup, G, of Sym(A), where A 
is a colored set. Find: A set of generators for the subgroup {a E G ) CJ is color preser- 
ving}. 

2.2. The Color Automorphism Algorithm for 2-Groups 

The presence of a group action on a set suggests two divide-and-conquer 
mechanisms: the decomposition of the set into orbits and, in the transitive case, the 
decomposition of the set into blocks of imprimitivity. Both of these come into play in 
the algorithm for Problem 1 but they require a generalization of the problem that 
admits a recursive procedure. 

We fix a colored set with n elements. The number and distribution of colors is 
unimportant. For a, b E A, the relation “u has the same color as b” will be 
abbreviated “a w 6”. Suppose B E A and KC Sym(A). 

DEFINITION. Set gB((K) = {a E K 1 for all b E , u(b) - b}. 
The following properties are immediate 

(i) %YB(K U K’) = qB(K) U gB(K’). 

(ii) EBvB,(K) = %?“,gB(K). 

The generalization we need of Problem 1 is 

Problem 2. Input: Generators for a 2-subgroup G of Sym(A), a G-stable subset 
B, and o E Sym(A). Find: gB(aG). 

Problem 1 is the special case B = A, u = 1. We observe first that 

LEMMA 2.4. If %“(uG) is not empty then it is a left coset of the subgroup gB(G). 

Proof: The G-stability of B guarantees that ga(G) is a subgroup. If uO E gB(uG) 
then, in particular, UC = u,G. For r E G, b E B, we know r(b) E B and so u,, z(b) - 
z(b). Thus u,,r E 5?Qu,G) if and only if t E gB(G). That is, gB(u,,G) = u,,%Y~(G). I 

By the lemma, we expect the program for Problem 2 to accept, as input, a coset of 
a group and return an answer of “4” or a coset of a group. The cosets would each be 
specified by a pair consisting of a representative element and a set of generators for 
the group. 

The algorithm for Problem 2 proceeds as follows: If B is the union of G-stable 
subsets B’, B” then 

%Y'(uG) = ~B~~S5&(uG). 

If not, that is, if G acts transitively on B, we recall Lemmas 1.1, 1.3 and write B as 
the union of two G-blocks, B = B’ U B”. Note, we do not, this time, attempt to 
compute eB,(uG) directly; B’ is not G-stable. However, we can find in polynomial 
(inn) time the subgroup H of G which stabilizes B’, B”. Then 

G=HUrH 
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and so 

It is important to observe that Lemma 2.4 guarantees, when both subanswers gB(uH) 
and %$(urH) are non-empty, that they must paste together neatly to a single coset of 
FB(G). In such a case, we would have 

VB(‘,(aH) = p, qH), qurzq = p,vB(H) 

and the main answer would be expressed 

(The answer must include the right-hand side since gB(H) and p; ‘pz are contained in 
P*(G); on the other hand, the right-hand side clearly contains the two subanswers.) 

We have shown how, in the intransitive case, the set breaks into disjoint pieces and 
we solve one problem on each piece. And, in the transitive case, the computation of 
FB(uG) involves four recursive calls to similar problems on sets B’, B” of half the 
size. It remains only to examine the case / Bl = 1. But, if B = (b} and GB = B then 

PB(uG) = UG if u(b) - b 

=0 if u(b) 7L 6. 

so this is resolved in constant time. Standard induction arguments show that the total 
algorithm requires only polynomial time. 

3. THE BOUNDED VALENCE CASE 

3.1. The Groups That Arise 

We now consider graphs of valence <t where t is, henceforth, fixed. The procedure 
of subsection 2.1 generalizes, reducing the isomorphism problem to a certain color 
automorphism problem. The first hurdle is the abstraction of the crucial properties of 
the groups. 

We review the situation: The reduction to determining the kernel and image of 

71,: AuW, + 1) + A%(X,) 

remains intact. The set A now consists of all non-empty subsets of 7 ‘(X,) of size 
<t - 1 and then the “father-map” 

f:‘I‘w,+,)\um+A 

has the previous meaning. An element u E Aut,(X,+ ,) now lies in K, = kernel (n,) if 
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and only if it stabilizes each set of “tuplets,” f -‘(a), for a E A. The sets f ‘(a) form 
a partition of 7’ ‘(X,, i)\S’-(X,) and K, is the direct product 

K,= X Sym(f-‘(a>). 
(IfSA 

Each of the factors in the direct product can be specified with at most two generators. 
We observe next that u E Aut,(X,) is in the image of n,. if and only if u stabilizes, 

for each 0 < s < t - 1, the set of fathers of s-tuplets 

A,= (UEA IIf-‘(u)l=s} 

as well as the set A ’ of new edges. Color A, accordingly, with 2t colors. The problem 
is once again one of finding the color automorphisrns in G = Aut,(X,) acting on A. 

Now the fact that the groups in the trivalent case were 2-groups was essential in 
the algorithm of subsection 2.2 (specifically in the decomposition of the set into two 
blocks of imprimitivity). The proof of that lay in the observation that the kernels K, 
were 2-groups. The nature of the kernels in the present situation motivates the 
following 

DEFINITION. For k > 2, let r, denote the class of groups G such that all the 
composition factors of G are subgroups of S,. 

Notice, in particular, that the prime factors of 1 G( for G in r, cannot exceed k. 

Remark. We can actually get by with the weaker restriction that the composition 
factors have bounded order. Essentially, that is the statement in the first announc- 
jement of the present result [ 151 and it is adequate to establish the claim in the title. 
Indeed, this would avoid the complication of Lemma 3.2. However, the more precise 
characterization may be of use in future, careful analyses of the algorithm. This 
version of r, was proposed by L. Babai. 

If N 4 G, the Jordan-Holder Theorem implies that the collection of composition 
factors for G is the union of those for N and G/N. Hence 

LEMMA 3.1. If N 4 G, then G is in r, if and only if both N and G/N ure in r, . 

In order to show r, is closed with respect to extraction of arbitrary subgroups, we 
need the following lemma. The result is certainly familiar to specialists but, since we 
have not found a convenient reference, we include a short proof. 

LEMMA 3.2. The subgroups of S, are in r,. 

Proof. We must show that, if N Q G c S, with G/N simple, then G/N is 
isomorphic to a subgroup of S,. Let Gi be the subgroup of G which fixes all of the 
points { 1, 2,..., i}. Form the chain of subgroups generated by the Gi and N, that is, 

N= G,-lNs a.. GG~NcG~NcG,N=G. 
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Note that 

[GiN:Gi+J]<[Gi:Gi+,]<k-i<k. 

Since N$ G, there is a smallest integer j such that Gj+ , N$ GjN. The group G = G,N 
acts transitively on the set, C, of cosets of GjN modulo Gj+, N (in fact Gj already 
does). Since N a G, N acts trivally on C. Hence, an action of G/N is induced on C. 
This action is non-trivial since it is transitive and so, since G/N is simple, it is 
faithful. I 

We remark that the above lemma suggests a polynomial-time algorithm for 
producing an embedding of G/N in S,. 

We can now prove 

LEMMA 3.3. If G E r, then any subgroup of G is in r,. 

Proof. Assume G E rk. A composition series for G 

lEGma . . . a G2 a G’ a Go = G 

yields, for any subgroup H, a series 

l=GmnHa . . . (lGZnHaG’nHaGonH=H 

(which is not necessarily a composition series). It suffices by Lemma 3.1 to show that 
each quotient G’ n H/G’+’ n H is in r,. However, that quotient is a subgroup of 
Gil@+ ’ which, by assumption, is a subgroup of S,. I 

Finally, to relate this class of groups to the present problem, note that 
Sym(f- ‘(a)) = S, for some m < t - 1. So, the lemmas yield 

and by induction. 

PROPOSITION 3.4. For each r, Aut,(X,) E rip,. 

Hence Testing Isomorphism of Graphs of Bounded Valence is polynomial-time 
reducible to the following Problem 3. Here k is fixed. 

Problem 3. Input: A set of generators for a subgroup, G, of Sym(A), where 
G E r, and A is a colored set. Find: A set of generators for the subgroup {a E G / u is 
color preserving}. 

The algorithm for Problem 3 will follow the divide-and-conquer strategy of 
subsection 2.2. However, we introduce one additional trick. The next two subsections 
develop the requisite machinery. 
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3.2. Primitive Groups in the Class r, 

The property we require is that such groups have p-subgroups of “small” index. 
Specifically 

PROPOSITION 3.5. There is a computable constant c (c = c(k)) such that: VG is a 
primitive subgroup of S, and G E r,, then, for some prime p, G has a Sylow p- 
subgroup of index <n’. 

As is traditional in studies of primitive groups, the proof will distinguish two cases, 
according to whether the socle is abelian or non-abelian. Recall that the socle of a 
finite group is the subgroup generated by all the minimal normal subgroups. 

We review the structure of the socle of a primitive group. In any finite group, a 
minimal normal subgroup is necessarily a direct product of isomorphic simple groups 
[ 12, proof of Satz 1.9.131. Let N be a fixed minimal normal subgroup of the primitive 
group G. Suppose G possessed a second minimal normal subgroup, N’. Then N and 
N’ would commute, and since normal subgroups of a primitive group are transitive 
[26, p. 171, we conclude [26, Sect. 1.41 

(i) N is isomorphic to N’. 
(ii) N’ is precisely the centralizer of N in G. 

In particular, (ii) implies there are no more minimal normal subgroups. Hence the 
socle of G is either N or N X N’ and, in either case, is a direct product of isomorphic 
simple groups. 

If a primitive group G c S, has an abelian socle, it is a classical result [ 12, 
S&e 11.3.2, 11.3.51 that, for some prime p, n = pd and G may be identified with a 
subgroup of AGL(d, p), the d-dimensional atXne group over H,. (AGL(d, p) is 
generated by the group GL(d, p) of all non-singular linear transformations of Z,” and 
the group of all translations, i.e., the additive group of Zg). The translations form the 
socle of G. One knows also that 

lAGL(4 P)I = P (d(df’))l*(P - I)(~* - 1)(~3 - 1) . . . (p" - 1). 

(See [ 12, p. 1781, for example, for a discussion of (GL(d, p)I.) 
We need the following number-theoretic lemma. 

(*) 

LEMMA 3.6. Let p, q be distinct primes. There is a constant a (a = a(p, q)) such 
that if q” divides IAGL(d, p)I then x < da. 

Proof: Let y(y) denote the exponent in the highest power of q dividing py - 1. So 

py = 1 + aqY(Y) with (a, 9) = I 

Then, for any z, 
pYL = (1 + aqY(y))z 

E 1 + azqYcy) mod q2Y(y). 



BOUNDEDVALENCEGRAPHISOMORPHISM 55 

Thus, we derive for y(y) 2 1, 

(i) If (z, q) = 1 then y(yz) = y(y). 
(ii) y(yq) > y(y) + 1 and, if y(y) > 2, equality holds. 

Now let r be the order of p modulo q and set s = y(r), t = y(rq). Then s > 1 and, by 
(ii), t > s + 1 > 2. (Actually, the equality t = s + 1 fails only when q = 2 and s = 1.) 
We use these relations to describe y(y) in general. Clearly y(y) = 0 unless r 
divides y. By (i) and (ii), if (u, q) = 1 then 

y(ruqb) = s if b=O 

=t+b-1 if b>l. 

It follows from (*) that the largest x such that qx divides ]AGL(d, p)] is 

Erasing the brackets and summing the infinite geometric series, we conclude 

x<d -s-+ ( t-s 1 
-+ 

’ 
1 r qr 4(4- l)r 1 

Remark. Actually, much more is known, structurally, about Sylow q-subgroups 
of AGL(d, p). See [25] for the case q # 2 and [7] for q = 2. The expression for “the 
largest x” is deducible from those sources. 

Then. 

PROPOSITION 3.7. The conclusion of Proposition 3.5 holds if the socle of G is 
abelian. 

ProoJ We know that G c AGL(d, p) with n = pd. For each q # p, the highest 
power qx in JG] does not exceed 

9 da(p,q) = na(p,q) lo!+q 

Hence the product of the powers of all primes # p in / G / does not exceed n’, where 

c=Max z: a(p, s) log, 9 1 P<k q*P 
q<k 

We turn now to the non-abelian socle case. We shall need the following lemma 
only when N is the socle of a primitive group. In that instance, it falls out of 
statements in the appendix of [ 211. 
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LEMMA 3.0. Suppose that the set A admits a faithful, transitive action of a direct 
product 

N= T, x T, x .a. x T, 

of r nonabelian simple groups. Then 1 A I> 5’. 

Proof: The result is clear for r = 0 or 1 (when r = 0, we interpret N as 1). We 
assume then that r > 2 and that the result holds for groups with fewer than r simple 
factors. For fixed i, the orbits of Ti form blocks of imprimitivity for N, in particular, 
they are equal in size. We may assume T, has the shortest orbits. Let 

A=B,u... VB, 

be the T,-orbit decomposition. Denote by K the subgroup of N which stabilizes each 
of the blocks Bi. Since K is normal in N, it consists of a direct product of some of the 
Tt’s [ 12, Satz 1.9.121. Without loss of generality 

Set 

K= T, x +a. x T, for some s> 1. 

K’ = T,,, x ..a x T,.. 

Then K’ z N/K acts faithfully and transitively on the m-element set (BiJIGiG,,,. By 
the induction hypothesis, m > 5’-s. We consider two cases. 

Case 1. s=l. Since T, acts faithfully on B,, lB,I>5. Hence n=IB,Im> 
5 . 5’-’ = 5’. 

Case 2. s>l.Set 

K” = T, x a’. x T,. 

We claim that K” acts faithfully on B, . To see this, suppose u E K” fixes every point 
in B,. For each i, 2 <i < m, there is some r E K’ with z(B,) = B,. Since 0, t 
commute, this implies u fixes every point in B, as well. That is, u = 1, proving the 
claim. Since T, has the shortest orbits, K” acts transitively on B, . Hence T,, K” are 
faithfully represented as commuting transitive subgroups of Sym(B,). By 
[26,Sect.4], T,gK” and JB,I=JT,j. Th us, s = 2 and (B, 1 > 60. In this case n = 
(B,Jm>60.5’-2>5’. I 

We get a stronger result than Proposition 3.5 in the non-abelian socle case. 

PROPOSITION 3.9. There is a computable constant c (c= c(k)) such that: If 
G c S, is primitive with a nonabelian socle and with G E T, then ( GI < nc. 

Proof: The socle is N = T, x a.. x T, where the Ti are isomorphic non-abelian 



BOUNDED VALENCE GRAPH ISOMORPHISM 51 

simple groups. Consider the action of G on N via inner automorphisms and let K be 
its kernel, that is, the centralizer of N. Since K is normal in G, if it were non-trivial, it 
would intersect the socle non-trivially. This is not possible since N has trivial center. 
Hence, G is isomorphic to a subgroup of Aut(N). The reason for emphasizing this 
embedding of G is that the structure of Aut(N) is transparent. The fact that the T, are 
the unique minimal normal subgroups of N [12, Satz 1.9.121 implies that any 
automorphism of N consists of a permutation of these factors followed by an 
automorphism in each factor. In other words, G is a subgroup of 

Aut(N) z Aut(T,) wr S, 

(“wr” indicates wreath product [ 10, 121). But since /GI involves only primes <k. the 
projection of G on S, has order <a’, where a is a function of k alone. Thus, 

1 GI < / Aut(T,)/’ a’. 

Since G E r,, T, c S,, and so IAut(T,)I is bounded. Thus, 

IGI <b’ for b = b(k). 

On the other hand, n > 5’ by Lemma 3.8. Therefore, 

(GI < n’ogJb. I 

The proof of Proposition 3.5 is immediate from Propositions 3.7. 3.9. In the non- 
abelian socle case we can use any Sylow subgroup, even 1. 

3.3. Finding the p-Subgroup 

The previous section established that, for a certain class of permutation groups, the 
existence of Sylow p-subgroups of small index is guaranteed. The question remains 
whether we can find generators for such a subgroup in polynomial time. The problem 
appears similar to the one mentioned in Lemma 1.2(iii). The difficulty is that the 
description “P is a Sylow p-subgroup” does not define P uniquely and so it does not 
yield an effective membership test. However, given (generators for) some p-subgroup 
P and an element u E G one can test whether (J and P lie in any common Sylow p- 
subgroup by seeing whether the order of (a, P) is a power of p. This is used for 

PROPOSITION 3.10. Let c be fixed. There is a polynomial-time algorithm for 
finding generators for a Sylow p-subgroup of G or S, provided (G( = p”m with 
m < n’. 

The algorithm: We build, simultaneously, a set n of generators for a Sylow p- 
subgroup P and a complete set C of left coset representatives for G mod P. To start 

17+-0, c+ {l), P+ 1. 

We use the following subroutine. The input, a is an element of G. 
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procedure p-Build (CX) 
if for some y E C, (y-‘ar, n) is a p-group 

then if (y-‘a,lI)=P 
then return 
else add y-‘(~ to n and let P = (ZZ) 

else add CI to C 
return 

Let @ be the given set of generators for G. We call p-Build(a) for all a in @C. Of 
course, such a call may then result in an increase of C. However, at any point in the 
construction, P = (ZZ) is a p-group and the elements of C are pairwise incongruent 
modulo any Sylow p-subgroup containing P. In particular, there are never more than 
m elements in C. Thus the process terminates in polynomial time. When it does halt 
@C E CP and so CP is closed under left multiplication by @. Hence CP = G. Also, 
since (y, P) is not a p-group for any y E C with y # 1, P is a Sylow p-subgroup. 1 

Actually, the situation with which we deal in the color automorphism algorithm is 
covered by 

PROPOSITION 3.11. Let G s Sym(A) and suppose G E r,. Let B be a G-orbit 
in A. Then, in polynomial time, we can find a minimal G-block system in B 

B=B,UB,U... VB, 

and a subgroup P of G of index <rnCtkJ such that P acts on the collection 
{B, , B, ,..., B,\ as a p-group. 

ProoJ Since G acts primitively on the blocks, such a P exists by Proposition 3.5. 
We can find it, for example, by modifying the algorithm in Proposition 3.10 so that it 
tests whether (y-la, n) acts as p-group on the collection of blocks. 1 

3.4. The Color Automorphism Algorithm for Groups in Z’, 

We follow the notation of subsections 2.2, 3.1. 
Problem 3 is generalized to 

Problem 4. Input: Generators for a subgroup G of Sym(A), where G E I-,, a G- 
stable subset B, and o E Sym(A). Find: C,(aG). 

As before, if B is the union of disjoint G-stable subsets B’, B” then 

If not, then we find a minimal G-block system in B 

B=B,VB,V... VB,. 

This time we do not have such a convenient hold on m. Instead, we take advantage of 
Propositions 3.5, 3.11 and locate a subgroup P with [G : P] < mc such that P acts as 
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a p-group on the collection of blocks 9 = (B, ,..., B,}. Writing G as a union of <m‘ 
cosets of P 

G = u zip 

(the ri come “for free” in the construction of P) the problem breaks up similarly 

‘FB(uG) = u FB(us; P). 

We continue now on each coset of P, except that, to capitalize on Lemma 1.1, we 
keep the integrity of the individual blocks, Bi, as long as possible. More precisely, the 
divide-and-conquer is applied to the action of P on 9 (a p-group action) not on B. 
Thus, if .W is a disjoint union of P-stable subcollections 9’,,8” we solve the problem 
sequentially on these. If not, we find a minimal P-block system in .ti. This time such 
a system will consist of precisely p subcollections, and the subgroup P’ which 
stabilizes all of the subcollections will have index precisely p. So in the transitive P 
case, the problem for P on 9 breaks into p* similar problems for subgroups of P on 
subcollections of size I53I/p. Each of these is, at worst, equivalent to p2 similar 
problems on subcollections of size ILiY~/p*, etc. We continue in this fashion until the 
subcollection consists of precisely one of the original Bi. Having exhausted the p- 
group action, we are faced, finally, with a problem of the form ZB.(tiF), where p is the 
residual group. However, 1 Bil = I B I/m. Th e important observation now is that the 
problem for each coset of P has been converted to at most m* problems on sets of 
size IBl/m. Thus, the original problem for G on B has been converted to at most 
mc . ,* = mc+* problems on sets of size I B I/m. The results of subsections 1.2 and 3.3 
guarantee that the cost of each reduction is bounded by a polynomial in n, justifying 
the claim in the title. 

We summarize the algorithm for 5FB(aG) below. The special handling of P makes it 
convenient to describe the computation in two routines, one for %“(uG) and one for 

@g(aP) = gB(uP), 

in which P is known to act as p-group on 9 = (B, ,..., B,} and B = Ui Bi. The 
reader will pobably discern that the routines have a common generalization. 

I. Computation of %“(uG) 

Input: A colored set A, generators for G E Sym(A), u E Sym(A). a G-stable subset 
B. 

Output: FB(uG). 
Method: 

(i) If B = (b), 

gB(uG) = 0 if u(b)&b 

=uG if u(b)- b. 
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(ii) If B is the union of disjoint G-stable subsets B’, B” 

SFB(uG) = EB’,,5FB,,(uG). 

(iii) If G is transitive on B and IB( > 1, find a minimal G-block system in B 

B=B,V-.. VB,. 

Locate subgroup P such that P acts on 9 = {B1,..., B,} as a P-group and 
[G : P] < mc. Decompose G, 

Then 

u7,(~G) = U ~59(uZi P), 

II. Computation of @&P) 

Input: A colored set A, generators for P s Sym(A), u E Sym(A), a P-stable 
collection 9 of disjoint subsets of A with P acting as a p-group on 9. 

Output: QUP). 
Method: 

(i) If 9 = {B,}, S?9(uP) = %&(uP). 

(ii) If 9 is the union of disjoint P-stable subcollections 9’, ,!8” 

@&UP) = @~,~~,,(UP). 

(iii) If P is transitive on 9 and J.91 > 1, find a minimal p-block system in .59 

Locate the subgroup P’ which stabilizes all the subcollections si. Decompose P, 

P = fi rip’. 
i=I 

Then 

QUP) = TJ @&tiP’). 
i=l 

(The pieces of the right hand side then feed into (ii).) 

Remark. We emphasize again that Lemma 2.4 guarantees our ability to combine 
the answers in I(iii) or II(iii) into a single coset. If several nonempty subanswers are 
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returned they will all be cosets of the same subgroup and must add up to a coset of a 
group. That is 

will be expressible as 

4. REMARKS 

4.1. A Faster Trivalent Algorithm 
The trivalent algorithm was presented here in a manner which clearly justifies the 

polynomial-time claim and which easily generalizes. However, with somewhat more 
effort, one can make several ad-hoc modifications which improve the efficiency. Our 
best algorithm for determining whether two connected n-vertex trivalent graphs are 
isomorphic requires O(n’) steps [ 171. 

4.2. Group Intersection 
The general color automorphism problem is polynomial-time reducible to the 

group intersection problem 
Input: Generators for G, HE Sym(A). 
Find: Generators for G n H. 

The color automorphism problem is the special case when H is the direct product 
of symmetric groups on the components in a decomposition of A. (It is shown in ] 16 ] 
that, in the general setting, the problems are polynomial-time equivalent.) Thus, the 
main algorithm of the present paper solves the group intersection problem for these 
restricted H, and G in r,. However, if G is in r, the restrictions on H can be lifted, 
still maintaining polynomial time. Outline: Consider the direct product 
Sym(A) X Sym(A). There are two natural actions of this group on A, employing, 
respectively, the projections pr, , prZ on the factors, i.e., 

pr, (a, P> = a, 

This notation is useful in a generalization of the problem which, once again. allows 
recursion. 

Input: Generators of K E Sym(A) x Sym(A) with pr,(K) E r,, a pr,(K)-stable 
subset B of A, u E Sym(A) x Sym(A). 

Find: 3*(oK) = {r E UK 1 prr(r) lB = pr,(t) le}. 
In particular, 
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Since the nice hypotheses refer only to the pr,-action, we follow a divide-and-conquer 
scheme (orbits, blocks, etc.) using that action. The reduction to the base case ]B( = 1 
follows as in Section 3. In that case, we observe that the problem is just one of deter- 
mining, for some fixed b, c, the elements in the residual K mapping b to c via the pr,- 
action. The answer then is either empty or a coset of the stabilizer of the point b. 

4.3. Other Isomorphism Applications 

The basic techniques of Section 3 and Subsection 4.2 apply to a number of graph 
isomorphism situations. For example, 

(i) Colored graphs with bounded color classes, the class considered by Babai 
[2], come under the scope of the color automorphism algorithm (different “color”) 
for groups in I’,. Simply modify the reduction in the introduction so that, instead of 
S,, the starting group is the direct product of the symmetric groups of the color 
classes (a member of r, for k the given bound). Though this, too, puts the problem in 
P, the algorithm is not as fast as the original. 

(ii) Isomorphism of tournaments can be tested in niogn time [S]. The result 
involves still another mode of reduction to a color automorphism problem and 
exploits the fact that tournaments have odd order, therefore solvable, automorphism 
groups. 

(iii) Isomorphism of (v, k, A)-designs, for bounded 1, can be tested in n’op’ogn 
time. Note that the case A= 1 corresponds to projective planes and so this generalizes 
a result of Miller [ 191. The important point to observe about this class is that the 
number of common neighbors of pairs of points is bounded. This and related results 
will appear elsewhere. 

(iv) We have recently learned that V. Zemlyachenko has used the techniques 
of this paper to establish an exp(n I-‘) upper bound, for some positive c, in general 
graph isomorphism. See [3] for a discussion of Zemlyachenko’s result. 

4.4. New Results on Primitive Permutation Croups 

In our earlier announcement of the main result of this paper [ 151 we mentioned a 
new result of Palfy [20]. He showed that primitive solvable groups have polynomially 
bounded order. That, and other evidence, prompted our conjecture that primitive 
groups in r,, k fixed, are also polynomially bounded. We are delighted to learn that 
this conjecture was confirmed by Babai-Cameron-Palfy [4]. In fact, they weakened 
the hypothesis to a bound only on the nonabelian composition factors. The 
significance of all of this is that a simpler version of our main algorithm runs in 
polynomial time. It is the more obvious generalization of the 2-group situation. When 
we arrive at a group G acting primitively on m blocks, we can go straight to the 
subgroup H which stabilizes the blocks and write G as a union of cosets of H. The 
point is that [G : H] is bounded by a polynomial in m. We observe, nonprejudicially, 
that the algorithm of Section 3 is faster. 

We refer the reader also to [6], in which Cameron draws conclusions about the 
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orders of primitive groups using the recently completed simple groups classification. 
In particular, he gives results about the structure of primitive groups in S, which are 
larger than n l”gn* for example, they contain large alternating groups. Thus, there are 
various hypotheies which can be placed on a class of groups that will avoid the 
“large” groups and guarantee a subexponential intersection algorithm. It is likely that 
other complexity applications will be found as well. 

4.5. Recognizing Membership in r, 

Although the result is not needed herein, a natural question arises as to whether 
membership in r, (k fixed) is polynomial-time decidable (for permutation groups). It 
is. 

To see this, observe that, if G is in r,, then every maximal normal subgroup of G 
has index <b = k! With this in mind, we first outline a procedure which, upon input of 
G, will return a proper normal subgroup N of index <b or else output “G is not in 
ri’: Take any b + 1 distinct elements of G, say a,,,..., a*. Then, if G has a normal 
subgroup of index <b, some two of these elements would be congruent modulo that 
subgroup. Thus, we generate the normal closures [9], N,, of (aio;‘), for if j. If 
N, = G for all i, j then G does not have a normal subgroup of index ,<b, and G is not 
in r,. Otherwise, we pick up a proper normal subgroup, N’. If [G : N’] > b we 
continue this process in the following way. Take any b + 1 elements of G, say, 
ao9-y (lb, which are pairwise incongruent modulo N’. If G is in r,, N’ is contained in 
a proper normal subgroup of index <b. This time, then, we generate the normal 
closures of the (aia; ‘, N’). If none are proper, G is not in r,. Otherwise, we have a 
larger proper normal subgroup than N’, etc. 

To test membership of G in r,, we use the above procedure. If N of index <b is 
returned, test G/N for membership in r, (in the strict sense of subsection 3.1) by 
brute force. If G/N is in r,, then it suffices to test N, etc. 

There is another polynomial-time procedure for testing membership in r, which is 
worthy of mention. It is easy to describe but depends upon the Babai-Cameron-Pilfy 
result noted in 4.4. One reduces the problem to the transitive case (test N, the kernel 
of the action on an orbit B, and test the image, G/N, of G in Sym(B)) and then to the 
primitive case (test N, the stabilizer of the blocks, and test the action, G/N, on the set 
of blocks). If G is in r, it must now be small enough to test by brute force. 

Either of these algorithms can be modified to output, for G in r,, a composition 
series. We wonder whether this could then be utilized in another algorithm for 
G f7 H. For example, assume N is a maximal normal subgroup of G and that we have 
already found N n H. We know that G (7 H/N f7 H is a subgroup of G/N. Suppose, 
in fact, that we knew which subgroup it was (there are only a bounded number of 
possibilities). Could this be used to recover G n H? 

We mention, finally, that we have a more general algorithm which constructs, in 
polynomial time, a composition series for an arbitrary permutation group. It requires 
the simple groups classification, though only for Schreier’s conjecture (the outer 
automorphism group of a finite simple group is solvable). The result will appear 
elsewhere. 
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4.6. Finding Sylow Subgroups 

In subsection 3.3, we dealt with a special situation in which a Sylow p-subgroup 
could be located in polynomial time. The general problem of finding Sylow p- 
subgroups is of independent interest and its complexity is open. A related, and 
perhaps easier, problem is that of finding any element of order p (for a prime p that 
divides 1 GI). If p is fixed (i.e., bounded), we can view the G-action on AP; find any 
instance of some (a,,..., up, a,) in the orbit of (a,,..., a,), and take any u in G 
mapping one to the other (an appropriate power of (T has order p exactly). For 
general p, the best we can do, at this writing, is nlogn time. The algorithm uses, 
among other things, the general composition-factor algorithm mentioned above. Even 
then, we do not know a subexponential way of expanding the algorithm to produce 
Sylow p-subgroups. 

4.1. Certificates 

A certificate for a graph is a complete invariant of the isomorphism class, e.g., the 
min lex adjacency matrix. In most known instances of graph isomorphism algorithms, 
certificates are attainable about as cheaply [ 18, 141. In [2], Babai asked whether his 
group-theoretic approach could be used to solve this, potentially more useful, 
question. This has been answered affirmatively for Babai’s graphs by the author and 
P. Klingsberg [ 131. However, we do not know whether the techniques of the present 
paper can be extended to find certificates for graphs of bounded valence. We remark 
that the relation between the reduction of general graph isomorophism to a color 
automorphism problem and the reduction of subsections 2.1, 3.1 has an analogue for 
certificates. A certificate for general graphs could follow from an algorithm for 

Input: Generators for G c S,, an n-digit binary number m. 
Find: The greatest number in the G-orbit of m, where S, acts on n-digit numbers 

by permuting digits. 
One could, for example, apply such an algorithm to the action of S, on adjacency 

matrices, A t--t PAP* (P is a permutation matrix). Tricks like those proposed herein 
can be utilized to derive certificates for graphs of bounded valence from a solution to 
the above problem for groups in r,. However, the complexity of the problem is open 
even for 2-groups. 
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Note added in proof: We update some of the remarks of Section 4. The O(n’) bound for trivalent 
graphs (Section 4.1) was improved to O(n4 log n) by C. Schnorr and A. Weber, to O(n”) by C. Hoffman 
and, most recently, to O(n’ log n) by Z. Galil, E. Luks, C. Schnorr, and A. Weber. 

Zemlyachenko’s bound for general graph isomorphism (Section 4.3) was exp(n3’4 +“‘I’). This was 
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improved by Babai to exp(n 2’3+0(‘)) and then by the present author to exp(n”‘+““‘). The latter 
improvement utilizes a faster (O(ncd”rd )) algorithm for graphs of valence d. 

We have shown that the problem stated in Section 4.7 is NP-Hard even if G is an elementary Abelian 
2-group. 
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