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Abstra
t. We dis
uss aspe
ts of 
omputation in permutation groups as-

suming polynomial time as a measure of eÆ
ien
y. Of parti
ular interest

are problems, su
h as �nding the interse
tion of two groups, that resemble

or generalize the problem of testing graph isomorphism. We also summarize

the instan
es where the problems are known to be solvable in polynomial

time and indi
ate methods that a

omplish this. As with graph isomor-

phism, the 
omputational 
omplexities of the general problems are open,

though we 
an demonstrate polynomial-time redu
tions and equivalen
es

among them. A typi
al approa
h to su
h issues is shown to involve an

NP-
omplete problem. Several open questions are listed.

1. Introdu
tion

Our fo
us is on polynomial-time 
omputability. Naturally, in employing so

broad a brush, we do not pretend to delineate the present pra
ti
al frontiers of


omputational group theory. Polynomial time is, on the other hand, a widely-

re
ognized standard of tra
tability as well as a robust model in whi
h to measure

and 
ompare eÆ
ien
y. But, we leave even that point to be defended, or disputed,

elsewhere. From our perspe
tive, polynomial time provides, independently, a

produ
tive and elegant domain in whi
h to study the stru
ture of group-theoreti



omputation, while the group-theoreti
 setting provides insight into the stru
ture

of unresolved issues in 
omputational 
omplexity. Furthermore, this interfa
e

with theoreti
al 
omputer s
ien
e motivates attra
tive problems for the group

theorist, a haunting example stemming from the failure of all e�orts to develop

a provably eÆ
ient method for testing graph isomorphism. Thus, where the

state-of-knowledge about polynomial-time eÆ
ien
y does not 
onform to 
urrent
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per
eptions of \pra
ti
al" eÆ
ien
y, there lie the most tantalizing of the open

questions.

We dis
uss permutation groups G � Sym(
) that are input via generators.

It is reasonable to insist that the generating set is \small"; e.g., of 
ardinality

< j
j

2

. With this understanding, polynomial time \in the input" translates to

an O(j
j




) bound, for some 
onstant 
, on the number of steps required in the

worst-
ase. In this paper, we are not 
on
erned with optimizing the exponent


. Su
h \low-level" 
omplexity matters are, of 
ourse, of great interest and are


loser to, even when not identi
al with, implementational 
on
erns. Nevertheless,

these are, in the present 
ontext, extraneous issues and we gain more insight

into polynomial-time matters by ignoring them. Thus, we avoid spe
i�
ation

and justi�
ation of pre
ise 
onstants in the exponents, favoring 
larity of the

polynomial-time status over optimization of time or spa
e requirements.

We sample not only what is in polynomial time but also a range of problems

that, to date, have not met this standard. Our 
on
entration is on issues that

are motivated by graph-isomorphism testing. Su
h issues in
lude important and

standard group-theoreti
 problems, in
luding the 
omputation of interse
tions

of permutation groups, 
entralizers of elements and stabilizers of subsets. As

with graph isomorphism, these problems are not 
onsidered hard in pra
ti
e.

Nevertheless, no algorithm has been shown to require less than exponential time

in the worst 
ase. On the other hand, there seems some eviden
e that \de
ision"

versions of the problems are not NP-
omplete. If that is the 
ase, then another

level of diÆ
ulty (assuming P6=NP) is represented by the related problem of

�nding lexi
ographi
ally least elements in double 
osets, for we show (the de
ision

version of) this one is NP-
omplete.

On the positive side, we o�er various proofs of polynomial time. While there

is a large polynomial-time library (see [18℄), our emphasis again is on instan
es

of the problems that are related to graph isomorphism and its group-theoreti


analogues. For most of the problems, there are eÆ
ient pro
edures for solvable

groups.

Our dis
ussion also brings out several open questions.

In Se
tion 3, we review basi
 polynomial-time tools for dealing with permuta-

tion groups. Consistent with 
omputational experien
e, these eÆ
ient te
hniques

are rooted in methods of C.C. Sims. However, in Se
tion 4 we move on to some

problems for whi
h eÆ
ien
y has not been theoreti
ally substantiated. Although

their 
omplexity is unknown, they 
an be shown to be polynomial-time equiv-

alent. The NP-hardness of the aforementioned lex-least problem is proved in

Se
tion 5. To better understand the diÆ
ulty, we o�er two proofs. One of these

involves abelian groups with small orbits. In that 
ase, we 
an explain away the

diÆ
ulty in terms of the 
hoi
e of linear orderings on the permutation domain.

To be pre
ise, we go on, in Se
tion 6, to show that, with an ordering based upon

the orbit/imprimitivity-blo
k stru
ture of the group, the lex-least problem is in
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polynomial time for groups with restri
ted non
y
li
 
omposition fa
tors, thus

automati
ally in
luding all solvable groups. This result, in turn, re
overs in-

stan
es where the graph-isomorphism-inspired problems are in polynomial time.

Other polynomial-time instan
es are dis
ussed in Se
tion 7, where it is seen that

the sear
h for subgroups is apparently made easier if the targeted subgroup is

normal. For instan
e, in Se
tions 7 and 8, we show that the 
ores of interse
tions,


entralizers and set stabilizers 
an be found in polynomial time. In Se
tion 8, we

give samples of results of Kantor and Luks that indi
ate how the pro
edures, as

well as the open problems, are extended to quotients of permutation groups, the

theme being that, as far as polynomial time is 
on
erned, the problems are no

harder when dealing with quotients. There is, however, remarkable additional

overhead in generalizing to quotient groups, for some problems that previously

had elementary solutions now seem to require mu
h deeper theory. In parti
ular,

the solutions make use of Sylow subgroups whi
h are a

essible in polynomial

time only through results of Kantor that use 
onsequen
es of the 
lassi�
ation

of �nite simple groups. By 
ontrast, we present, in Se
tion 9, an approa
h to

�nding p-
ores (maximal normal p-subgroups). While implemented solutions

to this problem typi
ally use Sylow subgroups, we des
ribe an elementary, self-


ontained method that bypasses these. Some other related problems are listed in

Se
tion 10, none of whi
h are known to be in polynomial time. In fa
t, to date,

they seem to represent various levels of diÆ
ulty, thereby opening up questions

even about the existen
e of polynomial-time redu
tions between the problems.

2. Notation and Preliminaries

Let G be a group. We write H � G, respe
tively H E G, to indi
ate H is a

subgroup of G, respe
tively a normal subgroup; H < G and H C G, respe
tively,

indi
ate stri
t in
lusion. We say H is subnormal in G, denoted H CC G, if there

exist groups H

1

; :::; H

m

su
h that H E H

1

E � � � E H

m

E G. If H � G, a right

(left) transversal for H in G is a 
omplete set of right (left) 
oset representatives

for H in G. A right (left) sub
oset of G is a 
oset Hx (xH) of a subgroup

H � G. For A � G, hAi denotes the subgroup generated by A. For g; h 2 G, let

h

g

= g

�1

hg, the 
onjugate of h by g, and let [g; h℄ = g

�1

h

�1

gh, the 
ommutator

of g and h. For A � G, A

g

= fa

g

j a 2 Ag; if H � G, the 
entralizer of A in

H is C

H

(A) = fh 2 H j a

h

= a; 8a 2 Ag; for a 2 G, C

H

(a) = C

H

(fag). For

subgroups H;K � G, the normalizer of H in K is N

K

(H) = fk 2 K j H

k

= Hg;

we let H

K

= h

S

k2K

H

k

i, this is the normal 
losure of H in hH;Ki, namely the

smallest normal subgroup of hH;Ki that 
ontains H . For H � G, the 
ore of H

in G is Core

G

(H) =

T

g2G

H

g

, it is the largest subgroup of H that is normalized

by G.

We denote by Sym(
) the symmetri
 group on the �nite set 
. Suppose G

a
ts on 
, that is, there is a homomorphism � : G ! Sym(
); if G � Sym(
),

� is understood to be the natural inje
tion. For ! 2 
, g 2 G, !

g

denotes the



142 E. M. LUKS

image of ! under �(g); for � � 
, �

g

= f!

g

j ! 2 �g; for ! 2 
, the orbit of !

is f!

g

j g 2 Gg and is denoted !

G

. For ! 2 
, G

!

denotes the subgroup �xing

!, namely fg 2 G j !

g

= !g; for � � 
, G

�

denotes the pointwise stabilizer

of �, namely

T

!2�

G

!

; if an ordering !

1

; : : : ; !

n

of 
 is understood, and �

i

=

f!

1

; : : : ; !

i�1

g then G

(i)

= G

�

i

(in parti
ular, G

(1)

= G and G

(n)

= 1). For

� � 
, the (set) stabilizer of � in G, denoted Stab

G

(�), is fg 2 G j �

g

= �g;

G stabilizes � if Stab

G

(�) = G. For a 2 Sym(
);� � 
, let a

�

denote the

indu
ed fun
tion � ! �

a

, and for A � Sym(
), A

�

= fa

�

j a 2 Ag. In

parti
ular, if G � Sym(
) and G stabilizes � then G

�

� Sym(�). A subset

� � 
 is 
alled a blo
k for G if, for all g 2 G, either �

g

= � or �

g

\� = ;. We

say that G a
ts transitively on 
 if 
 
onsists of a single orbit; G a
ts primitively

if it a
ts transitively and there is no blo
k � for G with 1 < j�j < j
j; G a
ts

regularly if it a
ts transitively and G

!

= 1 for any (all) ! 2 
.

We refer to Chapter 1 of [30℄ for elementary results in permutation groups

that are not spe
i�
ally re
alled herein.

Unless otherwise indi
ated, we suppose n = j
j. It is useful to re
all that an

in
reasing 
hain of subgroups of Sym(
) has polynomially-bounded length; for

example, Lagrange's Theorem implies that the length 
annot ex
eed log

2

n! =

O(n logn) (in fa
t, a linear bound 
an be proved [1℄). Though not expli
itly

stated, this is often essential to the veri�
ation of polynomial running times. For

algorithmi
 purposes, unless indi
ated otherwise, it is assumed that subgroups

of Sym(
) are spe
i�ed (input or output) by generating sets.

A problem is said to be in polynomial time if it is solvable in O(m




) steps where

m is the size of a reasonable en
oding of the input. In saying that a problem A is

polynomial-time redu
ible to a problem B, we mean that if B is in polynomial time

then A is in polynomial time. However, in the 
ase of redu
tions between two

de
ision problems, i.e., those with a \yes"/\no" answer, we always intend Karp

redu
tions, that is, there is a polynomial-time-
omputable mapping of instan
es

of A to instan
es of B, so that \yes", \no" instan
es map, respe
tively, to \yes",

\no" instan
es. Two problems are polynomial-time equivalent (in either sense) if

there are redu
tions in both dire
tions. See, for example, [12℄, for elaboration of

these issues, in
luding the need for Karp redu
tions, as well as formal de�nitions

of the 
lasses P, NP, and NP-Complete. Note that these parti
ular terms apply

only to de
ision problems.

3. Basi
 Polynomial-Time Tools

In this se
tion, we re
all some elementary problems that are solvable in poly-

nomial time and that we need to referen
e later. The te
hniques will be quite

familiar to most readers. Still, it is worth reviewing a few of these not only

to emphasize polynomial-time thinking, but also to distinguish these problems

from those in Se
tions 4 and 5, for whi
h presently implemented methods do not

meet our measure of eÆ
ien
y.
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We assume that G = hXi � Sym(
).

Some eÆ
ient pro
edures follow a divide-and-
onquer approa
h that exploits

the orbit and imprimitivity stru
ture of the group. We observe that standard


omputations of orbits and imprimitivity blo
ks run in polynomial time.

(3.1) Given ! 2 
, �nd !

G

, the orbit of ! under G, and for ea
h  2 !

G

,

�nd g 2 G su
h that !

g

=  .

A naive transitive 
losure algorithm involves, at worst, applying ea
h generator

to ea
h element of 
, for a worst-
ase time of O(jX jn).

(3.2) If G a
ts transitively on 
, test whether G a
ts primitively and, if not,

�nd a non-trivial blo
k system.

For example, the (unique) smallest blo
k 
ontaining any given �; � 2 
 is the


omponent of � in the undire
ted graph (
; f�; �g

G

).

We often 
on
atenate polynomial-time pro
edures, up to a polynomial number

in fa
t, to obtain, thereby, a polynomial-time pro
edure. To do so freely, however,

we must be sure that the size of the output of ea
h pro
edure is bounded by some

�xed polynomial in the size of the permutation domain. (Te
hni
ally, the output

of a quadrati
 pro
edure 
ould use spa
e that is quadrati
 in its input size; the


on
atenation of an unbounded number of su
h pro
edures is prohibitive.) In

parti
ular, sin
e many pro
edures involve �nding generators for some targeted

subgroup, we need to exer
ise some 
ontrol on the sizes of generating sets. For

example, there is an polynomial-time pro
edure for

(3.3) Find a set of < n

2

generators for G.

The underlying logi
 for this is at the heart of Sims's methods [29℄. We review

the idea, from whi
h polynomial time is then a straightforward observation.

for i = 1 to n� 1 do

while 9 distin
t x; y 2 X \G

(i)

nG

(i+1)

su
h that !

x

i

= !

y

i

do

repla
e su
h a pair x; y by x; yx

�1

.

Dis
arding dupli
ates, the modi�ed X does not 
ontain distin
t elements of any

G

(i)

that lie in the same right 
oset of G

(i+1)

. Hen
e, the �nal X has size at

most

P

n�1

i=1

jG

(i)

: G

(i+1)

j �

P

n�1

i=1

(n� i+ 1) < n

2

.

Remark. Hen
eforth, we assume that all polynomial-time algorithms that

output generators for a subgroup return fewer than n

2

generators. We also

assume that jX j < n

2

.

It is often the 
ase that a subgroup H of our given G is spe
i�ed only by

some testable 
ondition, i.e., there is a polynomial-time pro
edure whi
h, for any

g 2 G, determines whether g 2 H . (The subgroups G

(i)

serve as examples.) In

su
h 
ase, we say that H is (polynomial-time) re
ognizable.
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(3.4) Find generators for a polynomial-time-re
ognizable subgroup H for whi
h

jG : H j = O(n




) and determine jG : H j.

A right transversal T for H in G and a set Y of S
hreier generators [14℄ of H

are both 
onstru
ted in:

T := f1g; Y := ;; Q := f1g

while Q 6= ; do

remove q from Q;

for all x 2 X do

if 9t 2 T : qxt

�1

2 H then add su
h qxt

�1

to Y

else add qx to T and to Q.

Thus, T has been 
onstru
ted by a transitive 
losure method, having right mul-

tiplied every element of T by all generators of G to see if this produ
es any new


osets. In the end, TX � hY iT , so that G = hY iT , when
e hY i = H .

The running time is O(jG : H j

2

n




0

+


00

), where O(n




0

) is the time for a mem-

bership-test in H and 


00

is an absolute 
onstant, so that an upper bound is

O(n

2
+


0

+


00

).

Remarks. It is often the 
ase thatH-re
ognizability also involves some natural

interpretation of the 
osets, obviating the sear
h through all t 2 T to �nd whether

some qxt

�1

2 H ; this 
ould eliminate as mu
h as 
+ 


0

from the exponent in the

timing. The prototypi
al example is H = G

(2)

, wherein T is keyed by the orbit

of !

1

.

It is assumed that the bound jG : H j = O(n




), for some 
onstant 
, is known,

though the method 
an also be interpreted as testing this bound in polynomial

time; if the pro
edure takes longer than the predi
ted number of steps, the bound

does not hold.

Applying (3.4) iteratively yields a polynomial-time solution to

(3.5) Find generators for a subgroup H given that H = H

m

� H

m�1

� � � � �

H

0

= G where the H

i

are ea
h polynomial-time-re
ognizable and jH

i

: H

i+1

j =

O(n




) for 0 � i < m.

In parti
ular, as ea
h G

(i)

is polynomial-time re
ognizable, we 
an solve in

polynomial time

(3.6) Given any � � 
, �nd generators for G

�

(the pointwise stabilizer

of �).

Sin
e jGj =

Q

n�1

i=1

jG

(i)

: G

(i+1)

j, we 
an, in polynomial time,

(3.7) Find jGj.

Noting that x 2 G i� jGj = jhG; xij, we have a polynomial-time algorithm for

membership-testing:

(3.8) Given x 2 Sym(
), test whether x 2 G.
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Remarks. We should emphasize that we are not re
ommending this indire
t

approa
h to membership-testing in pra
ti
e. We are only reminding the reader of

a parti
ular logi
al inter
onne
tion of these problems, through whi
h polynomial

time is made 
lear.

The observation that Sims's methods run in polynomial time was made by

Furst, Hop
roft and Luks [11℄.

More generally we refer later to a polynomial-time pro
edure for

(3.9) Given  

1

; : : : ;  

m

2 
, with m � n = j
j, test whether 9x 2 G su
h

that !

x

i

=  

i

, for 1 � i � m, and, if so, �nd (the sub
oset of) all su
h x.

By (3.1), we 
an �nd y 2 G su
h that !

y

1

=  

1

, if any su
h y exists. Re
ursively

�nd the sub
oset Hz of G

!

1

mapping !

i

7!  

y

�1

i

, for 2 � i � m; return Hzy.

(Note that the single re
ursive 
all involves a permutation group on at most n�1

letters.)

As an immediate 
onsequen
e of (3.8), we have a polynomial-time algorithm

for

(3.10) Given H = hY i � Sym(
), test whether H � G.

I.e., test Y � G.

Several appli
ations require normal 
losures.

(3.11) Given H = hY i � Sym(
), �nd H

G

.

To get generators,

�

Y of H

G

: initialize

�

Y = Y ; while there exist x 2 X; y 2

�

Y

su
h that y

x

62 h

�

Y i, add su
h y

x

to

�

Y .

Remark. We remind the reader that we use (from now on impli
itly) the

polynomial 
onstraint on the length of any in
reasing 
hain of subgroups of

Sym(
).

As the derived group G

0

is the normal 
losure in G of h[x; y℄ j x; y 2 Xi, we

have a polynomial-time pro
edure for

(3.12) Find the derived series G � G

0

� (G

0

)

0

� � � � . Hen
e, test whether G

is solvable.

To 
ompute the lower 
entral series of G, let L

1

(G) = G = hXi; then if

L

i

= hX

i

i, L

i+1

(G) = h[x; y℄ j x;2 X; y 2 X

i

i

G

. Thus we have a polynomial-

time pro
edure for

(3.13) Find the lower 
entral series of G. Hen
e, test whether G is nilpo-

tent.
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An alternative polynomial-time nilpoten
e test is to 
he
k that G is a dire
t

produ
t of p-groups: For ea
h x 2 X and ea
h prime p dividing jGj, let hx

p

i

be the Sylow p-subgroup of hxi; for example, x

p

= x

m

where jGj = mp

k

with

(m; p) = 1 (su
h large powers of x are 
omputable by \repeated squaring" tri
ks,

though an even faster approa
h 
ould be to 
ompute the power in ea
h 
y
le of

x, �rst redu
ing m modulo the 
y
le length). Letting G

p

= hx

p

j x 2 Xi, verify

that jG

p

j is a power of p for ea
h p and that the generators of G

p


ommute with

the generators of G

q

for p 6= q.

4. Not Known to be in Polynomial Time

There is general agreement that, by all measures, the problems in the pre
ed-

ing se
tion have eÆ
ient solutions. We turn now to some whi
h seem to have

satisfa
tory implementations but for whi
h all known algorithms have exponen-

tial worst-
ase 
omplexity. Were there no other reason for looking at them,

these would be of theoreti
al interest be
ause of their relation to the graph-

isomorphism problem:

Problem. GRAPH ISOMORPHISM (GRAPH-ISO)

Input: Graphs G

1

= (V

1

; E

1

), G

2

= (V

2

; E

2

).

Question: Are G

1

;G

2

isomorphi
?

It is generally felt that GRAPH-ISO is not a hard problem in pra
ti
e (see,

e.g., [23℄ for an implemented pro
edure that many have found satisfa
tory).

Nevertheless, although the problem has been extensively studied, nothing 
lose

to polynomial time has been proved. Indeed, there is no known approa
h that

has proved to be subexponential (say, for example, in O(n

log




n

) time) in the worst


ase. (See remarks at the end of Se
tion 6). On the other hand, there is eviden
e

that GRAPH-ISO is not NP-
omplete, otherwise there would be a 
ollapse of

the \polynomial-time hierar
hy" [13℄. Indeed, from the earliest expositions of

NP-
ompleteness (e.g., see dis
ussion in [12℄), there has been spe
ulation that

GRAPH-ISO may be one of the few 
lassi
al de
ision problems that is neither

in polynomial time nor NP-
omplete.

We re
all polynomial-time redu
tions of GRAPH-ISO to permutation-group

problems. To introdu
e the groups, we 
onsider

Problem. GRAPH AUTOMORPHISM-GROUP (GRAPH-AUTO)

Input: Graph G = (V;E).

Find: Generators for Aut(G), the automorphism group of G.

The following is well known.

Proposition 4.1. GRAPH-ISO and GRAPH-AUTO are polynomial-time

equivalent problems.

Proof. To redu
e GRAPH-ISO to GRAPH-AUTO, we �rst note that it suf-

�
es to 
onsider the GRAPH-ISO 
ase where the graphs G

1

;G

2

are 
onne
ted,
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for, in general, one may test all pairs of 
onne
ted 
omponents. Given 
onne
ted

G

1

= (V

1

; E

1

);G

2

= (V

2

; E

2

), form the disjoint union G = (V

1

_

[V

2

; E

1

_

[E

2

) and

suppose Aut(G) = hXi. Then G

1

�

=

G

2

i� 9x 2 X : V

x

1

= V

2

.

We turn to the reverse redu
tion. For this, we �rst observe that GRAPH-ISO

would enable us to solve

Problem. RESTRICTED GRAPH AUTOMORPHISM

(RES-GRAPH-AUTO)

Input: Graph G = (V;E) and, for some m � jV j;

sequen
es v

1

; v

2

; : : : ; v

m

and w

1

; w

2

; : : : ; w

m

of distin
t verti
es in V .

Question: Is there some g 2 Aut(G) su
h that v

g

i

= w

i

, for 1 � i � m?

Redu
ing RES-GRAPH-AUTO to GRAPH-ISO: Atta
hing distinguishable

\gadgets" to the v

i

forming a graph G

1

and similar gadgets to the respe
tive

w

i

forming a graph G

2

, RES-GRAPH-ISO redu
es to testing isomorphism of the

modi�ed G

1

, G

2

. A suitable gadget at v

i

, respe
tively w

i

, 
ould be a new 
y
le

of length jV j+ i through the vertex.

Redu
ing GRAPH-AUTO to RES-GRAPH-AUTO: Repeated appli
ation of

a pro
edure for the de
ision problem RES-GRAPH-AUTO fa
ilitates the a
tual


onstru
tion of a suitable g; for, having re
eived a \yes", we go on to �nd a

possible v

g

m+1

(using a RES-GRAPH-AUTO pro
edure to test all 
andidates)

then v

g

m+2

, et
. Note this will have used O(jV j

2

) 
alls to RES-GRAPH-AUTO.

In this fashion, O(jV j

3

) appli
ations of RES-GRAPH-AUTO determine the

orbit of v

1

under Aut(G) and a right transversal for Aut(G)

(2)

(the stabilizer of

v

1

) in Aut(G). Similarly, we get transversals for ea
h Aut(G)

(i+1)

in Aut(G)

(i)

.

The union of su
h transversals generate Aut(G). Thus, GRAPH-AUTO has been

re
overed from O(jV j

4

) appli
ations of GRAPH-ISO (to graphs of polynomial

size O(jV j

2

)).

Observing then that GRAPH-AUTO is the problem that we would have to

solve, we 
onsider the natural a
tion of G = Sym(V ) on the set of unordered

pairs in V , and see that Aut(G) is pre
isely the subgroup that stabilizes E. With

this in mind, we de�ne the problem

Problem. SET-STABILIZER (STAB)

Input: G � Sym(
);� � 
.

Find: Stab

G

(�) = fg 2 G j �

g

= �g.

Thus, the above argument showed

Proposition 4.2. GRAPH-ISO is polynomial-time redu
ible to STAB.

There are two other important formulations of STAB. Consider

Problem. INTERSECTION (INTER)

Input: G;H � Sym(
).

Find: G \H.
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Problem. CENTRALIZER (CENT)

Input: G � Sym(
); x 2 Sym(
).

Find: The 
entralizer, C

G

(x), of x in G.

Proposition 4.3. The problems STAB, INTER and CENT are polynomial-

time equivalent.

Proof. Suppose we are given an instan
e (G;
;�) of STAB. To redu
e this

to INTER or CENT, let G a
t in the diagonal on the disjoint union

b


 = 


1

_

[


2

of two 
opies of 
 (i.e., (!

i

)

g

= !

g

i

, 8! 2 
, i = 1; 2, 8g 2 G, where !

i

denotes

the 


i


opy of ! 2 
). Let x be the involution in Sym(

b


) spe
i�ed by: (!

i

)

x

= !

i

if ! 62 � and (!

i

)

x

= !

3�i

if ! 2 �. Then Stab

G

(�) = G \G

x

= C

G

(x).

We indi
ate redu
tions in the other dire
tion. For INTERS: let G�H a
t on


 � 
 in the natural way, and set � = f(!; !) j ! 2 
g; then Stab

G�H

(�) =

f(g; g)jg 2 G\Hg. FOR CENT: g 2 G 
ommutes with x i� g, a
ting diagonally

on 
� 
, stabilizes f(!; !

x

) j ! 2 
g.

Remarks. In a panel dis
ussion at the DIMACS workshop that gave rise to

these Pro
eedings, the sentiment was generally expressed that STAB, INTER

and CENT are \not hard in pra
ti
e." Thus one should ask:

Question 1. Are STAB (or INTER or CENT) in polynomial time? Are

there even subexponential methods?

Of 
ourse, aÆrmative answers would 
arry over to GRAPH-ISO. Until su
h

time as this is resolved, implemented methods that rely on general pro
edures

for STAB, INTER or CENT 
annot be proved eÆ
ient. In parti
ular, they must

be ex
luded from the polynomial-time toolkit.

We emphasize \general" in the last paragraph, for it is entirely plausible that

the problems 
an often be solved eÆ
iently. The 
hallenge that we put forth,

therefore, is to ba
k this up with theory.

Question 2. For what 
lasses of inputs do implemented pro
edures, or mod-

i�
ations thereof, for STAB, INTER or CENT, have polynomial (or subexpo-

nential) worst 
ase performan
e?

If the question seems vague, we wel
ome reformulation, even to the ex
lusion

of polynomial time as a targeted 
riterion. Assuming there is an a
knowledged


lass of \interesting" groups, what 
an you guarantee about the running time

over that 
lass? A pro�ered system should be able to promise eÆ
ien
y beyond

the observation that a pro
edure took S se
onds for group G on ma
hine M .

At �rst glan
e, the sentiment that STAB, et
., are \not hard in pra
ti
e,"

seems entirely 
onsistent with feelings about GRAPH-ISO. However, in the latter


ase, one 
an provide some theoreti
al justi�
ation, sin
e there are well-de�ned
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and a

epted notions of random graphs, with respe
t to whi
h naive isomorphism-

testing pro
edures are provably fast on average (e.g., [5℄). Can one do the same

for groups?

Question 3. What is the average running time of implemented pro
edures

for STAB, et
.?

We leave open the 
hoi
e of probability distributions from whi
h to approa
h

this problem. A uniform distribution over all permutation groups is just one

possibility. One 
ould also look at 
onjuga
y 
lasses (in Sym(
)) or even iso-

morphism 
lasses. One should, as well, look at this problem for restri
ted 
lasses

of groups.

In Se
tions 6 and 7, we do give examples of pro
edures for STAB, INTER,

CENT that are provably in polynomial time for spe
i�ed input 
lasses, in
luding,

for example, solvable groups.

The similarity of these problems to GRAPH-ISO 
arries over to analogues of

the GRAPH-AUTO/GRAPH-ISO relationship. Namely, there is, in ea
h 
ase,

an equivalent de
ision problem in NP. Essentially, these may be obtained by

substituting 
osets for (one or both of) the groups in the problem and asking

whether the targeted set is nonempty. E.g., 
orresponding to INTER, we ask

whether Gx \H 6= ;. Then, with minor reformulations, we obtain the following

problems 
orresponding, respe
tively, to STAB, INTER, CENT.

Problem. SET-TRANPORTER (TRANS)

Input: G � Sym(
); �

1

;�

2

� 
.

Question: Is there some g 2 G su
h that �

g

1

= �

2

?

Problem. DOUBLE-COSET EQUALITY (DC-EQ)

Input: G;H � Sym(
); x

1

; x

2

2 Sym(
).

Question: Does Gx

1

H = Gx

2

H?

Problem. CONJUGACY OF ELEMENTS (CONJ-ELT)

Input: G � Sym(
); x

1

; x

2

2 Sym(
).

Question: Is there some g 2 G su
h that x

g

1

= x

2

?

Note, we in
lude \ELEMENTS" in the title spe
i�
ally to distinguish from the


orresponding question of 
onjuga
y of groups (see Se
tion 10.2).

We have the following analogue of Proposition 4.1.

Proposition 4.4. STAB is equivalent to ea
h of the problems TRANS, DC-

EQ and CONJ-ELT.

Proof. We outline this for the equivalen
e STAB � TRANS. (One 
an also

get CENT � CONJ-ELT and INTER � DC-EQ by establishing TRANS �

CONJ-ELT � DC-EQ the way one established STAB � CENT � INTER. Note
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that DC-EQ is trivially restated as testing non-emptiness of an interse
tion of a

group H

x

�1

1

and a 
oset Gx

2

x

�1

1

.)

Redu
ing TRANS to STAB: Given an instan
e (G;�

1

;�

2

) of TRANS, 
on-

sider the wreath produ
t

^

G = G o Z

2

a
ting on the disjoint union 


_

[
 of two


opies of 
 and let

^

� = �

1

_

[�

2

, in whi
h �

i

is 
onsidered as lying in the ith 
opy

of 
. Then the answer to TRANS is aÆrmative i� some generator of Stab

^

G

(

^

�)

swit
hes �

1

and �

2

.

For a reverse redu
tion, we 
onsider the following analogue of RES-AUTO:

Problem. RESTRICTED SET STABILIZER (RES-STAB)

Input: G � Sym(
);� � 
; sequen
es !

1

; : : : ; !

m

and  

1

; : : : ;  

m

in 
.

Question: Is there some g 2 Stab

G

(�) su
h that !

g

i

=  

i

for 1 � i � m.

Redu
ing RES-STAB to TRANS: Find, using (3.9), the sub
oset Hy of G


onsisting of elements mapping !

i

7!  

i

for 1 � i � m; apply TRANS to

(H;�;�

y

�1

).

Redu
ing STAB to RES-STAB: This pro
eeds exa
tly as the redu
tion of

GRAPH-AUTO to RES-GRAPH-AUTO.

Remark. Extending the analogy to GRAPH-ISO, Babai and Moran [8℄ have

shown that TRANS (therefore DC-EQ and CONJ-ELT) 
ould be NP-
omplete

only if the polynomial-time hierar
hy 
ollapses to �

p

2

= �

p

2

. Thus, even if

GRAPH-ISO were to be resolved via other methods (there is a legion of suf-

ferers from the \Graph-Isomorphism Disease", see [28℄ for traditional atta
ks)

su
h group-theoreti
 problems would very possibly remain as outstanding 
andi-

dates for membership in a 
omplexity 
lass stri
tly between P and NP-Complete.

There is also the possibility of an aÆrmative answer to the following open ques-

tion:

Question 4. Is DC-EQ (equivalently TRANS, CONJ-ELT) polynomial-time

redu
ible to GRAPH-ISO?

See Se
tion 10 for additional open questions on where group-theoreti
 de
ision

problems �t in this hierar
hy.

5. Not Likely to be in Polynomial Time

A suggested approa
h to DC-EQ (e.g., [9, 19℄) has been to determine, in any

given double-
oset GxH , its lexi
ographi
ally least element, as Gx

1

H = Gx

2

H

i� the lex-least element in Gx

1

H is the lex-least element in Gx

2

H . This is anal-

ogous to, and a generalization of, atta
king GRAPH-ISO by establishing lexi
o-

graphi
ally least representations (e.g. lex-least adja
en
y matri
es) as 
anoni
al

forms.

Of 
ourse, proponents realize that the approa
h has limitations. It is never-

theless worthwhile to provide theoreti
al substantiation of its diÆ
ulty, namely,

that it involves an NP-hard problem.
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We suppose that 
 is linearly ordered with respe
t to a relation <. Then

Sym(
) a
quires a lexi
ographi
 ordering �, spe
i�
ally, if x; y 2 Sym(
) and

x 6= y, then x � y i� !

x

< !

y

for the least ! 2 
 su
h that !

x

6= !

y

.

We state a polynomial-time equivalent de
ision problem in order to bring the

question into NP.

Problem. LEXICOGRAPHIC LEADER in DOUBLE COSET (LLDC)

Input: A linearly-ordered set 
; G;H < Sym(
); x; y 2 Sym(
).

Question: Is there some z 2 GxH su
h that z � y?

LLDC is in NP, for one 
an guess permutations g; h and verify that g 2 G,

h 2 H and gxh � y. Clearly, if one 
ould �nd lex-least elements in polynomial

time then LLDC would be solvable in polynomial time. Conversely, a polynomial

number of 
alls to an LLDC pro
edure would suÆ
e in a binary-sear
h pro
edure

for lex-least elements.

We show

Theorem 5.1. LLDC is NP-
omplete.

In fa
t, we give two distin
t redu
tions of known NP-
omplete problems to

LLDC, as they involve di�erent, yet seemingly reasonable, 
lasses of groups and

seem to display di�erent reasons for the diÆ
ulty. The �rst shows that LLDC is

\hard" even if G and H are symmetri
 groups (not, of 
ourse, in their natural

a
tions). The se
ond redu
tion shows that LLDC is \hard" even if G and H are

abelian and even if the orbits of hG; x;Hi are small (size 3). (However, see the

remark following the proofs.)

First proof of Theorem 5.1. It is known that the following problem is

NP-
omplete (see, e.g., [12℄).

Problem. MAXIMAL CLIQUE (MAX-CLIQ)

Input: Graph G = (V;E), integer K.

Question: Does G 
ontain a 
lique of 
ardinality K?

(Re
all that W � V is 
alled a 
lique in G if fw

1

; w

2

g 2 E, for all w

1

; w

2

2W .)

We redu
e MAX-CLIQ to LLDC, thereby establishing LLDC is also NP-


omplete:

Let (G = (V;E);K) be an instan
e of MAX-CLIQ. We may assume that V is

linearly ordered so that V = fv

1

; : : : ; v

m

g, the subs
ripts re
e
ting the ordering.

Let 
 be the set of pairs ffv

i

; v

j

g j 1 � i < j � mg. Then 
 is linearly ordered

with fv

i

; v

j

g < fv

k

; v

l

g, for 1 � i < j � m, 1 � k < l � n, if either j < l or j = l

and i < k. For any q, 1 � q �

�

m

2

�

, let 


q

denote the set 
onsisting of the �rst q

elements of 
 in this ordering.

Note that E � 
. We may assume that jEj �

�

K

2

�

. Let x be any permutation

in Sym(
) that maps 


jEj

to E. Let H be the natural image of Sym(V ) in

Sym(
) and let G = Sym(
)


n


jEj

(so G ' Sym(


jEj

)).
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Let y 2 Sym(
) be the transposition swit
hing the elements in positions

�

K

2

�

and

�

K

2

�

+ 1. Then, for z 2 Sym(
), z � y i� z pointwise �xes 


(

K

2

)

We


laim there is a 
lique of size K in G i� 9z 2 GxH su
h that z � y. This

follows from the fa
t that there is a 
lique in G of 
ardinality K i� there exists

h 2 H(= Sym(V )) su
h that (


(

K

2

)

)

h

� E (the 
lique then being fv

h

1

; : : : ; v

h

K

g).

But, as the permutations in Gx map 


(

K

2

)

pre
isely to the subsets of 
ardinality

�

K

2

�

in the set E, there is a 
lique of size K i� some permutation in H agrees

with some permutation in Gx on 


(

K

2

)

, whi
h is true i� some z 2 GxH pointwise

�xes 


(

K

2

)

, i.e., i� z � y.

Se
ond proof of Theorem 5.1. The following is also NP-
omplete (see,

e.g., [12℄).

Problem. EXACT 3-COVER (X3C)

Input: A set � together with a 
olle
tion � of size-3 subsets of �.

Question: Is there a sub
olle
tion �

0

� � with j�

0

j = j�j=3 su
h that

� =

S

�2�

0

�.

Redu
tion of X3C to LLDC:

Given an instan
e (�;�) of X3C, we 
onstru
t an instan
e (
; G;H; x; y) of

LLDC as follows.

We may assume the triples in � are distin
t. Let 	 = ff�; �

0

g j �; �

0

2

�; � \ �

0

6= ;g, the 
olle
tion of unordered-pairs of interse
ting triples. Let

� = � [� [	. The desired permutation domain is


 = �� f1; 2; 3g

and we �x any linear ordering of 
 subje
t only to the 
ondition that � � f1g

pre
edes �� f2g and �� f2g pre
edes �� f3g.

For any � 2 �, we let a

�

2 Sym(
) be the 3-
y
le ((�; 1); (�; 2); (�; 3)) (i.e.,

(�; 1) ! (�; 2) ! (�; 3) ! (�; 1)), and let b

�

2 Sym(
) be the transposition

((�; 1); (�; 2)). (Note that hfa

�

j � 2 �gi is an elementary abelian 3-group and

hfb

�

j � 2 �gi is an elementary abelian 2-group.) For � = f�

1

; �

2

; �

3

g 2 �,

de�ne 


�

2 Sym(
) by




�

= a

�

1

a

�

2

a

�

3

a

�

�

Y

�2 2	

a

 

:

Now let

G = hf


�

j � 2 �gi;

H = hfb

�

j � 2 � [	gi;

x =

Y

�2�

a

�1

�

:
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Further, let y 2 Sym(
) be the transposition swit
hing the last point in ��f1g

with the �rst point in �� f2g. Then, for z 2 Sym(
), z � y i� z �xes �� f1g

pointwise.

To establish the redu
tion we show that LLDC with input (
; G;H; x; y) has

an aÆrmative answer i� X3C with input (�;�) has an aÆrmative answer.

First suppose that �

0

� � is an exa
t 
over of �. Let

g =

Y

�2�

0




�

2 G

h =

Y

�2�

0

(b

�

�

Y

�2 2	

b

 

) 2 H:

We 
laim that gxh pointwise �xes � � f1g (when
e gxh � y). To see this:

for � 2 �, � is in � for exa
tly one � 2 �

0

so that (�; 1)

gxh

= (�; 2)

xh

=

(�; 1)

h

= (�; 1); for � 2 � n �

0

, (�; 1) is �xed by ea
h of g; x; h; for � 2 �

0

,

(�; 1)

gxh

= (�; 2)

xh

= (�; 2)

h

= (�; 1); �nally, for  2 	, if  \ �

0

= ; then

( ; 1) is �xed by ea
h of g; x; h, otherwise � 2  for pre
isely one � 2 �

0

so that

( ; 1)

gxh

= ( ; 2)

xh

= ( ; 2)

h

= ( ; 1).

Conversely, suppose that gxh � y, for g 2 G; h 2 H , so that gxh pointwise

�xes �

1

. We 
an express

g =

Y

�2�




e

�

�

; where e

�

= 0; 1; or 2;

h =

Y

�2�

0

b

�

�

Y

 2	

0

b

 

; where �

0

� �;	

0

� 	:

We show that �

0

is an exa
t 
over of �: For � 2 �, (�; 1)

gxh

= (�; 1) implies

e

�

= 0 if � 62 �

0

and e

�

= 1 if � 2 �

0

. Hen
e, g =

Q

�2�

0




�

. For � 2 �,

(�; 1) = (�; 1)

gxh

= (�; 1)

ga

�1

�

, and so � 2

S

�2�

0

�. Finally, we must show that

�

0

does not 
ontain �; �

0

with � \ �

0

6= ;. Suppose, to the 
ontrary, that su
h

�; �

0

2 �

0

and let  = f�; �

0

g 2 	; then ( ; 1)

gxh

= ( ; 1)




�




�

0

h

= ( ; 3)

h

=

( ; 3), 
ontradi
ting the fa
t that gxh �xes ( ; 1).

Remarks. The 
onstru
tion in the se
ond proof should be 
ompared with the

result of Theorem 6.2, where it is shown that, with a judi
ious 
hoi
e of ordering

of 
 (determined by G alone), the problem is a
tually in polynomial time for

interesting 
lasses of groups G. This in
ludes all solvable groups as well as all

groups with bounded orbits. Either of these 
onditions are satis�ed by the groups

of the above redu
tion, in fa
t for hG; x;Hi.

On the other hand, we 
onje
ture that there is no analogous �x for the situ-

ation en
ountered in the �rst proof. Therein 
 is the set of size-2 subsets of a

linearly ordered set V , H the natural image of Sym(V ) in Sym(
) and G is the

subgroup of Sym(
) �xing all but the �rst q points for some q �

�

jV j

2

�

. In this

spe
ial setting, we ask
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Question 5. Given su
h 
, G, H, is there a reordering of 
 with respe
t to

whi
h the lexi
ographi
ally least elements in GxH, for any x 2 Sym(
), 
an be

found in polynomial time?

With su
h an ordering in hand, one 
ould de�ne a polynomial-time 
omputable


anoni
al form for graphs G = (V;E) with jEj = q: take any x 2 Sym(
)

su
h that 


x

q

= E (


q

remains the �rst q elements in the original ordering);

�nd z, the lex-least element (with respe
t to the new ordering) in GxH ; set

CF(G) = (V;


z

q

). The graph CF(G) is independent of the 
hoi
e of x; even more

signi�
antly, it is a 
omplete isomorphism invariant (hen
e a 
anoni
al form),

that is, G = (V;E) is isomorphi
 to G

0

= (V;E

0

) i� CF(G) = CF(G

0

).

As we do not expe
t an aÆrmative answer to Question 5, we suggest looking

for eviden
e to the 
ontrary. Could one show, for example, that with su
h G

and H , LLDC remains NP-
omplete for any pres
ribed ordering of 
?

An important restri
ted 
ase of LLDC o

urs when G = H (e.g., [19℄). Thus,

it is worth observing that this 
ase is equally \hard".

Corollary 5.2. LLDC remains NP-
omplete when G = H.

Proof. We des
ribe a polynomial-time redu
tion of the general LLDC prob-

lem to this spe
ial 
ase.

Suppose (
; G;H; x; y) is an instan
e of LLDC.

Set

^


 = 
�f1; 2g and linearly order

^


 so that (!; i) � ( ; j) if i < j or if i = j

and ! �  . Let

^

G = G�H a
t on

^


 via (!; 1)

(g;h)

= (!

g

; 1), (!; 2)

(g;h)

= (!

h

; 2)

for ! 2 
; g 2 G; h 2 H (thus G a
ts naturally on 
�f1g and H a
ts naturally

on 
 � f2g). Let x̂; ŷ 2 Sym(

^


) satisfy (!; 1)

x̂

= (!

x

; 2), (!; 1)

ŷ

= (!

y

; 2) and

(!; 2)

x̂

= (!; 2)

ŷ

= (!; 2) for ! 2 
.

To establish the redu
tion, we show that the instan
e (
; G;H; x; y) of LLDC

has an aÆrmative answer i� the instan
e (

^


;

^

G;

^

G; x̂; ŷ) has an aÆrmative answer.

Suppose 9g 2 G; h 2 H satisfying gxh � y. Then (g; 1)x̂(1; h) � ŷ. This

follows from that the fa
t that, for ! 2 
, (!; 1)

(g;1)x̂(1;h)

= (!

gxh

; 2).

Conversely, suppose 9(g

1

; h

1

); (g

2

; h

2

) 2

^

G satisfying (g

1

; h

1

)x̂(g

2

; h

2

) � ŷ.

Then g

1

xh

2

� y. To see this: the �rst point in

^


 at whi
h (g

1

; h

1

)x̂(g

2

; h

2

) and

ŷ di�er must lie in 
�f1g for no permutation agrees with ŷ on 
�f1g and stri
tly

pre
edes it; the result now follows from the observation (!; 1)

(g

1

;h

1

)x̂(g

2

;h

2

)

=

(!

g

1

xh

2

; 2).

Remark. A 
ontext in whi
h LLDC arises is the a
tual enumeration of all

double 
osets GxH of subgroups G;H of some L 2 Sym(
) (see, e.g., [9℄). (For,

assuming LLDC is not signi�
antly harder than DC-EQ for the parti
ular groups,

it would be most eÆ
ient to 
ompute and store the lex-least elements as 
anoni
al

representatives of their double 
osets.) Sin
e the answer is not ne
essarily of

polynomial size, the natural question to ask in this 
ase is how mu
h work has

to be done beyond that whi
h is di
tated by the output.
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Question 6. Given G;H;L 2 Sym(
) with G;H � L, 
an the double 
osets,

GxH, for x 2 L, be enumerated in time O((� + n)




), where � is the number of

su
h double 
osets?

The proof of Theorem 5.1 
ontains the ingredients of another NP-
omplete-

ness result. Consider the 
lass of problems

Problem. MEMBERSHIP IN PRODUCT OF m GROUPS (m-MEMB)

Input: A

1

; A

2

; : : : ; A

m

� Sym(
); x 2 Sym(
).

Question: Is x 2 A

1

A

2

: : : A

m

?

Of 
ourse, 1-MEMB is in polynomial time by (3.8). The problem 2-MEMB is

simply a restatement of DC-EQ, whi
h is of unknown 
omplexity.

What happens for m � 3? Clearly, m-MEMB is in NP, for one 
an guess

and verify a fa
torization x = a

1

� � � a

m

with a

i

2 A

i

. Now, in the redu
tion

in ea
h proof of Theorem 5.1, the element y was taken to be a transposition

of two adja
ent elements !

i�1

; !

i

in the linearly ordered 
. Then, for z 2

Sym(
), z � y i� z 2 Sym(
)

(i)

. Hen
e, there exists z 2 GxH pre
eding y i�

GxH \ Sym(
)

(i+1)

6= ;, whi
h o

urs i� x 2 GSym(
)

(i+1)

H . It follows that

Proposition 5.3. m-MEMB is NP-
omplete for m � 3.

Remark. Variations on these redu
tions 
an be used to show that even the

spe
ial 
ase of testing membership in GHG, for G;H � Sym(
), is NP-
omplete.

Furthermore, this remains NP-
omplete even when G and H are both abelian.

6. A Polynomial-Time Instan
e of LLDC

Following te
hniques introdu
ed in [20℄ and [6℄, we show that the diÆ
ulty

of the LLDC instan
e used in the se
ond proof of Theorem 5.1 is attributable

entirely to the parti
ular linear ordering of 
. That is, for a more general 
hoi
e

of G, one 
an de�ne (in polynomial time) a linear ordering of 
 so that the

lexi
ographi
ally-least element in any GxH is obtainable in polynomial time.

This will, in turn, yield polynomial-time solutions to spe
ial 
ases of INTER,

STAB and CENT.

The restri
tion to be pla
ed, on G alone, is a limit on the sizes of the non
y
li



omposition fa
tors. Spe
i�
ally, for any �xed integer d, let �

d

denote the 
lass

of groups all of whose non-
y
li
 
omposition fa
tors are isomorphi
 to subgroups

of S

d

. So, in parti
ular, �

d

in
ludes all solvable groups. The following is proved

in [2℄.

Lemma 6.1 (Babai, Cameron, P

�

alfy). There is a 
onstant 
 su
h that if

G is a primitive subgroup of Sym(	) and G 2 �

d

then jGj = O(j	j


d

).

Remark. Sin
e many problems on permutation groups have natural redu
-

tions to the primitive 
ase, results that bound the size of primitive groups under

various 
onditions are often essential to the analysis (see, e.g., [7℄ for other
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examples). Indeed, the investigations leading to Lemma 6.1 were inspired by


omputational 
omplexity appli
ations. In parti
ular, the lemma enables a sim-

pli�
ation as well as a wider appli
ability of the set-stabilizer algorithm in [20℄.

In this se
tion, the lemma 
omes into play in the base 
ase of a \divide-and-


onquer" algorithm that is guided by the orbit/imprimitivity stru
ture of G. For


onvenien
e, we keep tra
k of this in a stru
ture forest F for G. Su
h a forest

in
ludes one stru
ture tree for ea
h orbit. The (rooted) tree T

�

on the orbit � has

leaf set � and is su
h that the a
tion of G on � 
an be lifted to automorphisms

of T

�

, with the further property that the subgroup of G that �xes any node

a
ts primitively on the 
hildren of that node. The polynomial-time 
onstru
tion

of a suitable T

�

is an easy 
onsequen
e of (3.2): if G is primitive then simply

atta
h all points to a root, else �nd any non-trivial blo
k �

1

and re
ursively


onstru
t a stru
ture tree for the a
tion of G on f�

1

g

G

and a tree for the a
tion

of Stab

G

(�

1

) on �

1

, using G to 
opy the latter to the other blo
ks (in this 
ase,

Stab

G

(�

1

) is the stabilizer of a single \point" in the a
tion on f�

1

g

G

).

We establish some additional notation that is 
onvenient for a re
ursive ex-

ploitation of orbits and blo
ks. Let 
 be a �xed linearly-ordered set. For

any � � 
, Sym(
)

�

a
quires a lexi
ographi
 linear ordering (via f

1

� f

2

i�

f

1

(Æ) < f

2

(Æ) for the least Æ 2 � su
h that f

1

(Æ) 6= f

2

(Æ)). De�ne � : Sym(
)�

Sym(
)! Sym(
) by �(g; h) = g

�1

h and let pr

i

: Sym(
)�Sym(
)! Sym(
),

for i = 1; 2 be the proje
tions onto the �rst and se
ond fa
tors, respe
tively. For

A � Sym(
) � Sym(
), � � 
, let ``

�

(A) denote the lexi
ographi
ally-least

element in �(A)

�

; observe that the lex-least element of GxH is ``




((1; x)G�H).

We also 
onsider the elements that indu
e ``

�

(A), namely LL

�

(A) = fz 2 A j

�(z)

�

= ``

�

(A)g. We need the following fa
ts.

Fa
t 1. If � = �

1

_

[�

2

with the elements of �

1

stri
tly pre
eding all those

of �

2

then

LL

�

(A) = LL

�

2

(LL

�

1

(A)):

Fa
t 2. If A = A

1

[ A

2

[ � � � [ A

m

then

``

�

(A) = lex-leastf``

�

(A

i

) j 1 � i � mg

LL

�

(A) =

[

fLL

�

(A

i

) j ``

�

(A

i

) = ``

�

(A); 1 � i � mg

Fa
t 3. If A is a left 
oset of M and � is invariant under pr

1

(M), then

LL

�

(A) is a left 
oset of Stab

M

(f(Æ; Æ

``

�

(A)

) j Æ 2 �g).

The proofs of Fa
ts 1 and 2 are straightforward. Fa
t 3 follows from the

observation that, for u; v 2 Sym(
) � Sym(
), if pr

1

(u

�1

v) stabilizes � then

�(u)

�

= �(v)

�

i� u

�1

v stabilizes f(Æ; Æ

�(u)

) j Æ 2 �g.

These fa
ts are used in the main theorem of this se
tion:
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Theorem 6.2. Let d be �xed. Given G < Sym(
), with G 2 �

d

, in polyno-

mial time one 
an establish a linear ordering of 
 with respe
t to whi
h one 
an

then �nd, in polynomial time, the lexi
ographi
al least element in GxH for any

given x 2 Sym(
) and any given H � Sym(
).

Proof. Let F be a �xed stru
ture forest for G. Taking any planar layout of

F , with the leaves (i.e., the set 
) situated at the same level, order the leaves

left-to-right.

To a

ommodate re
ursion, we des
ribe a general pro
edure for �nding

LL




(zM) where zM is any left 
oset ofM � Sym(
)�Sym(
) and pr

1

(M) < G.

(Our overall goal is the spe
ial 
ase ``




((1; x)G�H).) Note that we may 
onsider

M as a
ting on 
 via either pr

1

or pr

2

, and pr

1

(M) also a
ts on F .

Assuming the orbits of G o

ur in the order 


1

; : : : ;


m

, we have, by Fa
t 1,

LL




(zM) = LL




m

(� � � (LL




1

(zM)) � � � ):

By Fa
t 3, the intermediate answers are always left 
osets.

Thus it suÆ
es to des
ribe the 
onstru
tion of LL

�

(zM) where � is the set

of roots des
endent from a node � in F and � (therefore �) is �xed by pr

1

(M).

If � is a leaf, then � = f�g. In this 
ase, ``

�

(zM) is the least element in

the orbit of �

�(z)

under pr

2

(M). If wL is the sub
oset of M mapping �

�(z)

to

``

�

(zM) (via the pr

2

a
tion) then LL

�

(zM) = zwL.

If � is not a leaf, then let L be the subgroup of M that �xes the immediate


hildren, �

1

; : : : ; �

r

(listed left-to-right), of � (L is found by an appli
ation of

(3.6)) and �nd a left transversal fw

1

; : : : ; w

jM : Lj

g for L in M , so

M =

jM : Lj

[

i=1

w

i

L:

By Fa
t 2, 
omputation of LL

�

(zM) follows from 
omputation of LL

�

(zw

i

L) for

1 � i � jM : Lj. By Fa
t 3, ea
h 
ontributing subanswer, i.e., ea
h LL

�

(zw

i

L),

for whi
h ``

�

(zw

i

L) = ``

�

(zM), is a 
oset v

i

K of the same subgroup K =

Stab

L

(f(Æ; Æ

``

�

(zM)

) j Æ 2 �g), so that the subanswers v

i

1

K; : : : ; v

i

s

K glue

together to a 
oset as in:

v

i

1

K [ � � � [ v

i

s

K = v

i

1

hK; fv

�1

i

1

v

i

t

g

2�t�s

i:

Finally, to 
ompute LL

�

(zw

i

L), we exploit the fa
t that pr

1

(L) stabilizes ea
h

�

i

, in the iterative approa
h

LL

�

(zw

i

L) = LL

�

r

(� � � (LL

�

1

(zw

i

L)) � � � );

where �

i

denotes the set of leaves des
endent from �

i

.

For the purpose of timing, we observe that, that jM : Lj is bounded by the

size of the primitive group in the a
tion of G

�

on f�

1

; : : : ; �

r

g. Suppose now

that G 2 �

d

. Then jM : Lj � O(r


d

). Thus, the one problem on � has involved
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at most O(r


d+1

) re
ursive 
alls to problems on sets of size j�j=r. It follows that

the timing for the entire pro
edure is O(n


d+


0

).

Sin
e double 
osets 
an be 
ompared when lex-least elements are available,

Theorem 6.2 has immediate appli
ations to the problems of Se
tion 4.

Corollary 6.3. Let d be �xed. Given G < Sym(
), with G 2 �

d

, in poly-

nomial time one 
an

(i) for any �

1

;�

2

� 
, test whether there exists g 2 G su
h that �

g

1

= �

2

;

(ii) for any given H � Sym(
) and any x

1

; x

2

2 Sym(
) test whether

Gx

1

H = Gx

2

H;

(iii) for any x

1

; x

2

2 Sym(
), test whether there exists g 2 G su
h that

x

g

1

= x

2

.

The methods of Se
tion 4 yield polynomial-time equivalent \AUTO" versions

for the statements in Corollary 6.3.

Corollary 6.4. Let d be �xed. Given G < Sym(
), with G 2 �

d

, in poly-

nomial time one 
an

(i) for any � � 
, �nd Stab

G

(�);

(ii) for any given H � Sym(
), �nd G \H;

(iii) for any x 2 Sym(
), �nd C

G

(x).

Remarks. The timing in all of these results, as implied by the proof of Theo-

rem 6.2, 
an be expressed in the form O(j
j


d

), for 
onstant 
. An improvement

des
ribed in [4℄ results in the timing O(j
j


d= log d

).

If G = (V;E) is a 
onne
ted graph of valen
e d, and e 2 E, then Aut(G)

e

2

�

d�1

. This observation, together with the result in Corollary 6.4(i), was used

in [20℄ to establish a polynomial-time isomorphism test for graphs of bounded

valen
e. Using the improved timing as above, one gets isomorphism-testing for

valen
e-d graphs in time O(jV j


d= log d

) (so the exponent is o(d)). Together with

the \valen
e-redu
tion" tri
k of Zemlya
henko [31℄, this, in turn, yields the best-

known timing for general graph isomorphism, O(n

p


n= logn

) [4℄.

The result of Corollary 6.4(i) also underlies polynomial-time isomorphism

tests for a broader 
lass of graphs generalizing both bounded valen
e and bounded

genus [25, 26℄.

We remark, �nally, that Corollary 6.4 
an be approa
hed dire
tly, and possibly

a bit more 
ompa
tly, than via Theorem 6.2. However, there is some dividend

in the lex-least approa
h. For example, one 
an apply it to �nd 
anoni
al forms

in the above graph 
lasses [6℄.
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7. Exploiting Normality

Problems that involve �nding normal subgroups often have eÆ
ient solutions

a

ording to the 
riterion of this paper. We illustrate the point, in this se
tion,

with the problems of Se
tion 4. Other examples are given in Se
tions 8 and 9.

We �rst 
onsider INTER.

Proposition 7.1. Given G;H � Sym(
), where G normalizes H, then

G \H 
an be found in polynomial time.

Proof. This is an appli
ation of (3.5), for we have the tower

G \H = G \G

(n)

H � G \G

(n�1)

H � � � � � G \G

(2)

H � G \G

(1)

H = G:

Generators for G

(i)

H are available (union of generators for G

(i)

and generators

for H) and so membership-testing in both G and G

(i)

H , therefore in G\G

(i)

H ,

is in polynomial time. Moreover,

jG \G

(i�1)

H : G \G

(i)

H j � jG

(i�1)

H : G

(i)

H j � jG

(i�1)

: G

(i)

j � n� i:

Hen
e, (3.5) applies.

The result generalizes to

Corollary 7.2. Given G and H su
h that H CC hG;Hi. Then G \H 
an

be found in polynomial time.

Proof. If G normalizes H then apply Proposition 7.1. Otherwise, sin
e

H CC hG;Hi, H

G

< hG;Hi and so G \ H

G

< G. It suÆ
es then to observe

that G \ H = H \ (G \ H

G

), whi
h we 
ompute re
ursively (G \ H

G

being

obtained by the proposition).

Remark. In parti
ular, Corollary 7.2 o�ers an alternative approa
h for inter-

se
ting subgroups of a nilpotent group (wherein all subgroups are subnormal).

The method appears substantially di�erent from the orbit and imprimitivity-

blo
ks divide-and-
onquer that led to Corollary 6.4(ii).

If a targeted normal subgroup N E G 
an be interpreted as the kernel of some

indu
ed a
tion � : G ! Sym(	), then N = G

	

(obtainable in polynomial time

by (3.6)). We use this in several pla
es, in
luding the following.

Proposition 7.3. Given G;H � Sym(
), where G normalizes H, then

C

G

(H) 
an be found in polynomial time.

Proof. We des
ribe an a
tion � : G ! Sym(	), with j	j � j
j. Then if

K = ker(�), we des
ribe a new a
tion � : K ! Sym(
) su
h that C

G

(H) =

ker(�).

Let 	 be the set of equivalen
e 
lasses in 
 relative to the relation de�ned

by � � � , H

�

= H

�

. Let � : G ! Sym(	) be the a
tion of G indu
ed by


onjugation. Note that C

G

(H) � K = ker(�).



160 E. M. LUKS

To de�ne �, �x a point �

�

in ea
h orbit � of H . Then for k 2 K let

(�

h

�

)

�(k)

= �

h

k

�

:

Sin
e H

k

�

�

= H

�

�

, � is well-de�ned, when
e it is immediate that � is a homo-

morphism. We need to verify only that C

G

(H) = ker(�)

Clearly, if k 
entralizes H then k 2 ker(�). Conversely, suppose k 2 ker(�).

Let h 2 H ; we must show hk = kh. For any ! 2 
, ! = �

h

1

�

for some � and

some h

1

2 H . Sin
e k 2 ker(�),

!

h

= �

h

1

h

�

= �

(h

1

h)

k

�

= (�

h

k

1

�

)

h

k

= (�

h

1

�

)

h

k

= !

h

k

:

Hen
e h

k

= h.

Remarks. In [21℄, it is observed that, when G normalizes H , C

G

(H) 
an be

dire
tly interpreted as a kernel, though the a
tion is on a set of size O(j


2

j).

The above approa
h avoids this blowup in spa
e demands.

Proposition 7.1 o�ers still another approa
h, as 
entralizers in Sym(
) 
an

be found in polynomial time (see, e.g., [10℄ or [15℄). With that in mind, we 
an

employ C

G

(H) = G \ C

Sym(
)

(H).

Proposition 7.3 has the immediate 
orollary

Corollary 7.4. Given G � Sym(
), then the 
enter of G 
an be found in

polynomial time.

In pra
ti
e, 
enters are typi
ally 
omputed by 
utting down to the 
entral-

izers of su

essive generators. Sin
e the elements to 
entralize are 
hosen in a

spe
ial way, for example, the �rst one from within the group itself, one might ask

whether there may be a polynomial-time approa
h of this sort, notwithstanding

the un
ertain 
omplexity of general CENT. However, we observe that in the �rst

round, one is already solving a problem as hard as CENT. Consider

Problem. INTERNAL-CENTRALIZER (INT-CENT)

Input: G � Sym(
); x 2 G.

Find: C

G

(x).

Unfortunately,

Proposition 7.5. INT-CENT is polynomial-time equivalent to STAB.

Proof. Suppose INT-CENT is in polynomial time. Then, with notation as

in the redu
tion of STAB to CENT (in proof of Proposition 4.3), in the faithful

a
tion of hG; xi on

b


 we 
ould �nd C

hG;xi

(x) Observe, however, that hG; xi also

a
ts on the system 
 = ff!

1

; !

2

g j ! 2 
g, whi
h may be identi�ed with 
 (via

(!

1

; !

2

)$ !); the resulting a
tion of C

hG;xi

(x) on 
 is C

G

(x).
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Remarks. We note that the proof shows �nding C

G

(x) is \no easier" when

x 2 G is an involution.

CONJ-ELT (Se
tion 4) has an analogous \internal" 
ase in whi
h x

1

; x

2

are

assumed to be in G. Again, this is polynomial-time equivalent to the general

problem.

Corollary 7.2 inspires the question of whether the following is also in polyno-

mial time.

Problem. SUBNORMAL-CENTRALIZER (SUBNORM-CENT)

Input: G;H � Sym(
) with H CC G.

Find: C

G

(H).

However, this problem, too, is no easier then CENT.

Proposition 7.6. SUBNORM-CENT is polynomial-time equivalent to STAB.

Proof. In the above dis
ussion of INT-CENT, hxi

G

is an elementary abelian

2-group, so that hxi E hxi

G

E hG; xi, when
e hxi CC hG; xi.

Proposition 7.3 does give a bit of information about general 
entralizers.

Corollary 7.7. Given G;H � Sym(
), then Core

G

(C

G

(H)) 
an be found

in polynomial time.

Proof. Core

G

(C

G

(H)) = C

G

(H

G

).

Following the redu
tion of STAB to CENT, this immediately yields

Corollary 7.8. Given G � Sym(
) and � � 
, then Core

G

(Stab

G

(�))


an be found in polynomial time.

Corollaries 7.7 and 7.8 prompt the question of whether Core

G

(G\H) 
an be


omputed in polynomial time. It 
an. However, we do not know an \elementary"

proof (see Proposition 8.6).

Remarks. The polynomial-time methods for Propositions 7.1, 7.3 ultimately

utilize the fa
t that the targeted subgroup H � G lies in a 
hain

H = H

m

� H

m�1

� � � � � H

0

= G(1)

with jH

i

: H

i+1

j \small". In fa
t, this is true for any H CC G, where \small"


an be interpreted as � n. To show this, it suÆ
es to 
onsider to assume H E G,

in whi
h 
ase

H = HG

(n)

� � � �HG

(2)

� HG

(1)

= G:

This suggests that (3.5) should provide the tool for �nding targeted normal

subgroups mu
h more generally. The diÆ
ulty that arises, however, is that

we do not have, a priori, ways of \re
ognizing" the intermediate groups. (See

Question 10, for example.)
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One expe
ts, also, to �nd normal subgroups as kernels of a
tions. However, for

arbitraryN C G � Sym(
), G=N may not be representable on a polynomial-size

set [27℄. One knows, however, for H CC G, there is a 
hain

H = L

m

E L

m�1

E � � � E L

0

= G

with L

i

=L

i+1

,! Sym(
) for ea
h i. (To show this, we may assumeH E G; using

the 
hain in (1), indu
tively let L

i+1

be the kernel of the right-multipli
ation

a
tion of L

i

on the right 
osets of H

i+1

in H

i

.) Call the minimal su
h m the

depth of L in G. It is not hard to show that if L E G then m = O(log

2

j
j). (This

redu
es easily to the primitive 
ase, wherein one uses the Cameron 
lassi�
ation

of primitive groups, see, e.g., [7℄.)

Though we are not sure of polynomial-time impli
ations, the following ques-

tion seems of interest.

Question 7. What is the least upper bound on the depths of normal and

subnormal subgroups in permutation groups?

The proof of Proposition 7.3 shows, for example, that the depth of the 
entralizer

of a normal subgroup is at most 2.

8. Quotient Groups

In [18℄, Kantor and Luks suggest the thesis that problems that are in poly-

nomial time for permutation groups remain in polynomial time for quotients of

permutation groups. The justi�
ation is not, however, via routine 
onsideration

of the quotients as permutation groups, as is often the 
ase in available systems,

inasmu
h as quotients may not have any small (polynomial-size) faithful permu-

tation representations [27℄. The generalizations of problems INTER and CENT

provide good illustrations of the te
hniques that are brought to bear in [18℄.

Problem. QUOTIENT-INTERSECTION (Q-INTER)

Input: G;H;K � Sym(
) with K E G, K E H.

Find: G=K \H=K.

Problem. QUOTIENT-CENTRALIZER (Q-CENT)

Input: G;K � Sym(
); x 2 Sym(
), with K E G and x normalizing K.

Find: C

G=K

(xK=K).

(G=K;H=K may be 
onsidered as 
ontained in the group hG;Hi=K and G=K,

xK=K in the group hG; xi=K.)

Sin
e permutation representations of the quotients may be infeasible, the ques-

tion arises of whether these problems present a still higher level of 
hallenge.

However,

Proposition 8.1. Q-INTER and Q-CENT are polynomial-time equivalent to

STAB.
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Proof. It is obvious that Q-INTER is no harder than INTER, sin
e

G=K \H=K = (G \H)=K.

Redu
tion of Q-CENT to STAB: Let (G;K; x) be an instan
e of Q-CENT.

Let

^

G = f(g; gk) j g 2 G; k 2 Kg a
ting on 
 � 
. For x 2 G let �(x) =

f(!; !

x

) j ! 2 
g � 
� 
. Then for (g; gk) 2

^

G, �(x)

(g;gk)

= �(x

g

k), so that

(g; gk) stabilizes �(x) i� [x; g℄ = k

�1

. But gK 2 C

G=K

(xK=K) i� there exists

k 2 K su
h that [g; x℄ = k. Hen
e, if we 
ompute Stab

^

G

(�(x)) and let H be its

�rst 
oordinate proje
tion, we have C

G=K

(xK=K) = H=K.

Remark. Similarly, the quotient versions of DC-EQ and ELT-CONJ are pol-

ynomial-time equivalent to the permutation-group 
ases.

Thus, it seems, from a polynomial-time perspe
tive, that these problems do

not get any harder for quotients. In a positive dire
tion, we next show that the

instan
es where INTER and CENT are in polynomial time generalize to quotient

groups.

The following is just a repeat of Proposition 7.1.

Proposition 8.2. Given G;H;K � Sym(
), with K E G and K E H, and

where G=K normalizes H=K, then G=K \ H=K 
an be found in polynomial

time.

Proof. G=K \H=K = (G \H)=K and the hypotheses imply G normalizes

H .

Corollary 7.2 generalizes immediately, as well.

Generalizations of Corollary 6.4(ii,iii) and Proposition 7.3 require a surprising

amount of additional ma
hinery.

The following is proved in [16, 17℄.

Lemma 8.3 (Kantor). Given G � Sym(
) then

(i) For any prime p dividing jGj, a Sylow p-subgroup of G 
an be found in

polynomial time.

(ii) Given Sylow p-subgroups P

1

; P

2

of G, some g 2 G su
h that P

g

1

= P

2


an be found in polynomial time.

(iii) Given K;P � Sym(
) with P a Sylow p-subgroup of K and K E G,

then N

G

(P ) 
an be found in polynomial time.

Quite unlike the methods being des
ribed in this paper, whi
h have relied on

elementary group theory, the algorithms and proofs underlying Lemma 8.3 use

substantial 
onsequen
es of the 
lassi�
ation of �nite simple groups, in
luding

detailed knowledge of simple-group types. Nevertheless, that having been done,

it is demonstrated in [18℄ that one 
an e�e
tively use the result as a \bla
k-

box" in further, on
e again elementary, arguments. We illustrate �rst with a

generalization of Corollary 6.4(iii). This involves a 
onstru
tive version of the

well-known



164 E. M. LUKS

Frattini argument. Let P � K E G with P a Sylow p-subgroup of K.

Then G = KN

G

(P ).

Proposition 8.4. Given G;K � Sym(
) and x 2 Sym(
), where K E G, x

normalizes K, and with G=K 2 �

d

, then C

G=K

(xK=K) 
an be found in polyno-

mial time.

Proof. Note that the �

d

hypothesis applies only to G=K. If, however, G 2

�

d

then the redu
tion in the proof of Proposition 8.1 would lead to an instan
e

of STAB with a group,

^

G, in �

d

, when
e we 
ould apply 6.4(i).

So suppose G 62 �

d

. Then K 62 �

d

. In parti
ular, K is not nilpotent, so that,

for some prime p dividing jKj, any Sylow p-subgroup, P , of K is not normal.

Find generators for su
h a P as well as G

1

= N

G

(P ) and K

1

= N

K

(P ), and �nd

k 2 K su
h that P

k

= P

x

(Lemma 8.3). Let y = xk

�1

, so y normalizes P and

therefore normalizes K

1

.

Re
ursively 
ompute L=K

1

= C

G

1

=K

1

(yK

1

=K

1

). Then C

G=K

(xK=K) =

LK=K.

The re
ursive pro
edure runs in polynomial time sin
e G

1

< G. The 
or-

re
tness is a 
onsequen
e of a Frattini argument: Sin
e G = G

1

K, it suÆ
es to

show, for g

1

2 G

1

that g

1

K 
entralizes xK=K (in hG; xi=K) i� g

1

K

1


entralizes

yK

1

(in hL; yi=K

1

). But g

1

K 
entralizes xK=K i� [g

1

; x℄ 2 K i� [g

1

; y℄ 2 K

i� [g

1

; y℄ 2 K

1

(sin
e K

1

= N

K

(P ) and both g

1

and y normalize P ) i� g

1

K

1


entralizes yK

1

.

A similar Frattini argument (see [18℄) is used for the following extension of

Corollary 6.4(ii).

Proposition 8.5. Given G;H;K � Sym(
), where K E G, K E H, and

with G=K 2 �

d

, then G=K \ H=K 
an be found in polynomial time.

We reiterate that, while Corollary 6.4(ii,iii) has been extended to quotient

groups, the fa
t that the extensions are dependent upon Lemma 8.3, means that

we have now had to invoke the 
lassi�
ation of simple groups. On the other

hand, in the spe
ial 
ase when hG=K;H=Ki is solvable, there are \elementary"

proofs of Propositions 8.4 and 8.5 based upon results in [22℄.

Question 8. Is there an \elementary" 
onstru
tion of C

G=K

(H=K) and/or

G=K \H=K if only G=K is assumed to be solvable?

Our extension of Proposition 7.3 to quotient groups requires the ability to


ompute 
ores of given subgroups of permutation groups. In pra
ti
e, this is


ommonly done by interse
ting 
onjugates until the resulting group is normal.

Sin
e interse
tions are not presently available, this approa
h is not yet feasible

in polynomial time. Nevertheless, 
ores are attainable. Following the theme of

Se
tion 7, we observe that the normality of the targeted group fa
ilitates this.



PERMUTATION GROUPS AND POLYNOMIAL-TIME COMPUTATION 165

Proposition 8.6. Given G;H � Sym(
), then Core

G

(G \H) 
an be found

in polynomial time.

Proof. For ea
h prime p, �nd a Sylow p-subgroup, P

p

, of G. Sin
e

Core

G

(G \H) E G,

Core

G

(G \H) = hfP

p

\ Core

G

(G \H) j p divides jGjgi:

It suÆ
es to determine P

p

\ Core

G

(G \H) for ea
h p. This is made feasible by

the fa
t that we 
an test membership in Core

G

(G \ H), that is, if g 2 G then

g 2 Core

G

(G \ H) i� hgi

G

� H . Thus, initially setting T = P

p

, test whether

T

G

� H and, if so, output T ; else we 
an �nd g 2 G su
h that T

g

6� H (the


omputation of generators for the normal 
losure, (3.11), 
an maintain generators

as 
onjugates of the generators of T ) and repeat with T := T \H

g

�1

(interse
t

by Corollary 6.4(ii)).

The pro
edure su

eeds be
ause the relation T \ Core

G

(G \H) =

P

p

\ Core

G

(G \H) is maintained.

It is immediate that

Corollary 8.7. Given G;H � Sym(
) with H � G, then Core

G

(H) 
an be

found in polynomial time.

Remark. The proof of Proposition 8.6 provides a striking 
ounterpoint to that

of Corollaries 7.7 and 7.8. While the latter two were elementary, the former uses

Lemma 8.3 whi
h, in turn, uses the 
lassi�
ation of �nite simple groups. On

the other hand, we observe in Se
tion 9 that another problem (�nding p-
ores)

whi
h, in pra
ti
e, has seemed to require 
onstru
tion of Sylow subgroups, has

a dire
t and elementary approa
h. On
e again we are led to questions about the

existen
e of non-
lassi�
ation-dependent arguments.

Question 9. Is there an \elementary" approa
h to �nding Core

G

(G\H) or

even for �nding Core

G

(H) when H � G?

In parti
ular, 
onsidering the remarks at the end of Se
tion 7,

Question 10. Is there an \elementary" 
onstru
tion of a 
hain

Core

G

(H) = N

0

E N

1

E � � � E N

m

= G

in whi
h N

i+1

is the kernel of a \small" degree representation of N

i

?

Of 
ourse, these issues may lie with Lemma 8.3 itself.

Question 11. Is there an \elementary" approa
h to �nding Sylow subgroups?

Can one even get started?

Question 12. Is there an \elementary" method for lo
ating an element of

order p where p is a prime dividing jGj?
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Returning to the main issue, we 
omplete this se
tion with the following

extension of Proposition 7.3.

Corollary 8.8. Given G;H;K � Sym(
), with K E G and K E H, and

where G normalizes H, then C

G=K

(H=K) 
an be found in polynomial time.

Proof. Consider G�G a
ting naturally on the disjoint union, 


_

[
, of two


opies of 
. Let L = f(g; gk) j g 2 G; k 2 Kg and M = f(g; gh) j g 2 G; h 2 Hg.

Find Core

M

(L) (Corollary 8.7) and let C be the group obtained by restri
ting

Core

M

(L) to the �rst 
opy of 
. Output C=K.

We show that C=K = C

G=K

(H=K), i.e., that for g 2 G, (g; gk) 2 Core

M

(L)

for some k 2 K i� gK 
entralizes H=K (in hG;Hi=K). Sin
e K �K E M , we

have K �K � C so that K � C. Then, for (g; gk) 2 L,

(g; gk) = (g; g)(1; k) 2 Core

M

(L) i� (g; g)

M

� L

i� (g; g)

(1;h)

2 L; 8h 2 H

i� g

�1

g

h

2 K; 8h 2 H

i� gK 
entralizes H=K:

9. p-Cores

For any prime p and group G, the p-
ore of G is the (unique) maximal normal

p-subgroup of G and is denoted O

p

(G).

Theorem 9.1. Given G � Sym(
), then O

p

(G) 
an be found in polynomial

time.

A suggested method for 
omputing the p-
ore of a permutation group has

been to �nd a Sylow p-subgroup P � G and then use

O

p

(G) = Core

G

(P ):

This does give a polynomial-time solution. However, the 
on
eptual overhead in

this approa
h to O

p

(G) is that the known method for �nding P (Lemma 8.3)

uses the 
lassi�
ation of �nite simple groups. Nevertheless, unlike the situation

for general 
ores, we o�er a self-
ontained elementary proof of Theorem 9.1,

giving another measure of support for the theme that normal targets are easier

to lo
ate. (See [27℄ for another dire
t approa
h to p-
ores.)

A few lemmata are required.

Lemma 9.2. Given a transitive G � Sym(
) with jGj > n, in polynomial time

one 
an �nd a proper normal subgroup or else establish that G does not have a

regular abelian normal subgroup.

Proof. If G

(3)

= 1 then jGj < n

2

. (Re
all that G

(3)

is the subgroup �xing

!

1

and !

2

.) In that 
ase, the elements of G 
an be listed and the normal 
losure

of the group generated by ea
h 
an be 
omputed in polynomial time. If none
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of these yield a proper normal subgroup then G does not have a regular abelian

normal (or any proper normal) subgroup.

Assume G

(3)

6= 1 and let 	 = f(G

(3)

)

g

j g 2 Gg. Then 1 < j	j �

�

n

2

�

and

G a
ts transitively (via 
onjugation) on 	. Let B be a minimal G-blo
k system

in 	 (i.e., start with B = 	 and while G does not a
t primitively on B, repla
e

B by a nontrivial partition of B into blo
ks of imprimitivity). Output G

B

(the

kernel of the a
tion of G on B) if it is proper, else de
lare that G does not have

a regular abelian normal subgroup.

We must show, under the assumption that G has a regular abelian normal

subgroup A that G does not a
t faithfully on B. Sin
e A is regular, there is a

unique a 2 A su
h that !

a

1

= !

2

. Su
h a normalizes, in fa
t 
entralizes, G

(3)

,

for if x 2 G

(3)

, both a and x

�1

ax are elements of A mapping !

1

to !

2

so that

a = x

�1

ax. Hen
e a �xes the blo
k in B 
ontaining G

(3)

. We 
on
lude that

A does not a
t regularly on B. But then A 
annot a
t faithfully on B, for a

normal subgroup of a primitive group is transitive and so, if it is abelian, it is

regular.

Remarks. The above algorithm simpli�es one with an analogous purpose in

[21℄. The modi�
ation is due to

�

A. Seress. (See also [7℄.)

Note that the output of a proper normal subgroup leaves open the question

of whether there is a regular abelian normal subgroup, thus leading us to ask

Question 13. Given G � Sym(
), 
an one determine, in polynomial time,

whether G has a regular abelian normal subgroup and, if so, �nd one?

More generally,

Question 14. Given G � Sym(
), 
an one determine, in polynomial time,

whether G has a regular normal subgroup and, if so, �nd one?

Both of these issues are in polynomial time for primitive groups: if a primitive

group G has an abelian normal subgroup N , then N = O

p

(G) for (the unique)

prime p dividing n; in general, if H is the smallest nontrivial term in a 
om-

position series for G ([21℄), then G has a regular normal subgroup i� H

G

is

regular.

Lemma 9.3. Given G � Sym(
), in polynomial time one 
an �nd a proper

normal subgroup of G or else establish that O

p

(G) = 1.

Remark. Output of a proper normal subgroup does not yet mean O

p

(G) 6= 1.

Proof of lemma. Let � be any nontrivial orbit of G and 
onstru
t a min-

imal G-blo
k system B in � (so that G a
ts primitively on B). Let � : G !

Sym(B) be the indu
ed a
tion. IfK = ker(�) 6= 1, output generators forK. Oth-

erwise, the primitive group �(G) is isomorphi
 to G. We may assume jGj > n

else G is listable and the lemma resolvable by brute for
e. Apply Lemma 9.2 to

�(G). If �(G) has no abelian regular normal subgroup then O

p

(G) = 1 (else,
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if A is the the last nontrivial term in the derived series for O

p

(G), �(A) would

be a regular normal subgroup of the primitive group). Otherwise, the 
all to

Lemma 9.2 produ
es Y , generating a proper normal subgroup, in whi
h 
ase

return N = �

�1

(Y ). (The lifting �

�1

(y) for y 2 Y is 
omputed, for example,

(3.9); alternatively, while 
omputing Y , keep tra
k of liftings of elements yielding

Y

0

� G with �(Y

0

) = Y ; then N = hY

0

;Ki.)

Lemma 9.4. Given G � Sym(
), in polynomial time one 
an �nd a nontrivial

normal p-subgroup of G or else establish that O

p

(G) = 1.

Proof. We des
ribe a pro
edure p-NORM(G) with output as indi
ated.

Apply Lemma 9.3. If we dis
over O

p

(G) = 1 then return that information.

Otherwise we have 1 6= N C G and we pro
eed as follows.

Re
ursively 
all p-NORM(N). If the 
all returns P E N , then output P

G

.

Else (O

p

(N) = 1) re
ursively 
all p-NORM(C

G

(N)) (using Proposition 7.3 to

�nd C

G

(N)). If the 
all returns for P E C

G

(N) then output P

G

. Else report

\O

p

(G) = 1."

The pro
edure su

eeds sin
e O

p

(N) = 1 implies O

p

(G) \ N = 1, when
e

O

p

(G) � C

G

(N).

Timing 
on
ern: What if both re
ursive 
alls are made? That only happens

when O

p

(N) = 1 so that p does not divide jN \ C

G

(N)j, when
e

jN j

p

jC

G

(N)j

p

= jNC

G

(N)j

p

� jGj

p

where sub-p denotes p-part. Thus, ex
ept for multipli
ative 
ontributions from

known polynomial timings, the time is linear in log jGj

p

.

Lemma 9.5. Given P;G � Sym(
) with P C G where P is a p-group and G

is not a p-group, one 
an 
onstru
t in polynomial time another a
tion � : G !

Sym(
), where ker(�) is a nontrivial normal p-subgroup of G.

Proof. Repla
ing P , if ne
essary, by the last nontrivial term in its derived

series, we may assume that P abelian. Let f�

i

g

i2I

be the set of orbits of P

and let � : G ! Sym(I) be the naturally indu
ed a
tion, i.e., �

g

i

= �

i

�(g)

for

i 2 I; g 2 G. Choose Æ

i

2 �

i

for ea
h i 2 I . Then � is de�ned via

(Æ

x

i

)

�(g)

= Æ

x

g

i

�(g)

;

for i 2 I; x 2 P . (The supers
ripts x; x

g

denote the given a
tion.) That �

is well de�ned follows from the fa
t that P

�

i

is regular (sin
e it is abelian),

for, if Æ

x

i

= Æ

y

i

for x; y 2 P , then x and y a
t identi
ally on �

i

so that x

g

and y

g

a
t identi
ally on �

i

�(g)

. From this it is straightforward to see � is a

homomorphism. Sin
e ker(�) stabilizes ea
h �

i

and 
ommutes with the a
tion

of P thereon, ker(�)

�

i

= P

�

i

. Hen
e ker(�) is an abelian p-group 
ontaining P .

It is proper in G as G is not a p-group.



PERMUTATION GROUPS AND POLYNOMIAL-TIME COMPUTATION 169

Proof of Theorem 9.1. Wemay assumeG is not a p-group. By Lemma 9.4,

we establish immediately that O

p

(G) = 1 or else obtain a proper normal p-sub-

group K. In the latter 
ase, we apply Lemma 9.5 to obtain an a
tion � : G !

Sym(
) with 1 < K = ker(�) C G. Re
ursively, 
ompute hY i = O

p

(�(G)).

Then O

p

(G) = �

�1

(Y ) (
omputed, say, via (3.9), wherein it is 
onvenient to


onsider �(G) as a
ting on a disjoint 
opy of 
).

For 
orre
tness, we observe that, sin
e ker(�) is a p-group, �(O

p

(G)) =

O

p

(�(G)).

For the timing, note that the re
ursive 
all involves a smaller group �(G) on

a permutation domain of the same size.

Remark. In [18℄ it is pointed out that, in polynomial time, one 
an 
onstru
t

the maximal normal subgroup with 
omposition fa
tors in any spe
i�ed 
olle
tion

of simple groups, but the general result ultimately makes use of the 
lassi�
ation

of �nite simple groups.

10. Other Problems and their Relationships

We 
omment on several other problems resembling GRAPH-ISO and STAB,

et
. There are open questions, not only about when they are in polynomial time,

but in the relationships among them.

10.1. Finding Subgroups. Possibly presenting a 
hallenge beyond STAB

is

Problem. NORMALIZER (NORM)

Input: G;H � Sym(
).

Find: N

G

(H).

Te
hniques announ
ed in [22℄ show that NORM is in polynomial time when

hG;Hi is solvable. Questions that immediately arise in
lude

Question 15. Is NORM in polynomial time when only G is assumed to be

solvable?

The next step up the group ladder would appear to be

Question 16. Is NORM in polynomial time when hG;Hi is in �

d

(See Se
-

tion 6).

How is NORM related to the problems of Se
tion 4? STAB redu
es to NORM,

either by Proposition 7.1, or, following the redu
tion of STAB to CENT in

Proposition 4.3, the fa
t that x is an involution implies N

g

(hxi) = C

G

(x). But

is NORM, in general, \harder" than STAB, et
.?

Question 17. Is there a polynomial-time redu
tion of NORM to STAB?

For this question, noti
e that it would suÆ
e to �nd a polynomial-time solu-

tion to the spe
ial 
ase
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Problem. NORMALIZER IN SYMMETRIC GROUP (NORM-SYM)

Input: G � Sym(
).

Find: N

Sym(
)

(G).

Re
all that 
entralizers in the symmetri
 group are 
omputable in polynomial

time (see, e.g., [10℄). However, the 
omplexity of NORM-SYM is open.

Question 18. Is NORM-SYM in polynomial time? Is there even a subexpo-

nential solution?

If NORM-SYM were in polynomial time, then NORM would redu
e to INTER

(sin
e N

G

(H) =N

Sym(
)

(H) \G). In fa
t, even if polynomial-time algorithms

are not available, redu
tions between the problems are of interest.

Question 19. Is NORM-SYM polynomial-time redu
ible to STAB? Is STAB

polynomial-time redu
ible to NORM-SYM?

AÆrmative answers would, respe
tively, put NORM equivalent to STAB or

NORM-SYM.

One of the reasons that Questions 18 and 19 are parti
ularly intriguing is

that GRAPH-AUTO is polynomial-time redu
ible to NORM-SYM (as well as to

STAB). Redu
tion: Given a graph G = (V;E), we 
onstru
t 
, G � Sym(
) and

des
ribe an epimorphism � : N

Sym(
)

(G) ! Aut(G). Let I = f1; 2; : : : ; 2jV jg.

Set 
 = V �I

_

[ E�f1; 2g (so j
j = 2(jV j

2

+ jEj)). For ea
h v 2 V , let g

v

be the involution in Sym(
) that transposes (v; 2i� 1) with (v; 2i), for 1 � i �

jV j, and transposes (e; 1) with (e; 2), for every e 2 E having endpoint v, while

leaving other points �xed; thus g

v

moves pre
isely 2(jV j+degree(v)) points. Set

G = hfg

v

g

v2V

i (an elementary abelian 2-group). Within G the only non-identity

elements that move< 4jV j points are the g

v

. Hen
e, permutations in N

Sym(
)

(G)

permute the g

v

, so that there is an indu
ed homomorphism � : N

Sym(
)

(G) !

Sym(V ). Sin
e fv; wg 2 E i� g

v

and g

w

move the same point (i.e., the point

(fv; wg; 1)), it is 
lear that �(G) � Aut(G). It is straightforward to show that �

is surje
tive.

Noti
e that the above redu
tion involved an elementary abelian 2-group.

Thus, Question 18 is interesting and open even in this 
ase.

For any �nite �eld GF(q), there is a natural a
tion of Sym(
) on GF(q)




via

permutation of 
oordinates. Then g 2 Sym(
) stabilizes � � 
 i� g stabilizes

the ve
tor (a

!

)

!2


with a

!

= 1 for ! 2 � and a

!

= 0 otherwise. Thus STAB is

polynomial-time redu
ible to

Problem. VECTOR STABILIZER (VEC-STAB)

Input: G � Sym(
); a representation � : G! GL(V ), where V is a �nite

dimensional ve
tor spa
e over GF(q); v 2 V

Find: G

v

= fg 2 G j v

g

= vg.
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Here, we assume that V is spe
i�ed via a basis and � is spe
i�ed on the given gen-

erators of G. By results of [22℄, VEC-STAB is solvable in polynomial time if G is

solvable. (\Polynomial in the input" is taken to be O((j
j+dim(V )+log q)




).) In

fa
t, it is also indi
ated there that the following is solvable in polynomial time

if G is solvable.

Problem. SUBSPACE STABILIZER (SUBSP-STAB)

Input: G � Sym(
); a representation � : G! GL(V ), where V is a �nite

dimensional ve
tor spa
e over GF(q); a subspa
e W � V

Find: Stab

G

(W ) = fg 2 G jW

g

=Wg.

Question 20. Is VEC-STAB in polynomial time for G 2 �

d

? Is SUBSP-

STAB in polynomial time for G 2 �

d

?

VEC-STAB is polynomial-time redu
ible to SUBSP-STAB. The \obvious"

redu
tion seems to be to stabilize �rst the 1-dimensional W =Span(v), after

whi
h we only need the kernel of a homomorphism � : Stab

G

(W ) ! GF(q)

�

(multipli
ative group). While this is not diÆ
ult to 
omplete, we refer instead

to the redu
tion between the 
orresponding de
ision problems (VEC-TRANS �

SUBSP-TRANS) in Se
tion 10.2.

Remark. One 
an also show that the problem of �nding N

G

(H) when H CC

hG;Hi is polynomial-time redu
ible to SUBSP-STAB.

Another question that arises is whether normality helps for some of these

problems. Te
hniques of [18℄ (in parti
ular the method of Theorem 8.6 of this

present paper), 
an be used to �nd Core

G

(G

v

) and Core

G

(Stab

G

(W )) (where

v;W are a ve
tor and subspa
e, respe
tively). We wonder, however, about

Question 21. Given G;H � Sym(
), 
an one �nd Core

G

(N

G

(H)) in poly-

nomial time?

Note that we have found Core

G

(G \ H), whi
h is the kernel of the right-

multipli
ation-a
tion of G on right 
osets of H by G, while Core

G

(N

G

(H)) is

the kernel of the 
onjuga
y a
tion of G on the 
onjugates of H by G.

10.2. De
ision Questions. The problems of Se
tion 10.1 suggest de
ision

analogues.

Corresponding to NORM:

Problem. CONJUGACY OF GROUPS (CONJ-GROUP)

Input: G;H

1

; H

2

� Sym(
).

Question: Is there some g 2 G su
h that H

g

1

= H

2

?
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As in the STAB � TRANS equivalen
e, NORM is polynomial-time equivalent

to CONJ-GROUP.

The right analogue of NORM-SYM would seem to be

Problem. CONJUGACY IN THE SYMMETRIC GROUP (CONJ-SYM)

Input: H

1

; H

2

� Sym(
).

Question: Is there some x 2 Sym(
) su
h that H

x

1

= H

2

?

Here, we do not see the equivalen
e. While a redu
tion of CONJ-SYM to NORM-

SYM is not diÆ
ult, we do not have a reverse redu
tion. Thus, we ask

Question 22. Is NORM-SYM polynomial-time equivalent to CONJ-SYM?

VEC-STAB and SUBSP-STAB are, respe
tively, polynomial-time equivalent

to

Problem. VECTOR TRANSPORTER (VEC-TRANS)

Input: G � Sym(
); a representation � : G! GL(V ), where V is a �nite

dimensional ve
tor spa
e over GF(q); v

1

; v

2

2 V

Question: Is there some g 2 G su
h that v

g

1

= v

2

?

and

Problem. SUBSPACE TRANSPORTER (SUBSP-TRANS)

Input: G � Sym(
); a representation � : G! GL(V ), where V is a �nite

dimensional ve
tor spa
e over GF(q); subspa
es W

1

;W

2

� V

Question: Is there some g 2 G su
h that W

g

1

=W

2

?

The redu
tion of VEC-TRANS to SUBSP-TRANS is worth noting. While a

polynomial-time redu
tion 
an be 
ompleted along the lines begun in the VEC-

STAB to SUBSP-STAB dis
ussion, that would not then be a Karp redu
tion

(yes/no instan
e mapping to yes/no instan
e). Here then is another approa
h:

Let (G; �; V; v

1

; v

2

) be an instan
e of VEC-TRANS; we may assume that v

2

6= 0.

Then G a
ts naturally on the tensor produ
t V 
V (so that (v
w)

g

= v

g


w

g

)

and therefore there is an indu
ed a
tion G ! GL(V � (V 
 V )). Let W

i

=

Span((v

i

; v

i


 v

i

)), for i = 1; 2. We 
laim that for g 2 G, v

g

1

= v

2

i� W

g

1

= W

2

.

The only-if dire
tion is 
lear. Assume W

g

1

= W

2

. Then, for some 
 2 GF(q),

(v

1

; v

1


v

1

)

g

= 
(v

2

; v

2


v

2

), so that v

g

1

= 
v

2

and (v

1


v

1

)

g

= 
(v

2


v

2

). Thus,




2

(v

2


 v

2

) = (
v

2


 
v

2

) = (v

g

1


 v

g

1

) = (v

1


 v

1

)

g

= 
(v

2


 v

2

). It follows that


 = 1, proving the 
laim.

We add two more problems that seem of parti
ular interest.

Problem. GROUP ISOMORPHISM (GROUP-ISO)

Input: Cayley tables for groups G;H.

Question: Are G and H isomorphi
?
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Here \polynomial in the input" translates to polynomial in jGj (presumably

jGj = jH j). It is not hard to redu
e GROUP-ISO to GRAPH-ISO. (See [24℄ for

a dis
ussion of this and related issues.) But is this problem easier? In parti
ular,

Question 23. Is GROUP-ISO in polynomial time?

It 
an be solved in subexponential O(jGj


+log

2

jGj

) time sin
e there is a set of

� log

2

jGj generators, and a homomorphism G! H is determined by the images

of the generators. This, however, appears to be the best result known for general

groups.

Possibly on the \harder" side is

Problem. PERMUTATION-GROUP ISOMORPHISM

(PERM-GROUP-ISO)

Input: G;H � Sym(
).

Question: Are G and H isomorphi
?

PERM-GROUP-ISO is in NP: Supposing G = hXi, one 
an guess an isomor-

phism f : G ! H by guessing f(x) for all x 2 X and then verifying that f

is indeed an isomorphism by 
he
king that jGj = jH j = jhf(x; f(x)g

x2X

ij (the

latter being 
onsidered as a subgroup of G�H a
ting, say, on 


_

[
).

It is shown in [3℄ that CONJ-GROUP is polynomial-time redu
ible to PERM-

GROUP-ISO.

To summarize the known relationships, letting \�" denote \is polynomial-

time Karp-redu
ible to" we have:

GROUP-ISO � GRAPH-ISO

GRAPH-ISO � TRANS

GRAPH-ISO � CONJ-SYM

TRANS � CONJ-GROUP

TRANS � VEC-TRANS

CONJ-SYM � CONJ-GROUP

CONJ-GROUP � PERM-GROUP-ISO

VEC-TRANS � SUBSP-TRANS

(And re
all, TRANS � DC-EQ � CONJ-ELT.)

Question 24. Are there any other redu
tions between these problems ex
ept

as implied by the above?

We do not anti
ipate seeing a negative answer very soon (as that would ne
es-

sarily in
lude a proof of P 6= NP), but we believe a sear
h for other relationships


ould shed additional light on these problems.
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