
CANONICAL LABELING OF GRAPHS

L~szl6 Bahai
Dept. of Algebra & Number Theory

E~tv~s University
H-I088 Budapest

Eugene M. Luks I
Dept. of Mathematics
Bucknell University
Lewisburg, PA 17837

ABSTRACT. We announce an algebraic approach to
the problem of assigning canon~oal forms to graphs.
We compute canonical forms and the associated
canonical labelings (or renumberings) in poly-
nomial time for graphs of bounded v@$@nce, in
moderately exponential, exp(n ~ + °tIJ),time
for general graphs, in subexponential, n ±°g n,
time for tournaments and for 2-(v,k,l) block
designs with k,l bounded and nlog log n time
for h-planes (symmetric designs) with I bounded.
We prove some related problems NP-hard and
indicate some open problems.

i. Introductio n •
The computational complexity of finding

canonical representatives for the isomorphism
classes of finite algebraic and combinatorial
structures is a long-standing unresolved question
in the theory of computation. As such structures
can be canonically represented by polynomial-
time computable graphs ~HP], (Mill, it would
suffice to find canonical forms for graphs.

It would appear that the canonical form
problem for graphs is closely related to the
problem of testing isomorphism; the second task
can be performed at least as fast as the first
and, in most instanceS, an isomorphism test for
a class of graphs either consisted of a procedure
for canonizing or else had an analogue for that
problem (cf. remarks in [Lip], [Mil]). In some
recent studies, however, the gap between these
problems seemed wider. In [Bali the "tower of
groups" approach was introduced and used in a
polynomial-time Las Vegas isomorphism test of
colored graphs with bounded color classes. The
same method yields a polynomial-time isomorphism

1 Research supported by NSF grant MCS 81-02856

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 A C M 0 - 8 9 7 9 1 - 0 9 9 - 0 / 8 3 / 0 0 4 / 0 1 7 1 $00.75

test for graphs with bounded multiplicities of
eigenvalues [BGM]. In iFHL], these Las Vegas
algorithms were replaced by deterministic versions.
In (Lull, deeper group-theoretic techniques were
described that yield a polynomial-time test for
graphs of 5ounded valence. In the same paper,
subexponential isomorphism tests for tournaments
and for symmetric (v,k,l) block designs were
announced. An ingenious valence reduction pro-
cedure led Zamlyachenko [ZKT],[Ba3] to a
moderately exponential (exp(nl-c)) test for
general graphs via the techniques of (Lull.
Subsequent improvements of the bounded valence
algorithm have brought this bound down to
exp(c/fn io~ ~) [eu2] (We use the letter c to
denote a positive absolute constant thrQughout,
but possibly a different one each time). In
contrast to algorithms with a combinatorial
flavor, ~HT] [FM] [Mi2] [Mi3] [Ba2], none of
these group-theoretic isomorphism tests appeared
to have implications for canonical forms. Indeed
both [Bal] and [Lull explicitly ask whether
the methods can be modified to perform this other,
potentially more useful, job. For graphs with
bounded color-classes, this was soon done ~KL] by
a naive "lexicographie leader" idea. However, a
similar approach leads to NP-hard problems even
in the context of trivalent graphs (of. §3.1).
Thus, despite the fact that trivalent graph
isomorphism had been brought down to O(n31og n)
[GHLSW] the fastest canonical form algorithm for
this class was apparently n cy~ (applying the
Bounded color class result of [KL J via reductions
of [Bal]l. Remarks on this diserepency appear
also in ICG], where a combinatorial technique of
canonization of general graphs in e n is given.

If the difference between the problems
appears subtle, we offer the following (naive)
observation, The algebraic methods for testing
isomorphism involve the determination of generators
for Aut(X), the automorphism group of a graph X.
In fact, the ability to do so is both necessary
and sufficient for isomorphism testing [Ma].
Does knowledge of Aut(X)lead to a canonical form?
In the canonical form problem the objective is to
select~ wisely, from the various representations.
If, as is almost always the case, Aut(X) is trivial,
the number of such representations is n!. How do
we select?

The main purpose, then, of the present paper
is to close the remaining complexity gap. The
approach begins with an algebraization of the

171

canonical form problem. For this purpose, we
propose the string placement problem with respect
to a permutation group action. General graph
canonization is easily reducible to general string
placement, but, much more significantly, special
cases of graph canonization are reducible to
special cases of string place1~ent in which crucial
properties of the groups are forced. We offer a
string canonization algorithm and show how its
timing can be tied into the group structure.

In the applications, our CF-algorithms reach
the time bounds known for isomorphism. At the end
we briefly mention an alternative, mainly combina -
torial, method to obtain an exp(n "2/3 +°(I))
canonization of general graphs. Finally, we list
some outstanding open problems related to isomor-
phism and canonization. One of these (no. 5)
suggests that, the present work notwithstanding,
there might be a greater gap between the problems
than has been suspected.

Some preliminaries: For a graph X =<V,E>,
~(X) refers to the vertex set, V. The group of
permutations of an n element set is denoted Sn,
or, if the set A requires explication Sym(A).
The subgroup generated by a set ~ is indicated
by <~>. In all algorithms, input and output
groups are assumed to be specified by a generating
set (see §1.2 of [Lul]).

2. Canonical forms

2.1 Canonical labeling-cosets. For a graph X

with ~(X) = V and ~ e Sym(V) we note by X O

the graph obtained by joining u and v whenever
a-1 0-1

u and v are adjacent in X. The graphs

X and Y are isomorphic, denoted X ~ Y

iff Y = X ° for some a. Let ~ denote a class

of graphs, closed under isomorphisms, on a

linearly ordered vertex set V (e.g. V = {1,2,...,

n}). A function CF:~----+~ is a canonical form
for ~ if

(i) For X in %, CF(X)~ X

(ii) For X,Y in X, X ~ Y (if and)

only if

CF(X) = CF(Y)

The definition can be extended to digraphs,

possibly with colored vertices/edges and, more

generally, to finite structures with any number

of relations/operations.

It is convenient to generalize the notion of

canonical forms as follows. Let G be a group

acting on V. We say that X is G-isomorphic to

Y, denoted X ~G Y, if Y = X ° for some ~ e G.

Let ~ be a class of structures on V closed

under G-isomorphisms, i.e.

(0) If X e ~ and o e G then X ° s ~.

We call a function CF:~ > ~ a canonical form
with respect ~o G if

(i) For X in ~, CF(X) ~G X.

(ii) For X,Y in ~, X ~G Y (if and)

only if

CF(X) = CF(Y)

We shall usually write CF(X,G) for ~ch a form,

reserving the notation CF(X) for CF(X, Sym(V)).

Given some CF(-,G), there is a natural extension

to cosets of G. If ~ is closed under <¢;G>

where o c Sym(V), we define CF(X,oG), the
canonical for~ of X w.r.t, oG, to be CF(Xa,G)

It is important to observe that CF(X,oG) depends

only on the coset oG and not on the choice of
-i o, for if oG = YG then T o e G so that

= Xr(~-la) ~G X O X Y, whence CF(X°,G) = CF(XY,G).

A canonical form corresponds to a set of labelings,
namely the renumberings of V which put X in

canonical form

CL(X,aG) = {TcoG I XT = CF(X,OG)}.

Clearly (I) CL(X,oG) = sCL(XS,G)

(II) CL(X,sG) = TAUtG(XT) for any

T e CL(X,oG).

Here AutG(Y) denotes the group of G-automorphisms

of Y. In particular, CL(X,aG) is a subcoset of

~G which we call a canonical labeling-coset of
X w.r.t. ~G.

For purposes of reeursion, it will be useful to

have algorithms which return the full coset CL

(although, for the structures we study, an oracle

for CF, in fact an oracle for any complete set of

invariants, i.e. for a certificate, could be used

to construct CL.). We observe that properties I

and II characterize canonical labeling-cosets. To

be precise, let G be a subgroup of Sym(V) and

suppose ~ is closed under ~-isomorphism. Denote

by ~ the set of subcosets of G. Then

Lemma 2.1 Let CL: ~(x~--+~ be a function
such that, if X is in ~ and o eaG e ~,
then CL(X,aG) ~ sG and (I) and (II) hold.
Then

CF(X,aG) = X T for any r e CL(X,aG)

define~ a canonical form on ~ w.r.t, the
subcoset aG and CL is the corresponding
canonical labeling-coset.

172

Proof: First, X T does not depend on the choice

of T. For, if T, ~ e CL(X,aG) then

oG = TG = ~G so that (II) yields

TA~tG(X T) = ~AUtG(X~); it follows that
T- ~ e AutG(XT) so that X T = (XT) ~-I~ = X u .

To show that the map X~-+ CF(X,G) is a canonical

form w.r.t. G we need only verify CF(X,G) =

CF(Y,G) if, for p EG, Y = X p. But by (I),

CL(X,G) = CL(X,oG) = pCL(Y,G). Hence, if

T e CL(Y,G) then pT e CL(X,G) and CF(X;G) =

XOT = yT = CF(Y,G). Finally, the fact that

CF(X,aG) = CF(X°,G) is immediate from (I). I~

2.2 Strings and graphs. Let V be a linearly

ordered set and Z an alphabet. A E-string on

V is a function x :V---+ Z. The set of all

Z-strings on V is denoted by Z V. Strings can

be regarded as particular structures with only

unary relations. Thus, for o ~ Sym(V) the

string x a satisfies x~(v) = x(vO-l). Canonical

forms for strings are defined as above. Since we

have found 'labeling v awkward in this setting, we

shall refer to the subcoset of oG which maps x

to CF(x, aG) as a canonical placement-coset,
denoted CP(x,aG).

Whereas for graphs, etc., our basic problem is

to find canonical forms w.r.t. Sym(V), this problem

becomes trivial for strings: the lexicographically

first string obtained by reordering V will do it.

However, the canonical form problem for graphs is

easily reduced to the canonical form problem for

strings with respect to a particular group. The

adjacency matrix of an n-vertex graph (digraph,

colored graph, etc.) is a string of length n 2

(indices ordered lexicographically) over a suitable

alphabet. Then ~ e Sym(V) acts on such strings via
a~(i,j) = a(i °-I, ja-l).

Observation 2.2. A canonical form for graphs w.r.t.
aGe Sym(V) i8 precisely a canonical form for
strings of length n 2 w.r.t, the induced action of
oG.

Switching back and forth between graphs and

strings will enable us to combine geometric and

algebraic ideas, each in their natural setting,

Our basic tool is the string placement algorithm of

§3.2, the canonicity of which is rigorously proved.

,When referring to combinatorial properties of

graphs, we shall use procedures whose canonicity

is intuitively clear and in fact has been used

in the literature (cf. [CG] [We]). There are

two sorts of particularly notable examples.

(]) Refinement procedures. The simplest example

is the classification of the vertices of a graph

X by their valence. Let V. denote the set of 1
vertices of valence i. Let the per[nutation

e Sym(V) reorder the vertices by their valences:
• ~ j~ l ~ iff deg(i) ~ deg(j). Let

H = Sym(V~)× --. × Sym(V~). Now we have reduced

the canonization problem w.r.t. G to one w.r.t.

H by setting

CL(X,G) = CLI(X,oH),

where CL 1 refers to any applicable canonical

labeling. Note that, while a is not canonical,

the coset oH is.

(2) Individualization. Canonization with respect

to G can be broken into a set of canonization

problems with respect to cosets of the stabilizer

subgroups G (v c V). One can then take the v
lexicographically first of the resulting n

canonical forms and recover the canonical coset as

the union of those corresponding to the same

canonical form.

While our references herein to the canonicity

of such procedures will be informal, they can be

justified directly from our definitions. Details

of an algebraic machinery which encompasses such

proofs will appear in the final paper.

3. String placement

3.1Lexicographic placement. Suppose G~Sym(A)

and x ~ Z A. A natural candidate for CF(x,G) is

the lexicographic leader in the G-orbit of x.

As we remarked, this is easily computable when

G = Sym(A). Thus it is worth observing that the

general problem of finding such lexicographic

leaders is NP-hard. To see this, consider the

interpretation of adjacency matrices as

{0,1}-strings on A(n) = {(i,j) I 1 j i, j j n}.

Order A(n) so that A(m), for m < n, (the

upper left square) always precedes its complement.

Then knowledge of the lexicographic leader w.r.t.

the natural action of S would reveal the size of n
the largest independent set in the corresponding

graph. (We remark that similar observations have

been made by D. Corneil [Co] and G. Miller [Mib]).

173

Nevertheless, the NP-hardness of the general

problem is not, in itself, a deterrent to investi-

gations for restricted groups. By way of analogy,

we do not know how to test general string isomor-

phism subexponentially but the problem is in P

for groups that turn up in the study of graphs of

bounded valence [Lul]. Thus, it is worth pointing

out that the Lexicographic Leader problem remains

NP-hard even for those groups, indeed even for a

very restricted subclass.

Proposition 3.1 The problem of finding the

lexicographic leader in the G-orbit of x is
NP-hard even if G is restricted to be an
elementary abelian 2-group (every element has

order 2).

Proof: We reduce from 3-Dimensional Matching

(see, e.g., [GJ]). Thus let M~U x V x W be

an instance of 3DH, that is, IUI = Ivl = IWl and

we ask whether a subset of M projects bijectively

onto U,V and W. Form the set, Q, consisting of

unordered pairs, {m,m'}, of elements of M which

overlap (i.e. have a common coordinate) and the set,

P of ordered pairs, (m,m'), of elements of M

which overlap. Fix any orderings of U,V,W,Q,F

and form the ordered set A by taking, in sequence,

UIVIWIQIPQ2U2V2W2 , wherein the subscript indicates

an ordered copy of the respective set. For each

m = (u,v,w) in M, form the involution a so m
that

(i) a m switches u I and u2, v I and v2,

w I and w 2 (u i is the image of u

in Ui, etc.)

(ii) for each m' which overlaps m,

a m switches {m,m'h in Q1 with

(m,m') in P and switches (m',m)

in P with {m,m'} 2 in Q2"

Set G = ~Om}meM> . Finally, let x be the
{0,1}-string on A which takes the value 1

on UI,VI,W1,Q2 and the value 0 on U2,V2,

W2,QI,P. Then, one checks that a matching exists

in M if and only if the lexicographic leader in

the G-orbit of x takes the value 0 on UI,VI,

Wl' QI"

Remarks. i. Another proof, our initial one, employs

the 2-group actions constructed by A. Lubiw [Lub]
from instances of 3-SAT.

2. If the orbits on A are restricted to have

length~ 2 (which, itself, forces the group to be

an elementary abelian 2-group) there is a straight-

forward polynomial-time solution to the Lexico-

graphic Leader problem. However, the above proof

shows the problem hecomes NP-hard for 2-groups if

the orbits are allowed to have length ~ 4. Another

avenue of generalization appears difficult as well.

For every p > 2, the problem is NP-hard for

elementary abelian p-groups with orbits of length

p.

3.2 A string canonization algorithm. We shall give

an algorithm which computes canonical placement for

E A, with respect to any G. After proving it

'works' we discuss the timing for special G.

Some additional preliminaries: Both Z A and

the collection of subsets of A inherit lexico-

graphic orders. In particular, if G ~ Sym(A),

it makes sense to refer to the first orbit of G.

If G acts transitively on A there is also a

'first' minimal G-block system determined as follows.

If G acts primitively the system is A itself.

Otherwise, let a denote the first element in A.

Find the first b in A, b # a such that the
G-invariant equivalent relation generated by a ~ b

is non-trivial. The induced partition is ordered

and so the process may be repeated until the block

system is minimal.

We now present the algorithm. To allow for

recursion, we compute canonical placement-cosets

w.r.t, aG for substrings induced on any G-invariant

subset B of A, denoted, for convenience,

CP~(aG). Thus CP(x,aG) is CP~(aG). We denote

by x B the restriction of x to B.

The algorithm -

INPUT: x e EA; a coset aG in Sym(A); a G-stable

subset B of A.

OUTPUT: CP~(aG), a subcoset of oG.

METHOD:

(i)

(2)

if IBl=ithen cP~c~)=

If G isintransitive on B, let C

the first G-orbit in B, B = C U D.

Then
x CP~ (oG) = CP D CP~ (~G)

be

174

(3) If G is transitive on B and IBI > i,

let H be the stabilizer of the blocks

in the first minimal G-block system in

B. Decompose oG as

oG = O ~i H
i=l

Say

CP~ (~i H) = PiHi

Reorder these cosets so that

Pl P2 Ps (xPs+I)B
(x)B = (x)B (x)B < 2"'"

(Choices of P.'s and of reordering will have to i
be justified). (Note that we only look at x pi on

B). Then

CP~ (oG) = Pl <HI' {P~ipi}l<i<s> ~I

Recalling Lemma 2.1, we prove

Lemma 3.2

(i) CP~ i8 well defined

(ii) If (XO)B = YB then CP~(oG)= aCP~(G)

(iii) If T e CP~ (oG) then

CP~(oG) = {~ e oG I (xB) B = (xT)B};

equivalently, CP~(~G) = T AutG((XT)B).

(Note AutG((XT)B) is a group since B

is G-stable).

Proof: We prove (i), (ii), (iii) simultaneously

via a double induction on IBI, INf. If either
IBI or IGI is 1 then CP~ (oG) = qG and

(ii), (iii) are easy; (i) is no problem since
we do not enter (3) in the algorithm. Suppose

then that IGI > 1 and IB; > 1 and that (i)

(ii), (iii) hold if either the subset is smaller

or the subset is the same and the group is
smaller.

Proof of (i): Choices are made only in (3).

By (iii) for (H~B) the string (xPi) B is unaffected

by choice of i in 0i~ so the collection

{pih}i<s is well defined. Also by (iii),

Pi
H 1 = Aut H ((x)B) = H i for i ~ s. But, since

the groups HI, ..., H s are identical, the output
in (iii) is precisely the smallest subcoset of oG

containing Ui<sPiH i (Actually, a consequence of

the leamna is that the output equals this union).

Proof of (ii): Assume (x°) B = YB" Suppose first
that the pair (G,B) sends us into case (2). Then,

by induction for C,D, CP~(oG) = CPcCPD(aG)X x =

CPc(~CPD(G))X Y = oCP~CP~(G) = oCP~(G) (note that

CP~(G) is a group by (iii) for D). Suppose next

that (G,B) sends us into case (3). Let G = OT.H
I

so that oG = ~oTiH and say CP~(TiH) = PiH i.

Let z. = xOTi. Since T. e G "" Stab(B),
i i --

T i
(Zi)B = (Y)B SO, as IHI < IGI,

CP~(oriH) = zi oTiCP B (H) = aCP~(TiH) = ~PiHi .

Since (i) has been established'for (G,B) we may
assume the strings {(yPi) B} and {(x°Pi) B} were

those considered in processing CP~(G), CP~(oG),

respectively. But, as Pie G ~Stab(B),
ixOPi) B = (YPi) B so these are identical collections.

Thus, CP~(G) and CP~(oG) are the smallest subco-

sets of G,oG containing ~i<sPi H and

~i<sOPiHi, respectively. Hence

CP~(oG) = ~CP~(G).

Proof of (iii): The inclusion

{~ e ~G I (x~) B = (xT)B} CCP~ (OG)

is derivable from (ii) (now established for (G,B)).
T To see this, set y = x so that, as TG = ~G,

CP~(oG) = TCP~(G). If also (x~) B = YB for

s oN then CP~(qg) = ~CP~(G) and so

= ~T T e ~T-Icp (oG) = CP (oG). For the reverse

inclusion, suppose first that (G,B) sends us into
case 2. Let ~ e CP~(aG). We must show

(x~) B = (XT)B . Since

~,T e CP~(oG) = x x _ CP~(ag) CPD(CPc(qG)) =

the induction hypothesis and (iii) for C yields

(x~) C = (xT)c. Since p,T g CP~(--), (x~) D = (xT) D

(induction for D). The result follows since

B = C V D.

So suppose finally that (G,B) sends us to case 3.

We need to show
- Pl

<H I, {P lli}i<s > ~AUtG((X)B)

By induction on H
Pl Pl

H I = AUtH((X)B) ~ AUtG((X)B)

175

-I So we need only worry about the elements p I Pi'
-i

i ~ s. But the fact that Pl Pi c G~Stab(B) and
Pi Pl

(xPl) B = (x)B puts p~Ip i in AutG((x)B). I~

Hence, by Lemma 2.1, we conclude

x Theorem 3.3 The map x--+ xT, where Te CPA(~G),zS a
form for E A w.r.t, oG and CP~(~G) canonical is

the correspondins 3 canonical placement-coset.

3.3 Comment on timin$. Good groups. Composition

width. The group operations (including finding

orbits, first minimal block system, stabilizer of

block decomposition) require only polynomial (in

IAI) time. Ignoring these, the decomposition in

case (2) leads to a recurrence

t(IBI) ~ t(Icl) + t(IB I - IcJ)

for the timing. The bottlenec~ is in the passage

in case (3) from a problem for (G,B) to [G:H]

problems for (H,B). However, each of the latter

problems decomposes into problems on disjoint orbit%

each of size ~ JBJ/m where m is the number of

blocks in the first minimal block decomposition.

For a group G, let the composition width

of G, denoted cw(G), be the smallest positive

integer d such that every nonabelian composition

factor of G embeds in the symmetric group S d.

(For solvable groups, cw~G) = i). Standard

arguments show cw(H) ~ cw(G) if H is a subgroup

or a homomorphic image of G. For a reason to

become obvious soon, we call a class afgroups good

~e composition widths of its members are bounded.

The following result shows how the timing of

our algorithm is controlled by cw(G).

Theorem 3.4 (Babai, Cameron, P~ify [BCP]). If G
is a primitive permutation group of degree n and

cw(G) ~ d then IGI ~ n ~(d). (See (*) below)

For d = I (solvable groups), P~ify [Pa]

proves ~(d) < 3.4.

It is implicit in [BCP , p. 162, ~. 9-11] that

~(d) < 2 + log(da(d)) where a(d) = max{IAut H I H is

a simple subgroup of Sym(d)}. Using consequences

of the classification of finite simple groups [Ca2]

we obtaina(d) J d! for sufficiently large d, hence

(*) ~(d) < d logd + c.

One can avoid use of the classification, invoking

more elementary group theory [Ba4], [Ba5] to prove

~(d) < cd log4d (cf..[Ba3]).

By Theorem 3.4, case (3) of the algorithm

yields a recurrence of the form

t(IBl) ~ m e(d)+l t (IBl/m).

We have then

Theorem 3.5
Z A w . r . t . G

n = IAI and
I I

The canonical placement algorithm for
runs in time O(n ~(d)+e) where

d = cw(G). In particular, the
algorithm runs in polynomial time if we consider
good groups (bounded cw).

An immediate application(cf. Observation 2.2) is

Corollary 3.6 If ~ is a class of (possibly
colored, directed) graphs on a vertex set V,
closed under isomorphisms by G~ Sym(V), then a
canonical form and corresponding canonical Zabeling-

coset w.r.t. G for X in ~ can be found in
n ~(d)+c time.

3.4 Lexicographic placement revisited. In view of

Proposition 3.1, it is worth noting that there is

a sense in which efficient lexicographic placement

is now available for good groups. To be precise,

Z. Galil [Ga] pointed to an interpretation of the

canonization algorithm as lexicographic placement

relative to an easily determined reordering.

Galil's suggestion develops into a striking

counterpoint to Proposition 3. i.

Proposition 3.7 Let A,E be linearly ordered,
G ~ Sym(A). There is a canonical reordering of A
relative to which the lexicographic leader problem
for every x in Z A w.r.t. G is solvable in
IAI ~(d)+c time, d = cw(G). Furthermore, the

reordering can be determined in polynomial time.

Outline of proof: The essential idea is that one

can create, in a canonical fashion from G and A,
a tree, T = TREE(G,A), of subsets through which

the recursion will always descend, so that

(i) The leaf set is A

(ii) For any mode B, the stabilizer of B in G

acts trivially or primitively on the sons.

The tree is then laid out so that the sons of any

mode appear, left to right, in increasing order.

The reordering is obtained by numbering the entire

leaf set, left to right.

In the earlier algorithm, the decomposition of a •

subset B was guided by the action of the subgroup

at hand, denoted now by G*. Now, in computing

176

CP~(~G) at a node B, we replace (2) and (3) of

the algorithm by

(2') Let H be the stabilizer in G*

of the sons B I, ..., B m (listed in order).
• D

Let oG* = ~TiH and determine, for each i,

giHi = CP~m'''CP~I(TiH)

Proceed with {oiH i} as in (3).

The output for CP~(G) this time is always the

lexicographic leader in the G-orbit of x (relative

to the reordered A). The idea now is that, for

i < j, all the points in B. precede all the 1
points in B.; thus lexicographic placement of

3
x on B is achievable by lexicographically

placing on BI, then B2, etc.

For the timing, the crucial observation is

that, eith4r H = G*, so there's only one T i or

else the B i all have size IBI/m and IG*/HI

the order of a primitive group acting on

{B I, -.., B m} ~ m ~(d).

There are several reasonable choices for

T = TREE(G,A). One such is analogous to the

'structure tree' construction of [GHLSW,

Theorem 1] (and is useful in extending the

tricks of that paper to speed up trivalent

canonization). If G acts intransitively on A,

TREE(G,A) is the union, joined to a new root, of

{TREE(G,Ai)} where {A i} is the set of orbits. If

G acts transitively, let {A i} be the first

minimal block system, A 1 the first block and let

T' = TREE(GI,AI) , where G I is the stabilizer in

G of AI; choose any {oi } so that oi(Al) = Ai;

then TREE(G,A) is the union of {o.(T')}. i

4. Applications t__ographs.

4.1 Tournaments. It is convenient to use the

language of round-robin tournaments with no draws.

The players are the vertices of the tournament.

Each pair of players play exactly once. An arrow

from v to w indicates that v beat w. We

show

Theorem 4.1 Canonical forms for tournaments, T,
can be computed in n c log n time, where

n = I~/(T) I and c = ½ + o(i) (logarithms are taken
base 2).

It is well known that the automorphism groups

of tournaments have odd order (an involution would

reverse an arrow). Thus, by the Odd Order Theorem

of Felt and Thompson [FT], tournaments have

solvable automorphism groups. However, it requires

some effort to force the appearance of these groups

in a string setting.

Let T be a tournament on the vertex set V.

We seek a canonical labeling-coset for T w.r.t.

Sym(V). If the tournament is not regula r (i.e.

if there are vertices with different out-valences)

we can reduce the group to~i>_oSym(Vi) , where V i

is the set of vertices of out-valence i. Then,

denoting the induced tournament on V i by Ti,

we find, reeursively,

CLtour(~,Sym(Vi)) = 0iH i for i ~ 0.

So we may let

CLtour(T,Sym(V)) = CLcor.3.6(T,~0iHi).

Note that we are dealing here with a coset of the

good group ~Aut(Ti).
Suppose, then, the tournament is regular so that

each vertex has out-valence (n-l)/2. Here we

use the individualization process, fixing v and

finding the canonical labeling-cosets w.r.t, the

cosets of Sym(V'), where V' = V - {v}. Viewing

CL(T,aSym(V')) as aCL(T ~, Sym(V')), we have n

problems for regular tournaments T' on V w.r.t.

Sym(V') (which fixes v). In such a case, V'

immediately splits in half, V' = V I' ~ V~, vertices

' or ' according to whether being assigned to V I V 2

they beat or are beaten by v. Thus, again we can

replace the group Sym(V') by Sym(V{)× Sym(V~),

find, recursively

CLtour(T~, Sym(Vl)) = PiHi for i = 1,2

where T[is the induced tournament on V[, and I
let

CLtour(T',Sym(V')) = CLco r 3.6(T',01HI×O2H2)"

The non-regular case leads to a timing

inequality

t(n) ~ Zit(ni) + n e where n i = IVil

and the regular case to

t(n) ~ n(2t(~) + nO).

The proposition follows.

177

4.2 Bipartite graphs. We consider the problem of

finding canonical forms for a bipartite graph with

respect to a group action on one of the sides. We

describe an algorithm whose complexity is sensitive

to the valence on that side and to the composition

width of the group. The algorithm will serve as a

subroutin% in the next sections, for extending

canonical labeling-cosets through a nested sequence

of subgraphs. Thus, we have a set A = B ~j C,

a eoset oG acting on B, the symmetric group Sym(C)

acting on C and a bipartite X = (A,E) graph with

edge set E~ B x C. Let dou t denote the

maximum valence of vertices of B and din the

maximum valence of vertices in C. (We think of

the edges being oriented from B to C).

In order to find some CL(X,oG x Sym(C)),

the first naive approach is to adopt Luks' idea

[Lul,§3.1] to represent the vertices of C by

their neighborhoods in B. Let [B] din denote

the set of subsets of B of size < d.. The
-- in

ordering of B induces an ordering of [B] din.

Let f : [B]din --+ {0,I ,dou t} associate with

each Y ~ [B] din the number f (Y) of those

vertices in C whose neighborhood is precisely Y.

Now f is a string which we have to canonically

place with respect to the induced ~G-action on
[Bjdin ---- • The subeoset CP(f,oG) = o G then easily

extends to a subcoset CL(X,oG x Sym(C)) = PH

where ~H[B = ~G.

The timing of this procedure depends on that

for CP. It runs in polynomial time if cw(G) and

din are bounded. In particular, it suffices for

polynomial-time canonization of graphs of bounded

valence (next subsection). An unsatisfying

feature, however, is the blow-up in the problem

size, which multiples the exponent in the running

time by a factor of d. . in

We are aware, at present, of at least four

tricks which avoid this blow-up. Each was

originally designed to improve the running time of

Luks' isomorphism test from essentially n cd2 to
cd n where d is the valence• Each is suffidient

to improve the Zemlyachenko-Luks bound, exp(n2/3),

for general graph isomorphism [ZKT],[Ba3] to
½

exp(n). We give a brief account here of these

ideas, leaving the details for the full paper.

I• The first trick involves a modification of

the string placement algorithm to capitalize on

the spareeness of the strings arising in the above

construction (one letter predominates). It is an

analogue of the Schnorr-Weber [SW] (see also

[GHLSW]) speedup of the string isomorphism

(~ color isomorphism) algorithm. First one

expands the terminating case (i) to

(I') If x ~ is constant on B, CP~(oG) = oG.

Secondly, in the transitive case, one first places

the blocks themselves according to the vectors

which indicate the number of occurences of each

in Z. Thus one only comes to the original case

(3) when these numbers are the same for each B.. l
The timing can be expressed as m~(d) IAlC where

m is the number of oceurences in x of the

second most frequent letter.

2. The second trick, due to Luks, does not reduce

the problem to string placement immediately but

adapts the ideas therein to split the set B

directly. The base case (IBI = i) is then a

placement problem for a subset of size dout,

which has a naive solution in n d°ut+c steps

(this can be improved to 4 d°ut nC). Thus one

only requires an additive dout term in the
running time. Details will appear in [Lu2]. We

remark that this algorithm finds, more generally,

CL(X,aH), for X as above and H c G x Sym(C). The

timing involves only cw(G) and dou t.

3. A third trick removes the dependence on d
out

in computing CL(X,~G × Sym(C)). In [Mi4],

G. Miller succeeded in determining (in our

notation) Aut(X) ~ (oG x Sym(C)) in polynomial

time for G of bounded composition width,

irrespective of the valences in X. His method is

adaptable to produce a suitable CL and his results

suggest broader applications•

4. We have chosen, for its simplicity, to describe

the details of a fourth trick. Due to Bahai, it

retains the dependence on dout (it enters in our

applications anyway since it affects the composi-

tion width of the output)•
We may assume X has no isolated vertices

in C. First we consider the string

178

x : B--+ {0,I ,dou t} where x(v) is the valence

of v. Compute CP(x,qG) = pH and let

CL(X,oG x Sym(C)) = CL(X,pH × Sym(C)). Note that

H preserves valences of X p in B so we can

extend the action of pH to E allowing arbitrary

permutations of edges with common orgin. The co-
^^

set obtained, pH, is the largest subcoset of

Sym(B × C) which maps E to E p, respects the

blocks of edges having common origin and restricts

to pH on these origins. The kernel of the

epimorphism H--+H (projection) is the direct

product of groups Sx(b) for b e B. Hence

cw(H) ~ max (dout, cw(G)).

Our next step is to consider the string

y:E p× EP--+{0,1} where Y(el,e 2) = 1 iff e l

and e 2 terminate at the same vertex in C. We

order EP~ B x C lexicographically, and obtain

CP(y,H) = TK with respect to the lexicographic

order of E p x E p and the induced H action.

Now TK is a subcoset of H. Let @:C + C

denote the permutation defined by u ~ < v ~ iff

F(u) < F(v) where F(u) = min {eleeE pT, e is

incident with u}. Let ~ denote the permutation

induced by T on B; let ~ = (P@,~) act on

B[)C. The group K can be viewed as acting on

B l) C; clearly K = AutO) N (G x Sym(C)). Setting

CL(X,~G x Sym(C)) = wK we obtain the desired

canonical labeling.

Since the composition widths of G and

are bounded by d = max(dout, cw(G)), the total

running time is O(nW(d)+c), n = IAI.

4.3 Graphs of valence < d. We show

Theorem 4.2. Canonical forms for graphs, X, can
be computed in O(n~(d-l)+C)step8 where

n = Iv(x)l, d = valence (X).

It suffices to canonize connected graphs,

for CF(X) can be the canonized components

taken in lexicographic order of adjacency

matrices and CL(X) is easily constructible

from the canonical labeling-cosets of the

components. We observe, next, that it suffices
to canonize connected graphs, X, with an edge

e individualized, denoted X(e). The motivation
for edge individualization is the significant

effect it has on the automorphism group. The

complete group~ even in the trlvalent case, is

unrestricted. On the other hand, the following

was proved in [Lull.

Lemma 4.3. Let X be a connected graph of
valence ~ d and let e be an edge in X.
~en the composition factors of Aut(X(e)) are

subgroups of Sd_ I. In particular,
cw(Aut(X(e))) ~ d-1.

The proof of Lemma 4.3 depended upon the obser-

Vation that the kernels of the homomorphisms

~r :Aut (Xr+ 1 (e)) --+ Aut (X r (e))

are direct products of syranetric groups, S t for

t < d-l; herein X is the subgraph consisting of
-- r

all vertices and edges lying on paths of length

< r through e and ~ is induced by restriction.
-- r

We note that this property of kernel (n) is a
r

consequence of the boundedness of the outvalence

in the induced bipartite graph on Vr ~(Vr+l where

V r = ~/(Xr) ~(X r_l); neither the invalence nor

the valences within the induced graph on V are r
involved. With this in mind, we define the

outvalence of X(e) to be the maximum over r of the

induced outvalences on V r x Vr+ 1 and note

Lemma 4.4 The conclusion of Lemma 4.3 holds under
the assumption of outvalenoe (X(e)) ~ d-l.

Henceforth, we weaken the valence assumption

on the connected graph X to: there exists at

least one edge e such that outvalence (X(e))

< d-l.

In the canonization of X(e) we may cut

immediately from the group Sym~(X)) to Kn_ I

where K r = Sym(Vl) x Sym(V2) x...x Sym(Vr).

We proceed, inductively, through the X . Assume
r

we have defined CF(Xr,K r) and determined the

corresponding CL(Xr,K r) = oG. Then CL(Xr+I,Kr+ I)
is determined in two steps. First, let Y be r
the induced subgraph of X on ~/(Xr) (= X r

together with the edges between vertices in Vr).

We canonize Y w.r.t, oG by taking r

CLcor 3.6(Yr '°G) = pH.

Next, let Z denote the bipartite graph induced
r

between ~/(X r) and Vr+ 1. Using the 'bipartite I

algorithm of subsection 4.2, we let

CL(Xr+I,Kr+ 1) = C~ip(Zr, pH x Sym(Vr+l)) .

179

The resulting coset may be viewed as a subcoset

of Sym(V(Xr+l)).

Since G, and therefore H, has composition

width < d-l, the total time to compute

CL(Xn_I, Kn_l) is O(n~(d-l)+c).

We remark that the above can be

improved to o(nCd/log d) using other techniques

introduced in [Lu2].

4.4. General graphs. Zemlxachenko's trick.

We obtain

Theorem 4.3 Canonical forms for graphs, X, can
be computed in exp(n ½+°(I)) time, where n = l'~(X) l.

The link to general graph isomorphism is the

remarkable Valence Reduction Lemma of Zemlyachenko.

To set the stage, let X = (V,E) be a vertex

colored graph, that is, there is a coloring

function f from V into an initial segment of

{1,2,3,...}. We denote the color class f-l(i)

by C.. We say that X has color valence < d
w.r.t, f if, for every v and i, either the

the number of neighbors or the number of non-

neighbors of v in C i is ~ d. For the purposes

of isomorphism-testing or canonization of vertex-

colored graphs, it is often useful to reeolor the

vertices according to the familiar naive refinement

procedure ([CG], [Ba3]), so that the number of

neighbors in C i of a vertex in C. is a function
3

of i and j alone. The Valence Reduction Lemma

states

Proposition 4.4 (Zemlyachenko [ZKT], [Ba3])

Let X be a vertex colored graph with I~(X) I = n.

and suppose d ~n. Then there is a sequence of
k < 4n/d vertices such that the assignment of k
new colors to these (individualization) followed
by naive refinement results in a graph with color-

valence < d.

To this we add an extension of Theorem 4.2

Proposition 4.5 Canonical form8 for vertex-colored
graphs, X, can be computed in O(n ~(d)+c) steps

where n = I~/(x)I if color-valence (x) ~ d.

Given these results, canonical forms for

general graphs can be obtained by individualizing

all sequences of 4n/d vertices, canonizing the

resulting graphs with color-valence ~ d, then

taking those with lexicographically least adjacency

matrix, So, if d = /nn, we perform an

exp(n ½+°(11 step procedure, exp(n ~+°(I)1 times.

We comment briefly on the proof of Proposition

4.5. It would be a straightforward extension of

the results of subsection 4.3 if the bound actually

involved valences, not valence-or-covalence; if so,

one forms the nested sequence {Xr} of subgraphs in

which each successive level adds accessible vertices

from just one color class. The final trick, then,

involves reduction to this situation. For this, one

simply switches edges and non-edges between C i and

C. if it was the covalence which was small. This
3

brings the valences down and may have the (harmless)

side effect of disconnecting the graph. A CL for

the modified graph, X', will be a CL for X. Note

that non-isomorphic X may yield isomorphic

modified graphs, ~ , at this stage which would

have the same CL(X'). However, the corresponding

canonical forms, X CL(X') , would not be identical.

4.5 Designs.

We first consider balanced incomplete 51oek designs

[Ry] with parameters (v,k,l): v is the number of

vertices, k the size of each block and % the

number of blocks common to each pair of vertices.

(The other commonly used parameters, b and r,

are functions of these). We assume 3 < k < v

and % > I, thereby excluding the trivial cases.

We show

Theorem 4.6 Canonical fo~n8 for block-design8
with pare~eters (v,k,~) can be computed in
vf(k,~) + log v time.

Our estimate for f(k,%) is e + ~(max(k-2,%)).

It is known that the isomorphism problem for

block designs is isomorphism complete, even for

triple systems (k = 3) [CC]. On the other hand,

Miller [Mi2] has shown that isomorphism testing,

in fact canonical labeling, can 5e done in n l°g n

for Steiner triple systems (k = 3, ~ = i). The

reason is that a Steiner triple system can be

viewed as a quasigroup and therefore has a set of

1 + log n generators. Having individualized

these, one can canonically order the remaining

vertices in polynomial time. The choice of

generators has to he repeated at most n l°g n times

and the lexicographieally least of the resulting

multiplication tables is selected to be canonical.

180

We combine this idea with information about

the automorphism groups. To establish the

existence of a 'small' generating set one shows

that any subdesign Y = (W,~) of X = (V,~) (i.e.

W~__ V, C ~ and Y is a block design with

parameters (IwI, k, x)) satisfies IwI~ (v-l)/(k-l).

Since the set of subdesigns is closed under inter-

section~ any subset 'generates' a subdesign. So

Lemma 4.7 X has a generating set of size
I + log v/log(k-l).

Unfortunately, unlike the Steiner triple system

case, the stabilizer of a set S of generators of

X in Aut(X) is not necessarily the identity.

However, one shows

Lemma 4.8 The composition factors of AUts(X) are
subgroups of S d where d = max(h,k-2).

We employ this in an extension process analogous

to the one in §4.3. (The log v term in the

exponent is due to the number of choices of S).

For a sequence S = (Ul,...,Us) we build a chain

{W i} of subsets of V by: W 1 = {u I} and while

W i ~ V, if W i induces a subdesign then

Wi+ 1 = W i ~j{first u. not in W.} else
3 i

= W i U {B e ~ I IB~Wil Z 2}. Then the Wi+ 1
nested graphs {X.} are taken to be bipartite,

3
X2i_l and X2i both have the set W i on one
side, the vertices on the other side represent

those blocks entirely in W i (for X2i_l) or

those in Wi+ 1 (for X2i). Edges correspond to

incidence. The extension of CL(Xj) to CL(Xj+ I)

works as in §4.3 for j even. For j odd we

do not have a bound on dout (this wouldn't

bother us if we had developed Miller's trick

in §4.2) but we get around this by considering

another bipartite graph Yj~ having the set of

unordered pairs of elements of ~(Xj) on the

left and ~(Xj+I) "~a~(Xj) on the right. A

pair {x,x'} will be adjacent to a block B on

the right if x,x' e B. Now the vertices on the

left side of Y. have degree < k - 2, justifying
3

the timing.

We turn next to symmetric designs, i.e. we

suppose the number of points equals the number of

blocks. If X : i, these are the projective planes.
Miller ~Mi2] showed that canonical forms for
projective planes can be computed in n l°g log n

time, Using ideas somewhat similar to the above

~altkough note that subdesign8 now refer to

subplane8 (w, ~w) ~ (V,~) where

we establish

Theorem 4.9 Canonical forms for symmetric (v,k,X)-
design8 can be found in v~(X)+log log v + c

time.

Remark. As far as we know, no infinite family of

such designs is known for any ~ > 2.

We remark finally that similar ideas can be

used t'o find canonical forms for strongly regular

graphs (cf [Call) with parameters (v,k,%,~) in
v c log v+~(max(~,V)) time. Again, the

applicability may be limited because it appears to

be an open question whether there exist an infinite

number of connected strongly regular graphs with

bounded X,~. It is conceivable, however, that

for small k it might improve Babel's bound

exp(cv log2v/k) for k ~ n/2 [Ba2] (Note: k ~ ~v).

5. An alternative moderately exponential graph

canonization.

There is now an exp(n 2/3+°(I)) graph

canonization algorithm available which does not

use any group theory except for the "tower of

groups" algorithm [Bal],[FHL]. The method starts

with a Zemlyachenko valence reduction to valence

n I/3 at the cost of individualizing ~ 4n 2/3

vertices.

The next step uses the following result:

Theorem 5.1 Let X be a connected graph on n
vertices of valence < cn 2/3." Then there exists
a set S of O(n2/31og n) vertices such that by
individualizing the vertices in S and applying
the Weisfeiler-Lehman edge-refinement [we] the
vertex set breaks into color-classes of size
O(n2/3).

The proof rests on estimates for distinguish-

ing sets in coherent configurations in the spirit

of [Ba4].

The concluding step is the [KL] version of

[Bal]: canonical forms for graphs with bounded

color-classes. The cost of this third step can

actually be reduced to expOl I/3 + o[I~),- " using

[Ba6], leaving the entire algorithm with only

181

two exp (n 2"3) / bottlenecks.

This result appears to indicate that coherent

configurations and other combinatorial techniques

might be relevant in the search for improved

complexity estimates.

6. Problems and Comments

I. Can hypergraph isomorphism (respectively,

canonization) be determined in simply exponential,
n e , time where n is the size of the vertex set?

Note that the input itself can be exponential in n,

so we can not expect any better. If the hypergraphs

have bounded rank (= the maximum cardinality of an

edge) then isomorphism is decidable in c n time

([Lu2]) and the teehnique extends to canonization.

(The result makes essential use of the simple

groups classification). Are there moderately

exponential methods for this class? We observe

that it is possible to reduce 3-hypergraph, and

even 4-hypergraph, isomorphism (respectively,

canonization) to graph isomorphism (respectively,

canonization) on an n 2 element set. Hence, a

moderately exponential algorithm for 4-hypergraph

isomorphism is a necessary condition for the
½-c

reduction of graph isomorphism to exp(n) for

some ~ > 0.

2. Subset stabilizers for arbitrary permutation

groups can be computed in exp(n ½ + o(i)) time [Ba6].

They can also be computed in 4dn c time, where d

is the size of the subset, c an absolute constant

[Lu2]. Both of these results have canonical

placement analogues with the same time bounds (for

the latter, see [BKL]). Is there a common

generalization?

3. We indicated that, with respect to a certain

natural ordering of the indices, the problem of

finding the lexieographic leader among the

possible adjacency matrices of a graph is NP-hard.

Is this the case with respect to the usual

lexicographic ordering of the indices? We con-

Jecture that the problem is NP-hard with respect

to any predetermined ordering of the indices.

(In this regard, however, compare Proposition 3.7).

We further conjecture that the problem remains

NP-hard even for special classes of graphs, e.g.

trivalent graphs, trees. We are split over a

prediction for binary trees.

4. Blass and Gurevich [BG] constructed a poly-

nomial-time recognizable equivalence over strings

for which determining the kth digit of the lexico-

leader of a class is A~-complete. Recall, graphic

(A~ is the class of languages recognizable in

polynomial time using an oracle for an NP-set).

Is this still the case for the equivalence defined

by a permutation group action? By a 2-group action?

5. We point out a situation where a significant

complexity gap between isomorphism testing and

canonization remains. Consider a class ~ of

'good' graphs on a vertex set V, e.g. graphs

of bounded valence, tournaments, graphs of bounded

eigenvalue multiplicity, etc. and an arbitrary

group G ~Sym(V). The group intersection

algorithm of [Lul,§4] shows that the isomorphisms

from X to X' s ~ lying in G can be computed

in essentially the time currently required for

testing isomorphism (i.e. in Sym(V)). However,

the methods do not yet seem to extend to finding

canonical forms for 'good' graphs, CF(X,G), with

respect to arbitrary groups, G. We do not know

such a CF even for the class of binary trees.

(Cf Corollary 3.6 where we show an answer for good

groups in arbitrary graphs).

6. The significance of a canonical form in

mathematics is, very often, its simplicity and

transparent structure. Although that is not the

motivation for studies in the computational

complexity of graph canonization, the question

remains whether the canonized graphs constructed

herein have any noteworthy combinatorial structure.

One of us thinks it would be worthwhile to

investigate the matter.

[Bal]

[Ba2]

[Ba3]

[Ba4]

REFERENCES

L. Bahai, Monte-Carlo algorithms in graph
isomorphism testing, preprint, Univ.
Montr&al (1979).

L. Babai, On the complexity of canonical
labeling of strongly regular graphs,
SIA}i J. Comp. 9 (1980), 212-216.

L. Babai, Moderately exponential bound
for graph isomorphism, Proc. Conf. FCT '81
Szeged, Lecture Notes in Computer Science
117, Springer 1981, 34-50.

L. Babai, On the order of uniprimitive
permutation groups, Ann. of Math 113 (1981),
553-568.

182

[~a5]

[Ba6]

[BCP]

[BGM]

[~G]

[BKL]

[Ca1]

[Ca2]

[co]

[CG]

[cc]

[FT]

[FHL]

[Ga]

[GHLSW]

[c J]

L. Babai , On the order of doubly transitive
permutation groups, Inventiones Math 65,
473-484.

L. Babai, Permutation group intersection in
exp(n½+O(1)) time, to appear.

L. Babai, P. Cameron, P. P~ify, On the orders
ofprimitive groups w~th restricted nonabelian
co,~ositionfaetor% J. AI~, 79 (1982), 161-168.

L. Babai, D. Grigoriev, D. Mount, Iso-
morphism of directed graphs with bounded
eigenvalue multiplicity, Proc. 14th ACM
Symp Thy Comp (1982), 310-324.

A. Blass and Y. Gurevich , Equivalence
relations, invariants and normal forms,
to appear.

L. Babai, P. Klingsberg, E. Luks, Canonical
labeling for vertex colored graphs,~to
appear.

P. Cameron, Strongly regular graphs,
Selected Topics in Graph Theory, ed. L.
Beineke, R. Wilson, Academic Press, (1979).

P. Cameron, Finite permutation groups and
finite simple groups, Bull. London Math.
Soc. 13 (1981), 1-22.

D. Corneil, Private communication.

D. Corneil and M. Golberg, On graph
certificates, Congressus Num. 35 (1982),
181-190.

C. Colbourne and M. Colbourne, The
complexity of combinatorial isomorphism
problems, Proc. Can.-France Comb. Coll.,
Montreal (1979).

W. Felt and J. Thompson, Solvability of
groups of odd order, Pac. J. Math. 13
(1983~, 775-1029.

S. Filotti and J. Mayer, A polynomial-time
algorithm for determining the isomorphism
of graphs of fixed genus, Proc. 12th ACM
Symp Thy Comp (1980), 236-243.

M. Furst, J. Hopcroft, E. Luks, Polynomial-
time algorithms for permutation groups,
21st IEEE Symp. Found. Comp. Sci. (1980),
36-41.

Z. Galil, private communication.

Z. Galil, C. Hoffman, E. Luks, C. Schnorr,
A. Weber, An O(n31og n) deterministic an
O(n 3) probabilistic isomorphism test for
trivalent graphs, 23rd IEEE Symp. Found.
Comp. Sci. (1982), 118-125.

M. Garey and D. Johnson, Computers and
Intractibility: A guide to the theory of
NP-completeness, Freeman, San Francisco
(1979).

[HT]

[KL]

[Lip]

[Lull

[Lu2]

[Lub]

[~{a]

[MIll

[Mi2]

[m 3]

[Mi4]

[ms]

[Pa]

[Ry]

[SW]

[We]

[ZKT]

Z. Hedrlin and P. Pultr, On full embeddings
of categories of algebras, Ill. J. Math.
i0(1966), 392-406.

J. Hopcroft and R. Tarjan, Isomorphism of
planar graphs (working paper), Complexity
of Computer Computations, Plenum (1972),
131-152.

P. Klingsberg, E. Luks, Succinct certificates
for a class of graphs, St. Joseph's Univ.
preprint (1981) (See [BKL]).

R. Lipton, The beacon set approach to graph
isomorphism, Yale Dept. Comp Sci. preprint
#135 (1978).

E. Luks, "Isomorphism of graphs of bounded
valence can be tested in polynomial time,
J. Comp. Sys. Sci. 25 (1982), 42-65.

E. Luks, On the complexity of fixed valence
groph isomorphism and the implications for
general graph isomorphism, to appear.

A. Lubiw, Some NP-complete problems similar
to graph isomorphism, SIP2f J. Comp, i0
(1980), 11-21.

R. Mathon, A note on the graph isomorphism
counting problem, Inf. Proc. Let. 8 (1979),
131-132.

G. Miller, Graph isomorphism, general
remarks, J. Comp. Sys. Sci., 18 (1979),
128-142.

G. Miller, On the n l°gn isomorphism tech-
nique, Proc. 10th ACM Symp Thy. Conp. (1978),
51-58.

G. Miller, Isomorphism testing for graphs of
bounded genus, Proc. 12th ACM Symp Thy Comp.
(1980), 225-235.

G. Miller, Isomorphism of graphs which are
pairwise k-separable, to appear.

G. Miller, private communication.

P. P~ify, A polynomial bound for the orders
of primitive solvable groups, J. Alg., (1982),
127-137.

H. Ryser, Combinatorial Mathematics, MAA
1963.

C. Schnorr and A. Weber, Constructing the
automorphism group Aute(X) for trivalent
graphs in time O(n31og n), Tech. Rep.,
U. Frankfurt (1981).

B. Weisfeiler, ed., On Construction and
Identification of Graphs, Lecture Notes in
Math 558, Springer, 1976.

V. Zemlyachenko, N. Kornienko, R. Tyshkevich,
Graph isomorphism problem (Russian) The
Theory of Computation I, Notes Sci. Sem
LOMI 118 (1982).

183

