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ABSTRACT. Suppose L is a finite-dimensional Lie algebra with multipli-
cation p: LAL — L. Let A(L) denote the set of triples (f, f', "), with
1, f', f" € Hom(L, L), such that uo(fAIL+ILAf') = f”ou. We consider
the Lie algebra GenDer(L) = {f € Hom(L,L) | 3f,f": (f,f,f") €
A(L)}. Well-researched subalgebras of GenDer(L) include the deriva-
tion algebra, Der(L) = {f € Hom(L,L) | (f,f,f) € A(L)}, and the
centroid, C(L) = {f € Hom(L, L) | (f,0, f) € A(L)}. We now study the
subalgebra QDer(L) = {f € Hom(L,L) | 3f": (f,f, ') € A(L)}, and
the subspace QC(L) = {f € Hom(L, L) | (f,—f,0) € A(L)}. In char-
acteristic # 2, GenDer(L) = QDer(L) + QC(L) and we are concerned
with the inclusions Der(L) C QDer(L) and C(L) C QC(L) N QDer(L).
If Z(L) = 0 then C(L) = QC(L) N QDer(L) and, under reasonable
conditions on Lie algebras with toral Cartan subalgebras, we show
QDer(L) = Der(L) + C(L); if L is a parabolic subalgebra of a sim-
ple Lie algebra of rank > 1 in characteristic 0, then we even have
GenDer(L) = ad(L)+ (). In general QC(L) is not closed under compo-
sition or Lie bracket; however, if Z(L) = 0 then QC(L) is a commutative,
associative algebra, and we describe conditions that force QC(L) = C(L)
or, equivalently, GenDer(L) = QDer(L).

We show that, in characteristic 0, GenDer(L) preserves the radical of
L, thus generalizing the classical result for Der(L).

We also discuss some applications of the main results to the study of
functions f € Hom(L, L) such that fou or po (f AIL) defines a Lie

multiplication.
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1. INTRODUCTION

Let A be nonassociative algebra over a field of characteristic # 2 with mul-
tiplication (a,b) — p(a,b). A derivation of A is a element f € Hom(A, A)
such that

u(f () y) + plz, f(y) = fu(z,y)

for all z, y € A. The set Der(A) of derivations of A is a well-studied Lie
subalgebra of gl(A). In this paper, we investigate a natural generalization
of derivations.

We call f € Hom(A, A) a generalized derivation of A if there exist ele-
ments f’, f” € Hom(A, A) such that,

(1.1) p(f(@),y) + pu(z, f'(y) = " (u(z,y))

for all z, y € A, and we call f € Hom(A, A) a quasiderivation of A if there
exists f' € Hom(A, A) such that

p(f (@), y) + p(a, £ () = f'(u(=,y))

for all z, y € A. The set of generalized derivations of A forms a Lie subalge-
bra of gl(A) which we denote by GenDer(A). The Lie subalgebra consisting
of quasiderivations is then denoted by QDer(A).

Another important subalgebra of GenDer(A) is the centroid, C(A), of A
consisting of f € Hom(A, A) such that

u(f (), y) = plz, f(y) = fu(z,y))

for all z, y € A. The centroid is even closed under composition. It is easy to
show that, for Lie algebras with trivial center, C(L) is commutative (see, e.g.
[14]) and so is the largest commutative subring of Hom(L, L), containing the
base field, over which L is an algebra.

For centerless Lie algebras L, we have the tower

(1.2) L ~ ad(L) C Der(L) C QDer(L) C GenDer(L) C gl(L),

where ad(L) is the algebra of inner derivations. We are particularly inter-
ested in conditions that guarantee the collapsing of some of these inequali-
ties. There has been much study of the inclusion ad(L) C Der(L) from this
viewpoint (see, e.g., [5] and [15] and the bibliographies therein). The next
inclusion of (1.2) is always strict, for we have

(1.3) QDer(L) D Der(L) & C(L), (vector space direct sum)

and 0 # I, € C(L). The interesting pursuit is for conditions that force
Der(L) + C(L) = QDer(L).

Also of interest is the subset of GenDer(A) consisting of f € Hom(A, A)
such that

p(f(x),y) = p(x, f(y))
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for all z, y € A and we call this set the quasicentroid of A, denoting it by
QC(A). It is easy to verify that

(1.4) C(A) C QDer(A) N QC(A).
and, for skew-commutative or commutative A, that
(1.5) GenDer(A) = QDer(A) + QC(A).

(see Proposition 3.3). In his study of Levi factors in derivation algebras
of nilpotent Lie algebras, Benoist [1] required the fact that GenDer(S) =
QDer(S) + C(S) when S is a semisimple Lie algebra in characteristic 0. He
established this by showing QC(S) = C(S) for such algebras. This equality
does not hold for general Lie algebras. Indeed, the quasicentroid need not be
closed under composition or Lie multiplication. This motivates a study of
the structure of QC(L) with particular reference to conditions that guarantee
equality in the inclusion.

(1.6) C(L) € QC(L).

We assume throughout this paper that algebras are finite-dimensional.

In Section 2, we recall some definitions and introduce notation.

Section 3 contains elementary observations about generalized derivations,
some of which are technical results to be used later. The section also includes
a characterization of Lie algebras L for which GenDer(L) = gl(L). For such
algebras we even have QDer(L) = gl(L); this includes 3-dimensional simple
algebras.

In Section 4, we examine the structure of QDer(L) for centerless Lie
algebras with a toral Cartan subalgebra T. We first study QDer(L)g, which
consists of those quasiderivations f for which 7" - f = 0. For example, if
L is solvable, then QDer(L)y C Der(L) + C(L). In general, QDer(L) #
Der(L) + C(L) as is seen when L is 3-dimensional simple. That example,
however, characterizes the obstruction to equality for parabolic subalgebras
of semisimple Lie algebras in characteristic 0; namely, QDer(L) = Der(L) +
C(L) if and only if the summands in the split form have rank > 1. More
generally, we go on to show that equality holds if the algebra is generated
by special weight spaces (see Section 2 for definition).

Section 5 has several results dealing with QC(L) for centerless Lie algebras
L. For such algebras, we show that QC(L) is closed under composition
and is, in fact, commutative. Our analysis makes strong use of the Fitting
decomposition of QC(L) with respect to a Cartan subalgebra H of L: the
Fitting 0-component is precisely C(L) while the Fitting 1-component maps
L into Z(H) and maps H to 0. We show that QC(L) = C(L)® A in which A
is an (associative-algebra) ideal and A2 = 0. The information obtained on
the structure of QC(L) also reveals conditions that force equality in (1.6).
For example, equality holds: if ad;(H) does not contain elements that are
nilpotent of index 2 (in particular, when H is a torus); or if L = [L, L]. We
show also that equality holds in (1.4) for centerless Lie algebras. Thus, by
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(1.5) the algebras for which QC(L) = C(L) are precisely those for which
QDer(L) = GenDer(L). Semisimple elements of QC(L) necessarily lie in
C(L), so it is especially interesting to study the nilpotent elements of QC(L)
and we show that these always map L into the nilradical; in fact, with some
restrictions on the field, we show that, if f € QC(L) is nilpotent of index m
then f(L) generates a nilpotent ideal of index m.

Section 6 is devoted to showing that, in characteristic 0, generalized
derivations of L preserve the solvable radical of L thus generalizing the
classical result for derivations.

In Section 7, we deal with applications of our analyses to two natural
actions of gi(V') on Lie algebra structures on V. Our study of QC(L) aug-
ments results of Tkeda on projective doubles of Lie algebras (L, u), i.e., Lie
algebras (L, p) with ad(L,p) C Der(L,u). In particular, we look at inner
projective doubles, wherein p(x,y) = u(f(z),y) for some f € Hom(L,L):
for centerless L, f € Hom(L, L) induces an inner projective double if and
only if f € QC(L) with f2 € C(L). We study also an analogous question of
when f o p is a Lie multiplication for nonsingular f € Hom(L, L). This is
the always the case if f € C(L), and we call (L, ) robust if f oy is a Lie
multiplication only when f € C(L). We give a cohomological condition for
robustness that is analogous to that for classical rigidity, though we point
out the independence of the concepts. Our study of QDer(L) is relevant
here and we show, for example, that parabolic subalgebras of split simple
algebras of rank > 1 are robust.

The paper is interspersed with examples that emphasize the sharpness of
the results.

We note that the term generalized derivation has been used with various
technical meanings different from ours (see, e.g., [6, 7, 21]).

2. DEFINITIONS AND NOTATION

We assume throughout that the characteristic of the ground field x is
not 2.

We shall be concerned chiefly with finite-dimensional Lie algebras, though
some elementary results are valid for more general algebras. Let (A, u) be
a nonassociative algebra over k. Thus, A is a vector space over x, and
p: A x A — Ais a bilinear map. It is also convenient at times to view the
multiplication as a linear map pu: A ® A — A. We often write A in place of
(A, ). For n > 1, we define A™ to be the span of all products x1 - - - z,, with
x; € A, no matter how associated. The (two-sided) ideal of A generated by
a set S will be denoted by (S). The annihilator of A is

Ann(A,p) ={z € A| p(z,y) = ply,x) =0, Vy € A}.

It is sometimes convenient to deal with the set of triples (f, f/, f”) sat-
isfying (1.1) and we denote this collection by A(A). Thus, A(A) is a Lie
subalgebra of gl(A) x gl(A4) x gl(A).
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If (A, ) is a nonassociative algebra over k and R is a commutative algebra
over x, we denote by A[R] the algebra over x whose underlying vector space
is A ® R with multiplication satisfying

(a1 ®@r1) - (a2 @ ra) = p(ay, a2) @ rire,

for a1,a9 € A, r1,72 € R.

Let L be a Lie algebra over k. For X,Y C L, L a Lie algebra, let
Zx(Y) denote the centralizer of Y in X, ie., {z € X | [z,Y] = 0}; as
usual, Z(L) = Zp(L) is the center of L; if Z(L) = 0, we may say that L
is centerless. If M and N are L-modules, the transporter of M to N is
the ideal Tr(M,N) = {x € L | x - M C N}, of special interest is the case
when M and N are ideals in L and therefore modules with respect to the
adjoint action. We denote by Rad(L) the (solvable) radical of L and by
NilRad(L) the maximum nilpotent ideal of L. For S C L, (S) denotes the
ideal generated by S. We say L is directly indecomposable if L =H ® K, a
direct sum of ideals, implies H or K is 0.

An element, z, of a Lie algebra, L, is semisimple if ad(z) is a semisimple
(diagonalizable over an extension field) element of Hom(L, L). A torus, T,
is an abelian subalgebra of a Lie algebra, L, which consists of semisimple
elements. We say T is split if, for € T, the characteristic roots of ad(x)
belong to the base field. Unless otherwise indicated, the tori we consider will
be split. We consider several naturally induced L-modules on which tori in L
act diagonally; if M is such an L-module then, for o € T*, « is a weight of T
on M if the weight space, My :={m € M | t-m = a(t)m, Vt € T} # 0. We
denote by W(M) the weights of T in M (T will always be clear in context)

For a € W(T), we set L(q) := @cexLea and Ly := @ggrals. We say a
weight a for T in L is special if L,y does not contain a nontrivial ideal of
L.

A Heisenberg Lie algebra of dimension 2n + 1 has basis {z;} with 1 <
i < 2n + 1 and nonzero products, [z;, Tpnti] = —[Tnti, Ti] = Topy1 for i =
1,...,n.

If L is a Lie algebra and M an L-module, Z'(L, M), B*(L, M), and
HY(L, M) denote the ith-cocycles, coboundaries and cohomology of L with
coefficients in M, while § denotes the coboundary operator. For more details,
see [9, p.93 et seq]. We define L to be the trivial L-module on the under-
lying vector space of L, while the adjoint module is still denoted by L. To
distinguish the coboundary map ¢ on the complex C(L, L), we let § denote
the coboundary map on C(L, L). Observe that B%(L, L) = Hom(L, L) o p.
Also, if L = (L, p), f € Hom(L, L), then 6(f o ) = 6(f o ).

Let V be a vector space. The identity transformation of V is denoted
Iy. For S CV, (S) denotes the linear span of S. We denote by V@V the
symmetric product, and by V AV the exterior product; we may view these
as subspaces of V@ V, where VOV = (v@w+w®v | v,w € V) and
VAV =0wow—-—w®uv|v,weV).
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3. GENERAL REMARKS

For any nonassociative algebra A, A(A) is an algebraic Lie algebra and
so the semisimple and nilpotent components of generalized derivations are
generalized derivations.

It is easy to see that generalized derivations preserve the annihilator of
a nonassociative algebra, and hence the center of a Lie algebra. However,
although Der(L) and C(L) clearly preserve the derived algebra of a Lie
algebra L, neither QDer(L) nor QC(L) need do so: for quasiderivations,
this is evident in the 2-dimensional, nonabelian Lie algebra spanned by x,y
with [z, y] = y, the linear map satisfying = +— 0, y + x is a quasiderivation);
see Example 5.7 for a Lie algebra L and f3 € QC(L) such that f3([L,L]) €
[L, L].

Lemma 3.1. Let A be a nonassociative algebra. Then
(1) QDer(A) is a Lie subalgebra of GenDer(A) .
(2) [Der(A), C(4)] € C(A).
(3) [QDer(A4), QC(A)] € QC(A).
(4) C(A) C QDer(A).
(5) [QC(A4),QC(A)] € QDer(A).
Proof: (1), (2), (3) are immediate. For (4), observe that f € C(A) implies
)

(f,f,2f) € A(A). For (5), f,g € QC(L) implies ([f,g],[f,9],0) € A(Aé

Remark 3.2. If A is commutative or skew commutative then (f, f/, ") €

A(A) implies (', f, f") € A(A).

Proposition 3.3. Let A be a commutative or skew-commutative algebra,
then

(1) GenDer(A) = QDer(A4) + QC(A).
(2) QC(A) + [QC(A),QC(A)] is an ideal in the Lie algebra GenDer(A).
Proof: For (1), we note that (g,¢’,4¢") € A(A) implies

(97 glag”) = (fa fa g”) + (6, —¢, O)a
where f = (g+4¢')/2, and e = (g — ¢')/2. With this, (2) follows from (3)
and (5) of Lemma 3.1. O
Suppose A = H @ K, a direct sum of ideals, and Ann(A) = 0. Then, if

f € GenDer(A), f must preserve H and K. Thus, we generalize the well
known result for derivations to obtain the following useful result.

Lemma 3.4. If A = H @ K is the direct sum of ideals, and Ann(A) = 0,
then

(1) GenDer(A) = GenDer(H) @ GenDer(K).

(2) QDer(A) = QDer(H) @ QDer(K).

(3) C(4) =C(H) & C(K).
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(4) QC(4) = QC(H) & QC(K). O

The quasiderivations of an algebra can be embedded as derivations in a
larger algebra. (That is their key role in [1].) For this, let A be a nonas-
sociative algebra over x and ¢ an indeterminant. We define an algebra, fi,
over k , canonically associated to A, as A := A[ts[t]/(¢*)]. We write at (at?)
in place of a ®t (a ®t2). If U is a subspace of A such that A = U & A? then

A= At + A? = At + A% + U,
Now we define a map ty7: QDer(A) — Der(A) so that, for (f, f, f') € A(A),
w(f)(at +bt? +ut®) = fa)t + f'(b)*

for all a € A, b € A% and u € U. Note that 1y is injective and that ¢y (f)
does not depend on the choice of f’.

Now, for any nonassociative algebra B, let

ZDer(B) := {f € Hom(B, B) | f(B) C Ann(B), f(B?) =0}
Then ZDer(B) is an ideal in Der(B).
The following proposition is implicit in [13, p.191].
Proposition 3.5. If A is a nonassociative algebra with Ann(A) = 0, and

v}

1y as above, then Der(A) is a semidirect sum:

Der(A) = 1y (QDer(A)) & ZDer(A).
Proof: Observe that Ann(A4) = At?. So any linear f: At 4+ Ut> — At?
extends to an element of ZDer(A) by taking f(A2¢2) = 0. Thus, given any
g € Der(A) we can subtract an element of f € ZDer(A) and thereby force
(9= [)(At) C At and (g — [)(U?) = 0 (note that g(Ut?) C g(Ann(4)) C
Ann(A)). Also, since A2 = A%2, (g — f)(A%2) C A%2. Thus (h,h,h) €
A(A) where (g — f)(at) = h(a)t, (g— f)(bt?) = B/(b)t for a € A, b € A2, and
s0, (g — f) = w(h) € .y (QDer(A)). O

Observe that, in the situation of Proposition 3.5, 1y(QDer(A)) may also
be viewed as the natural image of Der(A) in Hom(A/A?, A/ A?).

If (A, u) is an algebra and f in Hom(A, A), we define f# € Hom(A ®
A,A® A) so that fFv@w) = f(v) @w + v @ f(w) for all v,w € A.
Note that u o f# factors through pu(A ® A) (i.e., po f# = f' o u), for some
f' € Hom(A, A)), if and only if f#(Ker(u)) C Ker(u).

Lemma 3.6. Let (A,u) be an algebra and f € Hom(A,A). Then f €
QDer(A, ) if and only if f#(Ker(u)) C Ker(p).

Proof: f € QDer(A) if and only if there exists f' € Hom(A, A) such that
flow=po f*. O
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Proposition 3.7. If (A,u) is an algebra with p # 0, and QDer(A, pu) =
gl(A) then

(1) dim(A4) < 3.

(2) If dim(A) = 1, then (A,p) = k. If dim(A) = 2, then A is a solv-
able Lie algebra, and if dim(A) = 3, then (A,pu) is a simple, skew
commutative, nonassociative algebra.

Conversely, if L is one of these algebras, QDer((A,u)) = gl(A).

Proof: gl(A) acts on AQ A via f-(v@w) = f#(v@w) for allv,w € A with f#
as above. By Lemma 3.6, gl(A) = QDer(A) implies gl(A)-Ker(u) C Ker(u).
Now the only proper subspaces of A® A, invariant under this action of gli(A)
are AN A, and A®A. Thus we have yu: A ® A — A with kernel 0,A A A
or A@A. Using dim(A) > dim(A® A) — dim(Ker(u)), an easy computation
shows that if Ker(u) = 0 or AAA, then dim(A) < 1, while if Ker(u) = A®A,
dim(A) < 3.

If dim(A) = 1, then AA A = 0, so that the only possibility for Ker(u) is 0,
and the only nontrivial, 1-dimensional algebra over a field is isomorphic to
that field. If dim(A) = 2 or 3, then the only possibility for Ker(u) is AQA
so p must be skew commutative. If dim(A) = 2, then dim(u(A ® A)) =1,
so that A is the 2-dimensional nonabelian Lie algebra. If dim(A) = 3, then
dim(u(A ® A)) = 3, so p must be surjective and it follows that A cannot
have a proper ideal.

Noting the gi(A)-invariance of the kernel of u for these algebras, the
converse is straightforward . O

The next theorem makes use of Theorem 5.11 (whose proof is independent
of this result).

Theorem 3.8. Let L be a Lie algebra such that GenDer(L) = gl(L). Then
QDer(L) = gl(L). Thus, either L is abelian, 2-dimensional solvable or 3-
dimensional simple. Conversely, if L is one of these algebras, GenDer(L) =
gi(L).

Proof: Assume GenDer(L) = gl(L) and that [L, L] # 0.

Claim: QC(L) = (I1). To see this, let K := QC(L) + [QC(L), QC(L)],
the ideal of GenDer(L) generated by QC(L) (Proposition 3.3). Then K is
an ideal of GenDer(L) = gl(L) containing I ..

Case 1: Z(L) # 0. Since Z(L) # L and K stabilizes Z(L), we get that
K = (Ip) since (Ir) is the only ideal of gl(L) that stabilizes a proper
subspace of L

Case 2: Z(L) = 0. By Theorem 5.11, QC(L) is commutative and there-
fore K is an abelian ideal in gl(L). It follows that K = (Ip).

By the above claim and Proposition 3.1, QDer(L)+ (I) = gl(L). But, since
(Ip,Ir,2I) € A(L), we know (I,) € QDer(L). Therefore, QDer(L) =
gl(L). The converse follows at once from Proposition 3.7. O

The following easy lemma provides a useful connection between quasideriva-
tions and Lie algebra cohomology.
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Lemma 3.9. Let L be a Lie algebra. For f,f' € Hom(L, L),
(1) f € QDer(L) if and only if 0f € BQ(L,IO/). ]
More specifically, (f,f,f') € A(L) if and only if 6f = 6(f' — f).
(2) If 5f € 7Z*(L,L), then, Va,y,z € L,
[, f([y: 2D] + [y, f([z, 2])] + [z, f([=,9])] = 0.
In particular, if (f,f,f') € A(L), then

[.CIJ', (fl - f)([yv z])] + [y’ (fl - f)([z,a:])] + [Z’ (fl - f)([x,y])] = 0.

4. QUASIDERIVATIONS OF LIE ALGEBRAS

Let L be a Lie algebra containing a (diagonalized) torus 7. Then
QDer(L) = QDer(L)y @ T - QDer(L)

(the second summand is comprised of the nonzero weight spaces). We also
take note of the subspace

QDerp (L) == {f € QDex(L) | £(T) = 0}.

Lemma 4.1. Let L be a Lie algebra and T C L a torus. Then

QDer(L) = QDer(L)o + QDerq (L) + ad(L).
Proof: Let f € QDer(L). For t,t' € T, (t- f)(t') = [f(t),t] so that ¢- f —
ad(f(t)) € QDery(L). Hence, T - QDer(L) C QDery (L) + ad(L). O

4.1. The structure of QDer(L)g. We consider the structure of
QDer(L)o for centerless Lie algebras.

Lemma 4.2. Let L be a directly indecomposable Lie algebra, T C L, a
torus with T = Ly and Z(L) =0. Then

QDer(L)y = QDerp (L) + (Ip)-

Proof: Let f € QDer(L)q and suppose (f, f, f') € A(L). Let B be a maximal
independent set in W(L). Since TNZ(L) = 0, B is a basis of T™* and so there
is a basis {t3 | f € B} of T' dual to B. For each f € B, let 0 # x5 € Lg.
For 8,7 € B, we have

[f (t8), 24] + [t8, f ()] = f([ts, zA))-
Since f € QDer(L)o ,we have that f(T) C T, and f(L,) C L, so that
Y (Ea))ay + () f (2y) = ¥(tp) f' ().

Thus, if § # 7, then y(f(tg)) = 0. It follows that f(tg) = cgtg for some
scalar cg. In particular, f acts diagonally on 7. Thus,

T:@Tc,

cel
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where I' is the set of characteristic roots for the action of f on T, and T, is
the root space for c¢. It suffices now to prove that || = 1, for, if T = T,
then

f =l € QDerp(L)o.

Claim (1): For any 0 # a € W(L), there is a unique ¢ € I’ such that
[T;,Ls] # 0. Proof: Suppose that [Ti,,Ls] # 0 and [T,, L] # 0, with
c1,c2 € I'. Then there exists ¢; € T, i = 1,2, such that «a(t;) = 1. Let
0 +# z,, € L,. For i = 1,2, we have

[f (ti), ma] + [ti; f(za)] = f'([ti; za)),

or

cito + f(w0) = f(w4).

Hence, ¢; = co, proving Claim (1).

For each c € T, let w(c) :={a € W(L) | [T, La] # 0}.
Claim (2): If o € w(c), for i = 1,2, with ¢; # co, then [Lq,, Lo, = 0.
Proof: take t; € T, such that a;(¢;) = 1. By Claim (1), we also know that
a1(ta) = ag(t1) = 0. In particular, oy + ag # 0, so that if [La,, La,] # 0,
we would have [Ly,,Lqa,] € T. But then, [t;,[La;;Las]] = [Lay, Las], for
i =1,2. By Claim (1), this can only happen if [L,,, Ly,] = 0, thus proving
Claim (2).

Now, for each c € T, let

H.:=T. + Z L,.
acw(c)

Then we have L = @, H, a direct sum as vector spaces. But, by the
above, He = Z1,(3_ 4. He) (equality holds since Z(L) = 0). Thus each H,
is an ideal and @@ . H, is an algebra direct sum. By the indecomposability
of L, T'| = 1. O

Lemma 4.3. Let L be a directly indecomposable Lie algebra, T C L, a
torus with T = Ly, Z(L) = 0, and dim(T') > 1. Then, if 0 #t € T, there
exist independent weights o, 3 € W(L) such that «(t) # 0 and B(t) # 0.

Proof: Fix a € W(L) for which «a(t) # 0 (« exists since T NZ(L) = 0) and
assume $(t) = 0 for all 3 € W(L), B ¢ («a). Suppose 8 € W(L) \ (o) and
0#~veW(L)N (). Since B+ & (a) but B(t) +(t) = v(t) # 0, it follows
that 3+~ & W(L), so that [Lg, L,] = 0. Let

T={teT|at) =0},
soT =(t)®T. Let

A=W+ Y Ip,
0£B€(a)
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and

Clearly, A is a subalgebra of L, L = A @ B as a vector space, and B
centralizes A. Since Z(L) = 0, B must be precisely Z(A) (the central-
izer of A in L) so that B is a subalgebra of L and hence, both A and B
are ideals. Thus, L = A & B, is an algebra direct sum, contradicting the
indecomposability of L. O

Lemma 4.4. Let L be a directly indecomposable Lie algebra, T C L a
torus with T = Ly, Z(L) =0, and dim(T") > 1. Then

QDer(L)y C Der(L).

Proof: Let f € QDeryp(L)o. For t € T, z € L, [t, f(x)] = f'([t,z]). Hence,
if x € Lo, a(t)f(z) = at)f'(z). Thus, if « #0, f(z) = f'(z), so f and f’
agree on [T, L.

It suffices to show that f'(7 N [L,L]) = 0, whence f'[j;, 1] = fli,), S0
that f € Der(L).

The space T'N [L, L] is spanned by products of the form [z,y] where,
for some o # 0, x € L, and y € L_,. Consider such z,y. By weights,
f([z,y]) = [f(z),y] + [z, f(y)] € Lo = T. Let now z € Ly for f # +a.
Using f'([z,2]) = f([z,2]) and f'([y,2]) = f([y,z]) and Lemma 3.9(2), we
get [2 (/' — ()] = 0, 50 that [f'([z )] = [([@u])] = 0. By
Lemma 4.3, we must have f'([z,y]) = 0. O

These lemmas give us the major result of this subsection.
Theorem 4.5. If L is a directly indecomposable Lie algebra, T C L a
torus with T = Ly, Z(L) =0, and dim(T') > 1, Then
QDer(L)o = Der(L)o + (I.).

Proof: By Lemmas 4.1, 4.2, and 4.4, QDer(L)y C Der(L)o & (Ir). The
reverse inclusion is clear. O

Corollary 4.6. Let L be a directly indecomposable Lie algebra with L #
[L,L], T C L a torus with T = Lo, Z(L) = 0. Then

QDer(L)o = Der(L)o S (IL)
Proof: By Theorem 4.5, we may assume 7' = (¢). Since L # [L,L], L =
(t) & [t, L] (vector space direct sum), and ¢ ¢ [L,L]. Let [t,L] = >_)_o L
with [t,z] = Az for x € Ly. Take (f, f, f') € A(L) with f € QDer(L)y. By
Lemma 4.2, we may assume f(¢) = 0. Since f’ may be arbitrarily redefined

on a fixed complement of [L, L], we may assume f’(¢t) = 0. Let x € L) with
A # 0. Since f € QDer(L)g, f(x) € Ly, so

A(@) = f'([t.2]) = [t, f()] = A f (@)
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Hence, f = f' and so f € Der(L)o. O

Corollary 4.7. Let L be a solvable Lie algebra, T C L a (not necessarily
diagonalized) torus with T = Lo, Z(L) = 0. Then

QDer(L)o = Der(L)o @ C(L),
and this is a direct sum as algebras. In fact, C(L) = Z(GenDer(L)).
Proof: We may assume that the base field is algebraically closed and, thus,
that T is diagonalized. (Note that the O-weight space is defined even if T
is not diagonalized.) Let L = P, L; with each L; directly indecomposable.

Then T splits accordingly and, by Corollary 4.6, QDer(L;)o = Der(L;)o ®
(Ir;) € Der(L)o ® Z¢(,;)(GenDer(L;)). Thus, using Lemma 3.4,

QDer(L)o C Der(L)o ® Z¢(z)(GenDer(L))

C Der(L)o ® C(L)

C  QDer(L)o.
Hence, we have equality throughout and C(L) C Z(GenDer(L)). But
Z(GenDer(L)) C Zgyr)(ad(L)) = C(L). O

4.2. Consequences of generation by special weight spaces. Recall
that a weight a € W(L) is called special if L,) does not contain a nontrivial
ideal of L. Note that [L(a)vL(a)’] g L(a)"

Lemma 4.8. If T C L is a torus and « s a special weight for T on L,
then
(1) dim(T) > 1.
(2) If M is a direct summand of L such that Lo N M # 0, then « is a
special weight for TN M in M.

Proof: To see (1), we need only note that, if a is a special weight, then
there must exist a weight which is linearly independent of «. Since an ideal
generated by an element of a direct summand stays in the summand, (2) is
clear. 0

Lemma 4.9. Let A, B be subspaces of a Lie algebra L such that L = A+ B,
[A,B] C B. If x € A is such that [z, B] = 0, then [L",x] = [A", x| for all
n>1.

Proof: We note first that [B,[A", z]] = 0 for all n > 1. This follows by
induction using

[B, [An7 (E]] = [Bv [A7 [An_17 fﬂm
[[B, A, (A", a]] + [A, [B, [A"1, a]]]
C [B,[A" )] + [4,[B, [A" 7, )]
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From this, the lemma also follows by induction using
[L", ] = [A4, [L"" 2] + [B, [L", 2] O

Lemma 4.10. Let T C L be a torus and o € W(L). Then « is special if
and only if, for all 0 # x € L), [z, Liy] # 0.

Proof: For z € L(a), [r,L(ay] # 0 implies [z, Lay] C (z) N Lay # 0, so

the sufficiency is clear.
For the necessity, put A = L(,), B = L(qy in Lemma 4.9. If 0 # = € A,
with [z, B] = 0, then (z) = (:c)-l—zn[L?a),x] C L(q), whence a is not special.
]

Lemma 4.11. Let L be a Lie algebra, and T C L a torus with T = Ly.
Suppose that Z(L) = 0 and that L is generated by special weight spaces.
Then, for any a # 0,

QDerp(L)q = 0.
Equivalently, T - QDers(L) = 0.

Proof: By Lemma 4.8, if L is generated by special weight spaces, then
this is true for any direct summand of L. Thus, we may assume that L
is indecomposable. Now take f € QDery (L), with o # 0. Let t € T,
0# B €W(L), and 0 # xg € Lg. Since f(T) =0, [t, f(zg)] = f'([t,zp]) so

we have

(4.1) (a(t) + B(1) f(zp) = B() f' (zp)-
Thus, if f(zg) # 0, « is a multiple of 3. Also, for 8 # 0, —«, f(xg )# 0 if
and only if f'(xg) # 0. In particular, f(L(ay) = f'(L(ay) = 0.

Equation (4.1) also gives f'(L_,) = 0. We show furthermore that
f(L_y) = 0. If x € L_,, then f(x) € T by weights. However, for any
B¢ (a), [f(2), Ls) € [ f (L)) +f' (Lasp) = 0,50 f(x) = 0 by Lemma. 4.3.
Note also, that this implies f(L)NT = 0. In addition, we now have, for any
B #0, and z € Lg, that f(z) # 0 if and only if f'(x) # 0.

Let H := T + L(,). Then H is a subalgebra of L and f(L) C L)

Let K := Nullspace(f). Since f € QDery(L),, K is T-invariant, whence
K is the direct sum of 7" weight spaces. We claim that K is a subalgebra
of L. For this, take v € Kg, y € K, with 8 # 0,7 # 0. If 3+ v = 0, then
[,y €T C K. 1§+ £ 0, we have f'[z,y] = [f(2),] + [, (1)] = 0, 50
flz,y] = 0, and again, [z,y] € K.

Since K D L,y, we have L = H + K.

Next, since [L(a)aL(a)’] - L(a)/,

[f(L); Liay] = [f (La))s Lay] € [Lia),f (Liay)] + f(Liay) = 0.
Finally, since L is generated by special weight spaces, we need only show
that these weight spaces are in the subalgebra K. For this, all that remains
is to show that f(L,) = 0 if v € (a) is special. If x € L, then f(z) €
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L(a) = L(Fy) and [f(l'),L(,y)l] = [f(:l}),L(a)/] = 0. But then, by Lemma 4.10,
f(z) # 0 would contradict the specialness of ~. O

As a result of Lemma 4.2, Theorem 4.5, and Lemma 4.11, we have:

Theorem 4.12. Let L be a directly indecomposable Lie algebra, T C L a
torus with T = Ly, and Z(L) = 0. Suppose L is generated by special weight
spaces. Then

QDer(L) = Der(L) & (I1). 0

Corollary 4.13. If L is a parabolic subalgebra of a split, simple Lie algebra
of rank > 1 over a field of characteristic 0, then

QDer(L) = ad(L) & (I1).
Proof: The parabolic subalgebras are complete [11, 20]. O

Corollary 4.14. Let L be a Lie algebra of dimension > 8 in characteristic
> 3. Suppose further that C(L) = (I1) and that L has a nonsingular trace
form on some representation. Then

QDer(L) = ad(L) & (I1).

Proof: (We outline the underlying ideas and refer the reader to [19, chapters
II, V] for necessary background details.) We may assume the base field
is algebraically closed. The trace-form assumption implies L is classical
[19, p. 28] (this uses the assumption characteristic > 3) and the fact that
C(L) = (I) then implies L is simple. By a theorem of Kaplansky [10,
Theorem 3], dim(L) > 3 implies rank(L) > 1 for such algebras and so the
simplicity of L implies all roots are special. Finally, Block [2] has shown
that Der(L) = ad(L) for these algebras. O

Remark 4.15. Corollary 4.14 is an extension of the result of Hopkins [7]
that these algebras have no nontrivial antiderivations, that is, f € Hom(L, L)
such that (f, f,—f) € A(L). This follows from the above since Der(L)+(Ir)
contains no antiderivations in characteristic > 3.

Corollary 4.16. Let L be a Lie algebra as in Theorem 4.12 except that L
need not be indecomposable. Then

QDer(L) = Der(L) @ C(L), direct sum as Lie algebras.
Proof: By Lemma 3.4 and Theorem 4.12, we have QDer(L) C Der(L) +

Zor)(QDer(L)) C Der(L)+C(L) C QDer(L). Since it is clear that Der(L)N
C(L) = 0 for centerless Lie algebras, the result follows. O

Remark 4.17. Corollary 4.16 shows that for such a Lie algebra, L, C(L) C
Zqper(r)(Der(L)). Example 5.7 shows that this is not the case for general
centerless Lie algebras.
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Let L = T + N, with T a torus, N a nilpotent ideal, dim(T) =
dim(N/[N, N]), and let U be a T-invariant complement of [N, N] in N.
Write U = ®,U,, where the U, are 1-dimensional weight spaces for T'. Tt
is well known that one can associate a graph I'(T, N) to T + N as follows:
vertices of I'(T, N') are the weights of T on U while an edge joins the weights
a and S if and only if a4+ is a weight. Since U is isomorphic to N/[N, N] as
a T-module, T'(T, N') does not depend on the choice of U. (See, for example,
[12] where we associate Lie algebras to arbitrary graphs.)

Corollary 4.18. Suppose that L = T + N s a semi-direct sum with T
a torus, N a nilpotent ideal, dim(T) = dim(N/[N,N]), and Z(L) = 0.
Suppose, further, that the weights of T in N/[N,N] are disjoint from those
in [N, N] and that T'(T,N) has no isolated vertices. Then,

QDer(L) = ad(L) & C(L).
If T(T,N) 1is connected, then
QDer(L) = ad(L) & (I).

Proof: Since Z(L) = 0, and I'(7, N) has no isolated vertices, L =T + N is
complete, so that Der(L) = ad(L) (see [11] or [12]). Let U be a subspace of
N such that N = U + [N, N]. Then U generates N, and the weights of T
on U are special, so Corollary 4.16 gives the first statement. If I'(T, N) is

connected, then L is indecomposable and the second statement follows from
Theorem 4.12. O

The condition in Corollary 4.18 that the weights in N/[N, N| and [N, N]
are disjoint is superfluous in characteristic 0 since it is already implied by
the other hypotheses.

As a typical application, we get

Corollary 4.19. Let N be a nonabelian free-nilpotent Lie algebra, of di-
mension > 1, over a field of characteristic p, i.e., N = F/F"™ where F is
free and n > 2. Let T be a mazximal torus of Der(N), and let L be the
semidirect sum T + N. If either p =0, or p > n,

QDer(L) = ad(L) & (I1).

Remark 4.20. The conclusion of Corollary 4.19 fails for dim(N) = 1. In
that case, L is the 2-dimensional, nonabelian Lie algebra and QDer(L) =
gl(L) (Theorem 3.8).
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5. QUASI-CENTROIDS OF LIE ALGEBRAS

5.1. Preliminary remarks. The centroid C(L) is an associative algebra
and for centerless L it is commutative. As we note below, QC(L) is not
closed under composition in general. Indeed, one of our main results is that
QC(L) is a commutative algebra if L is centerless.

First we have

Lemma 5.1. [C(L),QC(L)] € Hom(L,Z(L)). Thus, if Z(L) = 0, C(L)
centralizes QC(L).

Proof: Let f € C(L), g € QC(L), =,y € L. Then [[f,gl(x),y] =
[flg(@),yll = [g(f()),y] = f(lg(x),y]) — [f(2),9(y)] = [f(g(z),y]) —
f([z,g(y)]) =0. [

Note that QC(L) is a Jordan algebra, using the operation, fi; e fo =
(fife + faf1)/2 for any elements fi, fo € QC(L). It follows that QC(L)
is a Lie algebra with the operation [fi, fo] = fife — faf1 if and only if
QC(L) is also an associative algebra (with respect to composition). We shall
show, for centerless L, that QC(L) is commutative and so, in particular, is
closed under composition. However, it need not be closed under composition
otherwise, not even for dim(Z(L)) = 1, as the following example shows.

Example 5.2. Let N be the Heisenberg algebra, of dimension 2n+1. Then,
with respect to the usual basis (see Section 2), QC(NN) has the form

A B 0
C At 0
e f g

where A, B, C are n x n matrices, with B, C' skew symmetric, and e, f, g are
field elements. Hence, QC(L) is not closed under composition.

Remark 5.3. Note by Lemma 3.1(3) that we may regard QC(L) as an
L-submodule of Hom(L, L).

Lemma 5.4.
(1) For z € L, f € QC(L), [z, f(z)] = 0 and so ad(z) and ad(f(x))
commute.
(2) Let f € QC(L),z,y € L. Then (z- f)(y) = —(y- f)(=).
(3) Let f € QC(L), x € L. Then (ad(f(x))™ = (ad(x))™ o f™ for all
m > 0.

Proof: (1) and (2) are easy verifications, while (3) follows by induction on

m using (1). O

Lemma 5.5.
(1) If f € C(L), then Ker(f) and Im(f) are ideals in L.
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(2) If L is indecomposable, and if 0 # f € C(L), is such that x* does not
divide the minimal polynomial of f, then f is invertible.

(3) If L is indecomposable and C(L) consists of semisimple elements then
C(L) is a field.

Proof: (1) is clear. (2) follows from (1), since the minimal-polynomial hy-
pothesis forces L = ker(f) @ Im(f). (3) follows from (2). O

5.2. On commutativity of QC(L). We show that QC(L) is commutative
for centerless L.

Notation. Recall that a Cartan subalgebra, H, of a Lie algebra, L, is
a nilpotent subalgebra of L which equals its normalizer. Also, L = Ly &®
Ly, where Lg is the Fitting null-component, and L1 = ) L1, is the
Fitting 1-component of L with respect to ad(H), where L, is the Fitting
1-component of L with respect to ad(z) (see [9, p.39 et seq]). Further, H
is a Cartan subalgebra of L if and only if H is nilpotent and is the Fitting
null-component of ad(H) (see [9, p.57]).

Also, H acts on QC(L), (Remark 5.3) and we let QC(L)p, QC(L); denote
the Fitting null and 1-component of QC(L) under this action.

First we show

Lemma 5.6. Let H be a Cartan subalgebra of L. If f € QC(L), then
f(H) C H.

Proof: By Lemma 5.4, (1) and (3), for all j >0,y € L,

(ad(y))’** o f = (ad(y))’ o ad(f(y)) = ad(f(y)) o (ad(y))’,
so that f preserves the Fitting null-component of ad(y) for all y € H. O

Benoist states the above result for the case of semisimple Lie algebras
over fields of characteristic 0 [1, p.903].

Example 5.7. It is not necessarily the case that QC(L) preserves L;. A
counterexample, useful for other purposes, is as follows: Let L have a basis
xo,...,T5 With

[0, 21] = 21, [20,73] = 3, [w0,25] = 5,

[T1,72] = x5, [73,74] = 5,
and with other products 0. Then C(L) is spanned by I, and fi, fo, where
fi(wo) = x2, fi(z1) = —w5, f2(wo) = w4, fo(w3) = —x5, while otherwise,
fi(z;) = 0. And QC(L) is spanned by C(L) and f3, where f3(z1) = —x4,
f3(x3) = zo with f3(x;) = 0 fori # 1,3. A Cartan subalgebra, H, is spanned
by xg,z2,x4. With respect to this Cartan subalgebra, L; is spanned by
r1,x3,T5, but f3(L1) € L.

Referring back to Remark 4.17, we note that L has a derivation d such

that d(xe) = x4, d(x3) = x1, while d(z;) = 0 if ¢ # 2 or 3. Note that
fiod#do f1, so that C(L) # Z¢(ry(Der(L)).
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In view of the next Lemma, it is also worth noting that f3(H) = 0 and
f3(L1) C Z(H).

Lemma 5.8. Let H be a Cartan subalgebra of L and let H & Ly be
the Fitting decomposition of L for the action of ad(H) (H = Lg). Let
QC(L)o + QC(L)1 be the Fitting decomposition of QC(L) regarded as an
H-module. (see Remark 5.3) Then

(1) QC( Jo(L1) € L.

(2) QC(L):(H) =0
(3) QC(L)1(Ly) C Z(H).
(4) (H-QC(L)o)(L1) = 0.
(5) L1 - QC(L)o = 0.

Proof: The map QC(L)® L — L such that f®z — f(z) is an L-map, while,
for L-modules, M, N, one has My@N1+M;®Ny C (M®N);. Thus (1) holds
and QC(L)1(H) C Ly. Then, by Lemma 5.6, QC(L)1(H) C Ly N H = 0,
which is (2).

(3) It f € QC(L)s, then by (2) [H, f(L1)] = [f(H), L] = 0. Thus f(Ly) C
Ly = H and also f(L) C Z(H).

(4) Using (2) of Lemma 5.4 and (1) of this lemma,

(H - QC(L)o)(L1) = (L1 - QC(L)o)(H) € QC(L)1(H) = 0.

(5) Suppose that L; - QC(L)g # 0. Then, by the proof of (4), (L; -
QC(L)o)(L1) # 0 and then, noting that Ly - QC(L)o C QC(L)1, (3) implies
that [(L1 - QC(L)o)(L1), L1] # 0. Hence there exist x,y,z € L1, f € QC(L)y
such that [(z - f)(y), 2] # 0. We may assume that the ground field is alge-
braically closed and so, without loss of generality, that x,y, z are in weight
spaces for H. Say = € Lq,y € Lg,z € L, for nonzero «, 3,7. Since, by
(3), 0 # (z- f)(y) € H it follows that a + = 0. However, using (2) of
Lemma 5.4, and the QC-property

0# [(z- )W) 2l =y, (& 2] = =ly, (z- H)@)] = =[(z- /)(y), 2],

from which it follows, similarly, that o+ = 0 and 8 4 v = 0, which yields
the contradiction o« = 8 =+ = 0. O

Lemma 5.9. If Z(L) =0 then QC(L)y = C(L).

Proof: Since C(L) = {f € Hom(L,L) | L- f = 0}, we have C(L) C QC(L)o.
We must show that L - QC(L)y = 0. By Lemma 5.8 (5), it suffices to
show that (H - QC(L)o)(H) = 0. But, by the quasicentroid property and
Lemma 5.8 (4),

[(H - QC(L)o)(H), Ln] = [H, (H - QC(L)o)(L1)] = 0.
Thus H - QC(L)o(H) C Z(L) = 0. 0
Lemma 5.10. If Z(L) =0, then L; - QC(L); C QC(L)o.
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Proof: Suppose there exists € Ly, f € QC(L); such that = - f ¢ QC(L)o.
We may assume the base field algebraically closed and so, without loss of
generality, assume that x and f lie in weight spaces for H. Take x € L,
f € QC(L)p for nonzero a, B then, since z- f ¢ QC(L)o, we have a+ 3 # 0.
Thus, since (z- f)(H) = 0 by Lemma 5.8(2), there exists y € L., with v #0
such that (z- f)(y) # 0. By Lemma 5.8(3), a+ 3+~ = 0. Also, there exists
z € Lg, with 6 # 0, such that [(z - f)(y), 2] # 0 or else, by Lemma 5.8(3),
(z- f)(y) € Z(L) = 0. By Lemma 5.4(2) and the QC property,

0#[(z-f)y), 2] =y, (= f)(2)] = [y, (z- )@)] = =[(z- f) (), z]-
From (x - f)(z) # 0, we conclude a + 8+ 6 = 0, so that v = 4. Now
(2-f) € QC(Ly), else 6+ = 0, which would imply & = 0. Then (2 f)(y) # 0
yields § ++v+ 8 = 0 by Lemma 5.8(3). Hence a = v = ¢ and f = —2a. Since
a+ B #0,f(y) = f(z2) =0, again, by Lemma 5.8(3). Then (z - f)(y) =
[z, f(y)] — f([z,9]) = —f([z,y]) so

0 [(z- f)y), 2] = =[f([z,9]), 2] = =z, 0], f(2)] = O,

which is a contradiction. O

Theorem 5.11. If L is a Lie algebra with Z(L) = 0, then QC(L) is a
commutative, associative algebra.

Proof: We may assume the base field algebraically closed. Let QC(L)g
and QC(L); be as above. By Lemma 5.9 and Proposition 5.1, we have
[QC(L)o, QC(L)] = [C(L),QC(L)] = 0. Now it follows from Lemma 5.8, (2)
and (3), that QC(L)1 o QC(L)1 = 0, so that [QC(L)1,QC(L)1] = 0. O

We have actually proved more about the structure of QC(L).

Theorem 5.12. If L is a Lie algebra with Z(L) = 0, then QC(L) =
C(L)® A, with C(L)yoAC A and Ao A=0.

Proof: In the above discussion, A = QC(L;). That Ao A = 0 is shown in
the proof of Theorem 5.11. O

5.3. The quasicentroid, the radical, and the maximal nilpotent
ideal. This section is concerned, primarily, with the invariance of classi-
cally important ideals of L under the action of QC(L). Example 5.7 shows
that the derived algebra of L need not be invariant under QC(L), even if
L is centerless. However, we show that Rad(L) and NilRad(L) are invari-
ant under QC(L), and further, that the image of a nilpotent QC is always
contained in the nilradical.

Theorem 5.13. QC(L) preserves NilRad(L).

Proof: Take f € QC(L), x € NilRad(L). Then f(x) € Tr(L,NilRad(L)),
so that K = (f(z)) + NilRad(L) is an ideal in L. Since ad(z) is nilpotent,
it follows from (3) of Lemma 5.4, that ad(f(x)) is nilpotent, which implies
that K is nilpotent. Hence K = NilRad(L) whence f(z) € NilRad(L). O
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The invariance of the radical depends on the following easy observation.
Lemma 5.14. If L is a Lie algebra then Tr(L,Rad(L)) = Rad(L).
Proof: [Tr(L,Rad(L)), Tr(L,Rad(L))] C Rad(L). O

This yields a result about a class of generalized derivations slightly larger

than QC(L).
Lemma 5.15. Let L be a Lie algebra. If (f,f',0) € A(L), then
f(Rad(L)) C Rad(L).

Proof: Since [f(Rad(L)),L] = [Rad(L), f'(L)] € Rad(L), f(Rad(L)) C
Tr(L, Rad(L)) = Rad(L). 0

Our investigation of the image of nilpotent QCs is motivated by the fol-
lowing observation about the centroid:

Lemma 5.16. Let L be a Lie algebra, f € C(L) such that f™ = 0 with
m > 0. Then f(L) is an ideal of L and satisfies f(L)™ = 0. In particular,
(L) C NilRad(L).

Proof: As noted in Lemma 5.5, f(L) is an ideal. The centroidal property of
[ also implies f(L)™ = f™(L™) = 0. O

Example 5.17. It is easy to construct centroidal elements of arbitrary
nilpotency index m even in centerless algebras: Let L be a Lie algebra over
k with Z(L) = 0. For any m > 0, let L{m} := L[x[t]/(t™)] (= L®k&[t]/({t™))
where ¢ is an indeterminant. Then I ® (multiplication by t) is an element
of C(L{m}) which is nilpotent of index m. This construction with L simple
is a mainstay of [1].

The image of f € QC(L) need not be an ideal (see f3 in Example 5.7).

However, we still have

Theorem 5.18. Let L be a Lie algebra, f a nilpotent element of QC(L).
Then (f(L)) is nilpotent, and so f(L) C NilRad(L).

For the proof of Theorem 5.18, we will need only the case m = 2 of the
following theorem. (We remind the reader of our overall hypothesis that
characteristic # 2.) However, the full statement of Theorem 5.19 presents
an interesting analogue to Lemma 5.16.

Theorem 5.19. Let L be a Lie algebra over a field, k, of characteristic p.
Suppose f € QC(L) satisfies f™ = 0 with m > 0. If either p = 0, or
0 <m<p, then (f(L))™=0.

Notation. We represent by [z1,z2,...,2,] the left-associated monomial

[[ [[331,:82],:6‘3],...],3?”].
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Proof: We need only show that, for all n, and z; € L, 1 < i < n,
[x1,z2,... ,xy] = 0, whenever z; € f(L) for at least m indices i. In turn,
it suffices to show that [f¢(z1), f&(z2),..., fo(x,)] =0 if Y1 e; > m.
Further, since [f¢ (z1), f¢2(x2)] = [z1, f€* 12 (22)], we may assume e; = 0.
Thus, the goal is to prove, for Z?:z e; > m,

(5.1) (21, f*(22),..., [ (xn)] = 0.

We prove (5.1) by induction on n.

If eo > m, then [z, f¢2(x2)] = 0; so (5.1) holds for n = 2.

Let n > 2 and suppose (5.1) holds for products of length < n.

For convenience in what follows, we abbreviate the sequence f¢(x4),...,
fer(zy,) by ®; these n — 3 factors will never change in our manipulations.
We also employ {Z}, {7}, {S}, {Q}, and {N} respectively, to indicate
that an argument used the induction hypothesis, the Jacobi identity, skew-
commutativity, the QC relation, or equation (), respectively.

The case e3 = 0 will be handled first. We claim that, for ea+Y 1" , €; > m,

(5.2) [:El,fez(l‘g),w;;,@] =0.

Proof of (5.2). We have

[wlafEQ(xQ)vx&(I)] = [w3’fe2($2)’x1’¢]+[[$1’w3]’f62($2)v¢)] {j}

= [333,fe2(.7)2),331,q)], {I}
and
[wlafeQ(l'?)ax&(D] = [fe2(x1),$27333,(1)] {Q}
= _[$23f62(x1)7x33q)]‘ {S}
Applying these two relations,

['rlafe2($2)a$3aq)] = _[x%fe?(xl)ax&@]

= [ £ (1), 9]

= [%1,]062(:63),1‘2,@]

= [$2,f62($3),x1,¢']

= _[w3af62($2)a$13¢)]

= —[a1, f2(x2), 23, D]

from which (5.2) follows.

We always have

(5:3) [y, [ (x2), fP(w3), ] = —[w2, [ (21), f (w3), @] {2}, {s}

Next we claim, for Y 1", e; > m,

(5-4) (21, [ (w2), f(23), @] = [m1, [ (w3), f* (w2), D].
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Proof of (5.4):
[z1, [ (x2), [ (73), ]
= [331,f63( 3), [€2(x2), @] + [ (x3), f2(12), 21, P] {7} {S}
= [z1, f3(x3), [ (x2), @] + [x3, fT3(x2), 1, D] {9}
= [z1, f®(x3), f©(z2), @] + 0. {5.2}

And, for Y ,e; > m,
(5.5) [z1, f(x2), [ (23), ®] = —[z3, [ (22), [ (1), B].
Proof of (5.5):

[xl’f€2(x2)’f€3($3)7@] = [Il’fes(w3)’f€2(x2)’¢)] {54}
= _['r37f63(x1)’f62($2)’¢'] {5'3}
= _[x3’f62($2)afe3(x1)7q)]' {5'4}
And, for 7" , e; > m,
(56) [3:17 fe2(x2)a fes(m?))a q)] = —[5171, f€3(x2)7 fe2(x3)7 Q)]
Proof of (5.6):
[xl’f62(x2)’f€3($3)’@] = _[x37fe2(x2)’f63($1)’¢'] {5'5}
= [x27f62(w3)7f63(x1)7q)] {5'3}
= _[x17f62(x3)’f63($2)’¢'] {5'5}
= _[xl’fes('%?)vfez(x?))aq)]' {5'4}
Also, for Y 7" 5 e; > m with ez +e3 > 1,
(5.7) (1, £ (w2), F° (x3), B] = —ealw1, 2T (22), f(x3), D).

Proof of (5.7). Proof is by a (sub)induction on es.

When €2 = Oa we have? [$1,$2,f€3($3),@] = [[wl,wg],f63($3),¢)] =0 by
the main induction (on n).

Assume e2 > 0 and that the corresponding result holds for eg — 1. We
have,

[z1, € (22), [ (3), D]

= [f(x1), f2 (@), [ (x3), D] {Q}
= [f(x1), f3(x3), f2~ (x2), D]

+ [fe8(x3), f2 Haa), f(x1), D {7},{s}
= [$17f63+1($3)7f62_1(x2)7CD]

+ [$33f62+63 1(w2)af( )’(P] {Q}
= [z1, f2 7 (z2), f63+1(903),¢']

- [xl f62+63 ( )7f($3)7q)] {54}7{55}
= —(e2 — [y, fT (), f(x3), ®]

— [w, fT N (ay), f(x3), P] {7}

)
= _62[1‘17 fe2+63_1(x2)7 f(x?))a (I)]
Hence (5.7) holds.
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Finally, for es 4+ e3 > 1,

—62[331, f62+es—1(x2), f(x3)7 CI)] = [xla fe2 ('TZ)a fe3 (‘T3>7 (I)] {57}

= _[1.17]083(3:2)7‘)('62(3)3)7@] {56}

= eglwy, [T (x2), f(23), @] {5.7}

Since either the characteristic, p, is 0 or es + e3 < m < p, this yields
[x1, f2(z2), f®(x3), ®] = 0, completing the proof of Theorem 5.1. O

Proof of Theorem 5.18: Observing that f(Z(L)) C Z(L), we see that f
naturally induces f € QC(L/Z(L)) wherein f(z + Z(L)) = f(x) + Z(L).
Since NilRad(L)/Z(L) = NilRad(L/Z(L)), f(L) C NilRad(L) if and only if
f(L/Z(L)) C NilRad(L/Z(L)). Thus, we may assume that Z(L) = 0.
We have f = fo + f1, with fo € C(L), f1 € A, as in Theorem 5.12. Say
m = 0. Then 0 = (fo + f1)™ = f§* + mfy* ' f1. Since f§* € C(L) and
mfi~f1 € A, fi* = 0. By Lemma 5.16, fo(L) C NilRad(L). Since f7 =0,
fi(L) € NilRad(L) by Theorem 5.19. O

It follows immediately that

Corollary 5.20. Semisimple Lie algebras have no non-zero nilpotent QCs.
O

Corollary 5.20 also follows from the “QC(L) = C(L)” theory of the next
subsection and results of Melville [14].

5.4. Relations between QC(L) and C(L) for centerless Lie algebras.

Lemma 5.21. Let Z(L) = 0 and f € QC(L) and suppose x> does not divide
the minimal polynomial of f. Then L = Ker(f) ® Im(f), a direct sum of
ideals.

Proof: The hypothesis on the minimal polynomial implies at least a vector
direct sum L = Ker(f) & Im(f). Also, [Ker(f), f(L)] = [f(Ker(f)),L] =
0. Since Zr(Im(L)) N Zg(Ker(L)) = Z(L) = 0, we must have Ker(f) =
Zr,(Im(L)) and Im(f) = Zz(Ker(L)). If follows that that Im(L) and Ker(L)
are ideals. O

Corollary 5.22. If f € QC(L) is semisimple, and L is centerless, then
fe ZC(L)(GenDer(L)).

Proof: We may assume the base field is algebraically closed and, by Lem-
ma 3.4, that L is directly indecomposable. Let A be a characteristic root of
f. By Lemma 5.21, Ker(f — A1) = L (since Ker(f — A1) # 0). That is,
f=A. O

Our first instance of equality in (1.6) is given by

Theorem 5.23. If L is a centerless Lie algebra for which C(L) = (Ir),
then QC(L) = (I).
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Proof: We may assume that the base field accommodates a Cartan subal-
gebra for L. By Lemma 5.9, it suffices to show that QC(L); = 0. (See
Lemma 5.8 for notation.)

Claim: L; - QC(L); = 0. Suppose the contrary. Then, by Lemmas 5.9
and 5.10, there exist x € L; and f € QC(L)y, such that - f = I,. By
Lemma 5.8, f(H) = 0 and f(L;) C H, and so, by Theorem 5.19, (f(L)) is
abelian. Then,

H=1I.,H)=(z- f)(H)C [z fH)]+ f(L) = (L),

but a Cartan subalgebra of a nonabelian algebra cannot be contained in an
abelian ideal, proving the claim.
Now, by Lemma 5.8, Lemma 5.4(2), and the Claim,

QC(L)1(L) = QC(L)1(L1) = (H - QC(L)1)(L1) = (L1 - QC(L)1)(H) = 0.
O

Note that C'(L) = (I1,) means that the centroid coincides with the base
field; algebras with this property are called central [9, p. 291].

If all of the elements of the centroid are semisimple, we move to the
algebraic closure of the base field and the centroid may be diagonalized.
Then L is a direct sum of weight spaces for the centroid, each of which is
an ideal satisfying the hypothesis of Theorem 5.23. So we have,

Corollary 5.24. If L is a centerless Lie algebra over a perfect field such
that every element of C(L) is semisimple, then QC(L) = C(L). O

The next lemma includes a key to proving equality in inclusion (1.4) for
centerless Lie algebras.

Lemma 5.25. Suppose (f,—f,0),(f,f,f") € A(L). Then Vx,y,z € L,

[z, [y, 2D] = [, [f () 2]] = [, [y, F(2)],
(. [y, 2] = [, f'([y; 2]

Proof: For convenience, let f’ = 2g. As in the proof of Theorem 5.27, we
have

(5.8) 9([z,y]) = [f(2), 9] = [z, f(y)]-
Observe first that Va,y, 2z € L,

[9([z,9]),2] = [If(2),y],7]
[ (=), 2], 9] + [£ (), [y, ]

]
= lg(lz, 2D), 9] + [, f(ly, 2])],

8

so that Vx,y,z € L,
(5.9) [9(l, 91), 2] + [9([2, 2]), y] = [=, f(ly, 2D)] = 9([=, [y, 2]]).
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Adding the three equations obtained from (5.9) by cyclically permuting
x,y, z, and using (5.9), we get Vx,y,z € L

2([g([=,y]), 2] + [9([z, 2]), y] + [9([y, 2]), =])
= g([z, [y, 2] + [y, [z, 2] + [7, [z, ]]) = 0.
Thus, Vz,y,z € L,
(5.10) l9([=,y]), 2] + [9([z, 2]), y] = —[9([y, 2]), «] = [z, g([y, 2])]-
Comparing (5.10) with (5.9), we have Vx,y,z € L,

[z, f([y, 2D] = [, 9([y, 2])]-

Using (5.8),
[z, f([y, 2])] = [z, [f(y), 2]] = [=, [y, F(2)]],
and
f(l2ly, 21]) = 29([2, ly, 2]]) = 2[z, f([y, 2])] = 2[z, 9([y, 2])] = [z, F'([y 2])]-
O
Thus we have
Proposition 5.26. Suppose (f,—f,0),(f, f,f") € A(L).
(1) If Z(L) =0 then f € C(L).
(2) If L =1L,L] then f'e C(L). O
As an immediate consequence of Proposition 5.26(1), we get
Theorem 5.27. If Z(L) =0 then QC(L) N QDer(L) = C(L). O

Theorem 5.28. If Z(L) =0 and L = [L,L], then QC(L) = C(L).

Proof: We may assume the base field sufficiently large for L to admit a
Cartan subalgebra H.

Considering the action of L on QC(L), let N := Tr(QC(L),C(L)). By
Lemmas 5.9 and 5.10, L1 C N. Hence L/N = (H + N)/N is nilpotent.
Then, since [L/N,L/N] = L/N, L = N. Thus, QC(L); = H - QC(L); C
C(L) = QC(L)g, whence QC(L); = 0. O

Definition. We say that a subalgebra J of L is taut if the intersection of
J with any abelian ideal of L is 0.

Conditions that ensure tautness include any of the following:
(1) JNNilRad(L) = 0.
(2) 0#£ z € J= (ad(x))? # 0.
(3) J is a torus acting faithfully on L.

Note also, if L has a taut Cartan subalgebra then Z(L) = 0.
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Theorem 5.29. Let L be a Lie algebra with a taut Cartan subalgebra.
Then QC(L) = C(L).

Proof: Let H be a taut Cartan subalgebra of L. Suppose QC(L) # C(L),
then there exists f # 0 in QC(L);. Then f(L) C H and f(H) = 0 by (2)
and (3) of Lemma 5.8, so that f2 = 0. By Theorem 5.19, (f(L)) is abelian,
so that H has a nonzero intersection with an abelian ideal, contradicting
the tautness of H. O

Lemma 5.30. Let L be a Lie algebra with a taut Cartan subalgebra. If
0+# f € QC(L) = C(L), then f cannot be nilpotent. In fact, the minimal
polynomial of f cannot be divisible by x2.

Proof: Let H be a taut Cartan subalgebra of L. Suppose f € QC(L) has
minimum polynomial 22P(xz). Letting g = fP(f) € C(L), we have g?> = 0.
By Lemma 5.16, g(L) is an abelian ideal. Since g(H) C H (Lemma 5.10),
g(H) =0. Then g([H,L]) = [g(H), L] =0. However L = H +[L, H], so this
implies g = 0, which is a contradiction. O

Corollary 5.31. Let L be a directly indecomposable Lie algebra over a
perfect field with a taut Cartan subalgebra. Then QC(L) is a field in
Z(GenDer(L)).

Proof: By Lemma 5.30, QC(L) consists of semisimple elements. So, by The-
orem 5.29 (or by Corollary 5.22), QC(L) = C(L). By Lemma 5.5(3), C(L) is
a field. That C(L) centralizes GenDer(L) follows from Corollary 5.22. [

A torus as in Section 4.2 (i.e., L = Tj, and Z(L) = 0) is a taut Cartan sub-
algebra. This, in addition to Proposition 3.3(1), allows us to bring the above
results together with those of Section 4. For example, using Corollary 4.16
we have:

Theorem 5.32. Let L contain a torus, T, with T = Lgy. Suppose that
Z(L) =0, and that L is generated by special weight spaces. Then

GenDer(L) = Der(L) & C(L),

a direct sum as Lie algebras. O
and:

Theorem 5.33. If L is a parabolic subalgebra of a split simple Lie algebra
of rank > 1 owver a field x of characteristic 0, then

GenDer(L) = ad(L) ® (I) ~ L& k. 0
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6. INVARIANCE OF THE RADICAL UNDER GENERALIZED DERIVATIONS.

We prove the result in the section title for Lie algebras in characteristic
0. We shall need the following lemmas.

Lemma 6.1. Let L be a semisimple Lie algebra over a field of character-
istic zero. If (f,f,0) € A(L), then f =0.

Proof: We may assume the algebra simple and the ground field, x, alge-
braically closed. If rank(L) > 1, the result follows from Theorem 4.12.
That A(sl2(x)) has no nonzero elements of the form (f, f,0) is a simple
computation. O

Lemma 6.2. Let S be a subalgebra and K an ideal in L such that L =
S+ K is a semidirect sum. Suppose (f,f,f') € A(L) and k € K. Define
h: S — S by

h(s) = f([s,k]) — f'([s,k]) (mod K)
for s € S. Then (h,h,0) € A(S).

Proof: By Lemma 3.9(1), 0f = (f' — f) o p € B%(L,L) N B%(L,L). Using
Lemma 3.9(2), if s,s' € S,k € K,
[s. (f" = A" kD] + [(f = f)([s,K]), 8T = 0 (mod K). O

Theorem 6.3. Let L be a Lie algebra over a field of characteristic 0, and
let K be an ideal in L such that L/K is simple. Then, for any f €
QDer(L), f(K) C K.

Proof: Suppose false and let L = S + K, with S simple, be a counterex-
ample. Since K is self-transporting, any QC of L preserves K. Hence, by
Proposition 3.3(1), there is some (f, f, f') € A(L) with f(K) € K.

Let P = {(f,f,f") | (f,f,f) € A(L)}. Then P is an S-module via
s-(fy f, f)=(s-f,s-f,s-f'). Let M denote the submodule {(f, f, f') €
A(L) | f(K) C K}. Let N be an S-module complement to M in P, so that
P =M & N. By hypothesis, N # 0, so let (0,0,0) # (f, f, f') € N.

By Lemmas 6.1 and 6.2, for all s € S, k € K,
f([s,k]) = f'([s, K]) = [s, f (k)] mod (K),

the latter equivalence by the quasiderivation property. In particular, for all
s€S, (s f)(K)CK,sothat s-(f,f,f') € MNN =0. Thus,

!
S - f = 8- f _= O
One, of many, useful consequences is

[£(s), 2] = [s, (f = HH@)],

forse€ S,z € L.
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Let f: S — S be determined by f(s) = f(s) mod (K). Since S is simple,
and S - f =0, it follows by Schur’s Lemma that f = cIg for some scalar c.
Reassigning (f, f, f) := (f — eI, f — eIy, f' — 2¢I1,), we force

f(8) C K,

while retaining the properties S-f =S5 f' =0 and f(K) Z K.

We define a nonascending sequence of subspaces

L:K()DKl Do DKmDKm+1 :Km+2:"'

wherein, for i > 0, K; = {k € K | f(k) € K;_1} and m + 1 is the minimal
integer such that f(K,,+1) C Kp+1. Note that K3 = K. Since S- f =0, K;
is an S-submodule of L. Since f induces S-injections K;/K;11 — K; 1/K;,
for i > 1, we see inductively (on ¢) that S - K;/K;11 = K;/K;+1. This
implies, in particular, that L% C ), K.

We claim that, for all 4, j,

[Ki, K] C Kiyj.

Proof of claim: By induction on ¢ + j. The statement is clear for ¢ + j = 0.
Assume that i + j > 1 and [Ky, Ky] C Ky for 0 <i' 45" <i+j. We
have to show f([Kla KJ]) - Ki—l—j—l- Since, f([KlaK]]S) - LS - Ki—l—j—h we
need only show [S, f([K;, K;])] C Kitj—1. We use

[Sa f([K’Z’KJ])] c [S? (fl - f)([K'LaK]])] + [Sv fl([K'LaK]])]a

and deal with each of the terms on the right. First,
According to whether ¢ = 0, or @ > 0, respectively, use K; C K;_, or
K; C K;_1, respectively, together with the induction hypothesis, to conclude
[K;, K] C K;4;—1; but, again by the induction hypothesis, [Kq, K;y;_1] C
K; ;1. Second,

S, £1([K5, K;])] € f'([KG, K] C [ (KG), K+ [K, f(K))]
According to whether i = 0, or i > 0, respectively, use f(K;) C Ko and K; C
K;_1,or f(K;) C K;_1, respectively, together with the induction hypothesis,
to conclude [f(KZ),KJ] g Ki-l—j—l; similarly, [Kz,f(KJ)] g Ki+j—1- Thus,
the claim has been established.

One consequence of the last claim is that K; is an ideal in L for all 7. In
particular, K,,1 is an ideal stabilized by f. Clearly, L/K,,11 also stands
as a counterexample to the theorem, so that we may assume K1 = 0.

Consequently, L® = 0.
Next, we claim that, for « > 0 and k € K,

f'(k) = f(k) mod (K;y1).
Proof of claim: Since, [S, K;] = K;, the observation
(f' = £, k) = [s, (f' = £)(R)] = [£(s), k] € [K1, K] C Ky,
for s € S, k € K, establishes the claim.
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Since [K;, K;] C K4, for all i, j, we can make
IA/:K()/KH (o) K1/K2 b --- D Km—l/}'{m

into a graded Lie algebra by a standard construction. Namely, for x € Kj,
Yy € Kj,

[+ Kip1,y + Kjp1] = [2,y] + Kiyjy1-
It is immediate that
Rad(L) = K1/Ky ® Ky/K3 ® - @& Ky 1/Kp.

It is straightforward to verify that (f, f, f') € A(L), where, f(Ko/K) =
F'(Ko/EK1) = 0 and, for i > 0 and k € K,

b+ Kip1) = f(k) + Ki, f'(k+ Kip1) = f'(k) + K;.

However, for k € K;, f(k) = f'(k) mod (Ki;1). Hence, f = f' € Der(L),
so that f preserves the radical of L. Equivalently, f(K) C K, contradicting
our assumption about f. The theorem is proved. O

The main result of this section is

Theorem 6.4. Let L be a Lie algebra over a field of characteristic 0 and
f € GenDer(L). Then f preserves Rad(L).

Proof: By Lemma 5.15, the result holds for f € QC(L). We may assume
that f € QDer(L). If L is solvable, the result holds trivially. Otherwise, let
K be a maximal proper ideal of L containing the radical, and let (f, f, ') €
A(L). By Theorem 6.3, f preserves K. Then f'([K,K]) C K and so the
restriction, f|x, of f to K is in QDer(K). We may assume, inductively (on
the dimension), that f|x preserves Rad(K). However Rad(K) = Rad(L).

]

7. APPLICATIONS.

If V is a vector space over a field, then a skew-symmetric, nonassociative
algebra structure on V' is an element, u, of M(V) := Hom(V AV, V). We
regard M (V') as an affine algebraic variety. The set of u € M (V) satisfying
the Jacobi identity is the algebraic subvariety, £(V'), of Lie algebra structures
on V. We mention three actions of GL(V) on M(V):

Action 1: f-yu=fopuo (f_l /\f_l)

Action 2: fopu=po(f~'AIy)

Action 3: f3u=fou
for f € GL(V) and p € M(V).

Action 1 leaves L(V) fixed. Indeed, if v = f -1 u, then the Lie algebra
(V) is isomorphic to (V, p). If the orbit, GL(V')-1 p is a Zariski open subset
of L(V), then (V,p) is called rigid (see, e.g., [4, 16]). It is well known that
if H2(L, L) = 0, then L is rigid (though the converse is false [17]).
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Actions 2 and 3 do not always preserve L(V'), so in these cases, the
interesting questions seem to be:
(1) When is f s u € L(V) for p € L(V), f € GL(V), i = 2,37
(2) If f-; u € L(V), under what conditions is f -; p isomorphic to p?
Action 2 will be the subject of Section 7.1, and Action 3 that of 7.2.

7.1. Projective doubles of Lie algebras. Given a Lie algebra (L, u), a
projective double on (L, p) is a Lie algebra (L, p) (i.e., the vector spaces are
the same) such that

ad,(L) C Der(L).

We call a projective double inner if ad,(L) C ad,(L), and we call f €
Hom(L, L) a doubling of (L, ) provided (L,pf) is a L1e algebra (and hence
a projective double of L) where

pr(x,y) = (f 2 p)(@,y) = pu(f(2),y)
for all x,y € L. We denote by DB(L) the set of doublings of L.

Any inner projective double, (L, p), on (L, u) gives rise to a doubling, f,
of (L,u) such that py = p. For this, one simply chooses a basis e; of L
and defines f by choosing f(e;) so that ad,(f(e;)) = ad,(e;). If (L,u) is
centerless, this doubling, f, is actually unique. Note further, that, since p;

must be skew symmetric, a doubling, f, of (L,u) must be an element of
QC(L, ) so that

C(L) € DB(L) € QC(L).

The next result is essentially [8, Theorem 2].

Theorem 7.1. [Ikeda] Let (L,p) be an inner projective double of a cen-
terless Lie algebra, (L,p). Then there exists a unique doubling, f, of (L, u)
such that

(1) f is a homomorphism of (L, p) into (L, pu),
(2) f is in the centroid of (L,p),

(3) ker(f) = Z(L, p).

Proof: Choose the unique doubling, f, as discussed above. We show that f
is @ homomorphism f: (L, p) — (L, ).

ady(f o p(z,y)) = ady(p(z,y))
= ad,(x)ad,(y) — ad,(y)ad,(x)
= ady(f(z))ad,(f(y)) — adyu(f(y))ady(f (x))
= ady,(u(f (), f(y)))-
Since (L, i) is centerless, f is a homomorphism.

Thus, for z,y € L,
fop(z,y) =plf(z), f(y) = p(f(2),y)
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which is (2).
(3) is clear since (L, u) is centerless. O

Lemma 7.2. Let L = (L,u) be centerless. If f € DB(L) is nonsingular
then f € C(L).

Proof: f(u(z,y)) = f(u(ff~'(x),y)) = flps(F~H(x),y)) = ul(z, f(y)), the
last equality by Theorem 7.1(1). O

Theorem 7.3. Let L be a directly indecomposable Lie algebra with a taut
Cartan subalgebra. Then every inner projective double of L is isomorphic to
L. O

Proof: By Theorem 5.29, Lemma 5.30, and Lemma 5.5(2), any nonzero
element of QC(L) is invertible. The result follows by Lemma 7.2 and The-
orem 7.1(1). O

Corollary 7.4. If L is a simple Lie algebra, then any nonabelian inner
projective double of L is isomorphic to L. O

As another special case, we recover a result equivalent to a remark in [8,
last paragraph].

Corollary 7.5. [Ikeda] If L is a parabolic subalgebra of a simple Lie al-
gebra in characteristic 0 then every projective double of L is isomorphic to
L.

Proof: Such algebras are complete [11, 20]. O

Corollary 7.6. Let L = T + N where T 1is a torus acting faithfully on
N, N is a nilpotent ideal with dim(N/N?) = dim(T) and the weights of
the T-module structure induced on N/N? are disjoint from the weights in
[N, N], and further, L is indecomposable. Then every nonabelian projective
double of L is isomorphic to L.

Proof: Such algebras are complete [11, Prop. 4.1]. O

There are natural occurrences of the situation of Corollary 7.6 (in addition
to Borel subalgebras of semisimple Lie algebras in characteristic 0, which are
covered by Corollary 7.5), e.g., T+ N with N nonabelian free nilpotent either
in characteristic 0 or when the characteristic exceeds the index of nilpotency
of N; see also [11, 12].

Example 7.7. It is not the case in general, for centerless, indecomposable
L with C(L) = QC(L), that every inner projective double of L is isomorphic
to L. To produce a counterexample, we note first that a doubling, f yields an
isomorphic projective double, (L, ps) if and only if f is nonsingular. Also, by
Corollary 5.22 and Lemma 5.5(2), if L is indecomposable, then a semisim-
ple doubling is nonsingular. Thus, if L is centerless and indecomposable,
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then every projective double of L is isomorphic to L unless C(L) contains

nilpotent elements. On the other hand, if 0 # f € C(L) with f nilpotent,

then the projective double, (L, ps), induced by f is not isomorphic to L. So,

for our counterexample, it suffices to display a centerless, indecomposable

Lie algebra, L, with C(L) = QC(L) while C(L) contains nilpotent elements.

Example 5.17 yields many such algebras but we need the following lemma.
Recall the construction of L{m} in Example 5.17.

Lemma 7.8. Let L be a centerless indecomposable Lie algebra over k. Then
L{m} is centerless and indecomposable for all m > 0.

Proof: It is clear that L{m} is centerless. We prove the indecomposability
by induction on m. For m = 0, we have L{0} ~ L. Assume the lemma
is true for m. Suppose L{m + 1} = A @& B, a nontrivial direct sum of
ideals. The natural homomorphism «[t]/(t™*!) — k[t]/(#™) induces an
epimorphism 7: L{m + 1} — L{m}. Thus L{m} = n(A) + n(B). Since
[x(A) N7(B), L{m}] = [x(A) Nn(B),n(A) + n(B)] C [r(A),(B)] = 0, we
have m(A) N w(B) C Z(L{m}) = 0. Thus, by the induction hypothesis, one
of m(A),n(B) is 0. Without loss of generality, 7(4) = 0 and so n(B) =
L{m}. Then A C L® (™) and B + L ® (t") = L{m + 1}. But then
[L{m + 1}, A] = [B, A] = 0, contradicting Z(L{m + 1}) = 0. O

Thus, if L is centerless, indecomposable and L = [L, L], then L{m} has
these properties and also, by Theorem 5.28, C(L{m}) = QC(L{m}). Now,
I ® (multiplication by t) is a nilpotent element of C(L{m}).

Example 7.9. Returning to the inclusions, C(L) C DB(L) C QC(L), we
observe that Example 5.7 gives a centerless, directly indecomposable Lie
algebra for which both inclusions are proper:

First, fs3 € DB(L) \ C(L). (Note that (L,pys,) is the direct sum of
the Heisenberg algebra spanned by xi,z3, x5, with [z1,23] = x5 and a 3-
dimensional abelian algebra; the homomorphism induced by f3 maps this to
a 2-dimensional abelian subalgebra of L spanned by xo, z4.)

To show that the second inclusion can be proper, note, by Lemma 7.2,
that it suffices to produce a nonsingular f € QC(L) \ C(L), and I + f3 is
such a QC.

From this last example, one sees also that DB(L) need not be a subspace
of QC(L): fs and I, are in DB(L) but I1,+ f3 is not. However, we shall show
(Corollary 7.14) that, for centerless L, DB(L) is closed under multiplication
(composition).
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Notation. Let f € QC(L). Define Ay, Bf,Cy € C3(L,L) and hy €
C2(L, L) so that, for z,y,z € L,

Ap(zyy,2) = [F(@), [f (), 2]+ [F (), [f (2), 2]] + [F (2), [f (2), ],

Bi(z,y,2) = [2,[f(y), 2] + [y, [f (2), 2l + [, [f (=), )],
Crlx,y,2) = [f(2), [y, 2l + [F(y), [z 2]] + [f (2), [, y]],
hi(z,y) == [f(), f(y)]-

Using the Jacobi identity and the centroid and quasicentroid properties,
we see that

Lemma 7.10.
(1) If f € C(L), then A = By = Cy = 0.
(2) IffEQC(L), then Bf2 :—QAf and Cf:—QBf. ]

In light of the cohomological connections in the next subsection, it is
interesting to note

Proposition 7.11. If f € QC(L) and the characteristic of the base field is
either 0 or > 3, then f is a doubling if and only if hy € Z*(L,L).

Proof: The Jacobi identity on the multiplication g o (f AI) is

Ap =0,
while the cocycle condition applied to hy is
Bf2—Cf2:O, or —6Af:0 O

Lemma 7.12. Let Z(L) =0 and f € QC(L)1 (notation as in Section 5.2).
Then By =0 implies f = 0.

Proof: Since f(H) = 0 and f(L;) C Z(H), we have 0 = By(H,L,L;) =
[H,[f(L1),L1]]- Since [f(L1),L1] C Ly, we have [f(L1),L1] = 0 by Lem-
ma 5.8(3) and and therefore f(L;) C Z(L) = 0 by Lemma 5.8(2). O

Theorem 7.13. Let L be a centerless Lie algebra and let f € QC(L). Then
f € DB(L) if and only if f?> € C(L).

Proof: We may assume the base field is large enough (e.g., algebraically
closed) to assure that L has a Cartan subalgebra. Suppose f = fo+ f1 with
fo € QC(L)y = C(L), f1 € QC(L)y. Since QC(L)? = 0, f2 = f2 +2fofs
and so Baj,f, = Bp2 = —2A;. Now, f € DB(L) if and only if Ay = 0 (proof
of Proposition 7.11). But, since fofi € QC(L)1, Baj,s, = 0 if and only if
2fof1 =0 (Lemma 7.12), which holds if and only if f2 = f2 € C(L). O

Corollary 7.14. If Z(L) =0 then DB(L) is closed under composition.
Proof: By Theorem 7.13 and commutativity of QC(L) (Theorem 5.11). O
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7.2. Quasiderivations and robustness. Let (L, u) be a Lie algebra and
f a nonsingular element of Hom(L, L). Observe that (L, f-3) = (L, f o u) is
a Lie algebra if and only if f satisfies: p(z, f(u(y,2))) + p(y, f(u(z,2))) +
u(z, f(p(z,y))) =0, for all z,y,z € L.

Definitions. Let (L,u) be a Lie algebra and f a nonsingular element of
Hom(L, L) such that (L, f o p) is a Lie algebra. We call such (L, f o )
a perturbation of (L,u), and the perturbation is said to be inessential if
fop = cop for some ¢ € C(L). We say (L, i) is robust if every perturbation
of (L, u) is inessential.

Proposition 7.15. An inessential perturbation of (L, ) is necessarily iso-
morphic to (L, ).

Proof: Suppose fou = cou where f nonsingular and ¢ € C(L, u). It suffices
to show that fopu = opu with ¢ € C(L,u) and ¢’ nonsingular, for such a
¢’ induces an isomorphism from (L, f o p) to (L, p).

Let n := dim(L) and K := Ker(c¢"). Since f™"(u(K,L)) = "(p(K,L)) =
p(c™(K),L) =0, K C Z(L, ) by the nonsingularity of f. The nonsingular-
ity of f also gives K N pu(L,L) = 0. Thus, we may choose M D u(L,L) so
that L = K @ M (this is a direct sum of ideals for (L, u)). With respect to
this decomposition, let 7 be the projection of L to M. Define ¢’ € Hom(L, L)
so that ¢(m) = w(c(m)) for m € M and (k) = k for k € K. Since ¢ in-
duces a nonsingular transformation L/K — L/K, ¢ is a bijection. Since
d(z) = ¢(x) for x € u(L, L) and ¢ (z) = ¢(x) (modZ(L, p)) for all z € L, we
have ¢ € C(L, p). O

Following [18], we define sq?: C?(L, L) — C3(L, L) by

sa(v)(x,y, 2) = v(z,v(y, 2)) + v(y,v(2,2)) + v(z,v(z,y))
so that (L,v) is a Lie algebra if and only if sq?(v) = 0. If (L, u) is a Lie
algebra, then for h € Hom(L, L),

ho (8(hop)) =sq’(hop),
where §: C2(L,L) — C3(L, L) is the coboundary map (computed with re-
spect to L = (L,u)). Hence, if h is nonsingular, then (L,h o y) is a Lie
algebra if and only if h o u € Z2(L, L). This leads to the following.

Proposition 7.16. Let L = (L,u) be a Lie algebra over a field r, with
|| > dim(L). Then L is robust if and only if Z*>(L, LYNB2(L, L) = C(L)opu.

Proof: The sufficiency follows immediately from the above. Conversely,
suppose (L, ;1) is robust and hoy € Z2(L, L), then, using the field hypothesis,
we may choose ¢ € k such that ¢l + h is nonsingular. Since (cIf +h)op €
Z2(L,L), (cI, + h) o € C(L) o u by robustness. Hence also h oy €
C(L) o p. O

Thus, it is worth highlighting a cohomological condition that characterizes
the collapsing of the second inclusion in (1.3).
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Proposition 7.17. QDer(L) = Der(L) + C(L) if and only if B*(L,L) N
B2(L,L) = C(L) o p.

Proof: Suppose B2(L,L) NB%(L,L) = C(L) o p. If f € QDer(L) then, by
Lemma 3.9(1), 6f = §(f'—f) € B%(L, L)NB2(L, L), so that (f'— f)ou = gop
with ¢ € C(L). Then f — g € Der(L).

Conversely, suppose QDer(L) = Der(L) + C(L). If, for f,g € Hom(L, L),
§f = bdg € B2(L, L) N B2(L, L), then (f, f, f +g) € A(L) by Lemma 3.9(1).
Hence, f = d+ ¢ with d € Der(L), ¢ € C(L), so that 6f = co p. O

Corollary 7.18. If H?(L,L) = 0 and if QDer(L) = Der(L) + C(L), then
L s robust. O

As a consequence we have

Theorem 7.19. If (L, u) is a parabolic subalgebra of a split simple Lie al-
gebra, of rank > 1, over a field of characteristic 0, then L is robust. D

The cohomological condition in Corollary 7.18 indicates the existence of
many algebras that are both robust and rigid (see also [11]). It is useful to
illustrate the independence of these properties with the following examples.

Example 7.20. The 3-dimensional simple Lie algebra is an example of a
rigid (H?(L,L) = 0) but non-robust Lie algebra. It is indecomposable,
which is of interest because decomposables are trivially non-robust. The
non-robustness is easy to see by looking at the “non-split form” over the
complexes, i.e., the “i-j-k” vectors. Any diagonal h makes (L, h o i) into a
Lie algebra. Indeed, any symmetric matrix works.

Another example is given by the 2-dimensional nonabelian Lie algebra.

Example 7.21. A robust but non-rigid Lie algebra; a Lie algebra, L, for
which H2(L, L) # 0 and yet Z?(L, L)NB?(L, L) = B*(L, L)NB2(L, L) = (u).
The example is of the form T+ N where T is a 3-dimensional torus and N is
7-dimensional with 1-dimensional weight spaces, the weights being (1,0,0),
(0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1). Let xy,z2,z3 be the gen-
erators of NV corresponding to the simple weights and so that N has basis
{1, %2, T3, [T1, 2], [T2, T3], [1, T3], [*1, [T2, 3]]}. We form the multiplica-
tion with [z1,x2] central, so that

[x2, [z1, 23] = [21, [X2, 23], [23, [T1,22]] = 0.

The non-rigidity of L is demonstrated by the 1-parameter family of multi-
plications with the same basis and T-weight system, with multiplication in
N satisfying

[z, [x1,23]] = a[z1, [z2, w3]], [23,[z1,22]] = (a — 1)[z1, [22, 23],

where a € the base field (which we assume to be infinite). The members
of the family with a # 0,1 are not isomorphic to L (e.g., for a # 0,1,
Z(N) = ([z1, [x2, 23]]) )-
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Example 7.22. Finally, a Lie algebra satisfying B2(L, L) N B2(L, L) = (p)
but Z2(L, L) N B2(L,L) # (u) is given by

[v1,73) = x3, [71,75] = 5, [71,76] = s,
[x1,27] =227, [®2,74] = 74, [T2,75] = 5,
[x2,x6] = 2x6, [T2,27] = 27, [T3,74] = 5.

The verification is facilitated by the following: that QDer(L) = Der(L) +
C(L) follows from Theorem 4.12 (the torus is spanned by 1, z2), hence, by
Proposition 7.17, B%(L, L) N B2(L, L) = (i), (u is [,]); on the other hand,
(L,h o p) is a Lie algebra where h(z;) = x;, for 1 < ¢ < 5, and h(zg) =
26, h(z7) = 3z7, so that Z2(L,L) N B%(L,L) # (u) by Proposition 7.16
Corollary 7.18.
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