
Just Add Weights:

Markov Logic for the Semantic Web

Pedro Domingos1, Daniel Lowd1, Stanley Kok1, Hoifung Poon1, Matthew
Richardson2, and Parag Singla1

1 Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195-2350, U.S.A.
{pedrod, lowd, koks, hoifung, parag}@cs.washington.edu

2 Microsoft Research
Redmond, WA 98052
mattri@microsoft.com

Abstract. In recent years, it has become increasingly clear that the
vision of the Semantic Web requires uncertain reasoning over rich, first-
order representations. Markov logic brings the power of probabilistic
modeling to first-order logic by attaching weights to logical formulas
and viewing them as templates for features of Markov networks. This
gives natural probabilistic semantics to uncertain or even inconsistent
knowledge bases with minimal engineering effort. Inference algorithms
for Markov logic draw on ideas from satisfiability, Markov chain Monte
Carlo and knowledge-based model construction. Learning algorithms are
based on the conjugate gradient algorithm, pseudo-likelihood and in-
ductive logic programming. Markov logic has been successfully applied
to problems in entity resolution, link prediction, information extraction
and others, and is the basis of the open-source Alchemy system.

1 Introduction

The vision of the Semantic Web is that of a web of information that computers
can understand and reason about, organically built with no central organization
except for a common set of standards [1]. This promises the ability to answer
more complex queries and build more intelligent and effective agents than ever
before. The standard languages that have been introduced so far are generally
special cases of first-order logic, allowing users to define ontologies, express a
rich set of relationships among objects of different types, logical dependencies
between them, etc.

Fulfilling this promise, however, requires more than purely logical represen-
tations and inference algorithms. Most things in the world have some degree
of uncertainty or noise – future events, such as weather and traffic, are un-
predictable; information is unreliable, either from error or deceit; even simple
concepts such as “fruit” and “vegetable” are imprecisely and inconsistently ap-
plied. Any system that hopes to represent varied information about the world



must therefore acknowledge the uncertain, inconsist, and untrustworthy nature
of that knowledge.

The Semantic Web project faces additional or exacerbated sources of uncer-
tainty in a number of areas. Matching entities, ontologies and schemas is essential
for linking data from different sources, but is also inherently uncertain. Moreover,
data may contain false or contradictory information. To simply exclude noisy or
untrusted sources is an inadequate solution since even trusted sources may have
some errors and even noisy sources may have useful information to contribute.
A final problem is incomplete information; when information is missing we may
be able to conclude very little with certainty, but it would be a mistake to ignore
the partial evidence entirely.

Markov logic is a simple yet powerful solution to the problem of integrat-
ing logic and uncertainty. Given an existing knowledge base in first-order logic,
Markov logic attaches a weight to each formula. Semantically, weighted formu-
las are viewed as templates for constructing Markov networks. This yields a
well-defined probability distribution in which worlds are more likely when they
satisfy a higher-weight set of ground formulas. Intuitively, the magnitude of the
weight corresponds to the relative strength of its formula; in the infinite-weight
limit, Markov logic reduces to first-order logic. Since Markov logic is a direct
extension of first-order logic, it does not invalidate or conflict with the exist-
ing Semantic Web infrastructure. With Markov logic, Semantic Web languages
can be made probabilistic simply by adding weights to statements, and Semantic
Web inference engines can be extended to perform probabilistic reasoning simply
by passing the proof DAG (directed acylic graph), with weights attached, to a
probabilistic inference system. Weights may be set by hand, inferred from various
sources (e.g., trust networks), or learned automatically from data. We have also
developed algorithms for learning or correcting formulas from data. Markov logic
has already been used to efficiently develop state-of-the-art models for entity res-
olution, ontology induction, information extraction, social networks, collective
classification, and many other problems important to the Semantic Web. All of
our algorithms, as well as sample datasets and applications, are available in the
open-source Alchemy system [16] (alchemy.cs.washington.edu).

In this chapter, we describe the Markov logic representation and give an
overview of current inference and learning algorithms for it. We begin with some
background on first-order logic and Markov networks.

2 First-Order Logic

A first-order knowledge base (KB) is a set of sentences or formulas in first-order
logic [10]. Formulas are constructed using four types of symbols: constants, vari-
ables, functions, and predicates. Constant symbols represent objects in the do-
main of interest (e.g., people: Anna, Bob, Chris, etc.). Variable symbols range
over the objects in the domain. Function symbols (e.g., MotherOf) represent
mappings from tuples of objects to objects. Predicate symbols represent rela-
tions among objects in the domain (e.g., Friends) or attributes of objects (e.g.,



Smokes). An interpretation specifies which objects, functions and relations in the
domain are represented by which symbols. Variables and constants may be typed,
in which case variables range only over objects of the corresponding type, and
constants can only represent objects of the corresponding type. For example, the
variable x might range over people (e.g., Anna, Bob, etc.), and the constant C

might represent a city (e.g, Seattle, Tokyo, etc.).

A term is any expression representing an object in the domain. It can be a
constant, a variable, or a function applied to a tuple of terms. For example, Anna,
x, and GreatestCommonDivisor(x, y) are terms. An atomic formula or atom is a
predicate symbol applied to a tuple of terms (e.g., Friends(x, MotherOf(Anna))).
Formulas are recursively constructed from atomic formulas using logical connec-
tives and quantifiers. If F1 and F2 are formulas, the following are also formulas:
¬F1 (negation), which is true iff F1 is false; F1 ∧ F2 (conjunction), which is
true iff both F1 and F2 are true; F1 ∨ F2 (disjunction), which is true iff F1 or
F2 is true; F1 ⇒ F2 (implication), which is true iff F1 is false or F2 is true;
F1 ⇔ F2 (equivalence), which is true iff F1 and F2 have the same truth value;
∀x F1 (universal quantification), which is true iff F1 is true for every object x

in the domain; and ∃x F1 (existential quantification), which is true iff F1 is true
for at least one object x in the domain. Parentheses may be used to enforce
precedence. A positive literal is an atomic formula; a negative literal is a negated
atomic formula. The formulas in a KB are implicitly conjoined, and thus a KB
can be viewed as a single large formula. A ground term is a term containing no
variables. A ground atom or ground predicate is an atomic formula all of whose
arguments are ground terms. A possible world (along with an interpretation)
assigns a truth value to each possible ground atom.

A formula is satisfiable iff there exists at least one world in which it is true.
The basic inference problem in first-order logic is to determine whether a knowl-
edge base KB entails a formula F , i.e., if F is true in all worlds where KB is
true (denoted by KB |= F ). This is often done by refutation: KB entails F iff
KB ∪ ¬F is unsatisfiable. (Thus, if a KB contains a contradiction, all formulas
trivially follow from it, which makes painstaking knowledge engineering a ne-
cessity.) For automated inference, it is often convenient to convert formulas to
a more regular form, typically clausal form (also known as conjunctive normal
form (CNF)). A KB in clausal form is a conjunction of clauses, a clause being a
disjunction of literals. Every KB in first-order logic can be converted to clausal
form using a mechanical sequence of steps.3 Clausal form is used in resolution,
a sound and refutation-complete inference procedure for first-order logic [38].

Inference in first-order logic is only semidecidable. Because of this, knowledge
bases are often constructed using a restricted subset of first-order logic with more
desirable properties. The two subsets most commonly applied to the Semantic
Web are Horn clauses and description logics. Horn clauses are clauses containing
at most one positive literal. The Prolog programming language is based on Horn

3 This conversion includes the removal of existential quantifiers by Skolemization,
which is not sound in general. However, in finite domains an existentially quantified
formula can simply be replaced by a disjunction of its groundings.



clause logic [21]. Prolog programs can be learned from databases by searching for
Horn clauses that (approximately) hold in the data; this is studied in the field of
inductive logic programming (ILP) [18]. Description logics are a decidable subset
of first-order logic that is the basis of the Web Ontology Language (OWL) [7].

Table 1 shows a simple KB and its conversion to clausal form. Notice that,
while these formulas may be typically true in the real world, they are not always
true. In most domains it is very difficult to come up with non-trivial formulas
that are always true, and such formulas capture only a fraction of the relevant
knowledge. Thus, despite its expressiveness, pure first-order logic has limited
applicability to practical AI problems. Many ad hoc extensions to address this
have been proposed. In the more limited case of propositional logic, the prob-
lem is well solved by probabilistic graphical models such as Markov networks,
described in the next section. We will later show how to generalize these models
to the first-order case.

Table 1. Example of a first-order knowledge base and MLN. Fr() is short for Friends(),
Sm() for Smokes(), and Ca() for Cancer().

First-Order Logic Clausal Form Weight

“Friends of friends are friends.”
∀x∀y∀z Fr(x, y) ∧ Fr(y, z)⇒ Fr(x, z) ¬Fr(x, y) ∨ ¬Fr(y, z) ∨ Fr(x, z) 0.7

“Friendless people smoke.”
∀x (¬(∃y Fr(x, y))⇒ Sm(x)) Fr(x, g(x)) ∨ Sm(x) 2.3

“Smoking causes cancer.”
∀x Sm(x)⇒ Ca(x) ¬Sm(x) ∨ Ca(x) 1.5

“If two people are friends, then either
both smoke or neither does.” ¬Fr(x, y) ∨ Sm(x) ∨ ¬Sm(y), 1.1
∀x∀y Fr(x, y)⇒ (Sm(x)⇔ Sm(y)) ¬Fr(x, y) ∨ ¬Sm(x) ∨ Sm(y) 1.1

3 Markov Networks

A Markov network (also known as Markov random field) is a model for the joint
distribution of a set of variables X = (X1, X2, . . . , Xn) ∈ X [30]. It is composed
of an undirected graph G and a set of potential functions φk. The graph has a
node for each variable, and the model has a potential function for each clique
in the graph. A potential function is a non-negative real-valued function of the
state of the corresponding clique. The joint distribution represented by a Markov
network is given by

P (X =x) =
1

Z

∏

k

φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of the variables that
appear in that clique). Z, known as the partition function, is given by Z =



∑

x∈X

∏

k φk(x{k}). Markov networks are often conveniently represented as log-
linear models, with each clique potential replaced by an exponentiated weighted
sum of features of the state, leading to

P (X =x) =
1

Z
exp





∑

j

wjfj(x)



 (2)

A feature may be any real-valued function of the state. This chapter will focus on
binary features, fj(x) ∈ {0, 1}. In the most direct translation from the potential-
function form (Equation 1), there is one feature corresponding to each possible
state x{k} of each clique, with its weight being log φk(x{k}). This representation
is exponential in the size of the cliques. However, we are free to specify a much
smaller number of features (e.g., logical functions of the state of the clique),
allowing for a more compact representation than the potential-function form,
particularly when large cliques are present. Markov logic will take advantage of
this.

Inference in Markov networks is #P-complete [39]. The most widely used
method for approximate inference in Markov networks is Markov chain Monte
Carlo (MCMC) [11], and in particular Gibbs sampling, which proceeds by sam-
pling each variable in turn given its Markov blanket. (The Markov blanket of a
node is the minimal set of nodes that renders it independent of the remaining
network; in a Markov network, this is simply the node’s neighbors in the graph.)
Marginal probabilities are computed by counting over these samples; conditional
probabilities are computed by running the Gibbs sampler with the conditioning
variables clamped to their given values. Another popular method for inference
in Markov networks is belief propagation [52].

Maximum-likelihood or MAP estimates of Markov network weights cannot
be computed in closed form but, because the log-likelihood is a concave function
of the weights, they can be found efficiently (modulo inference) using standard
gradient-based or quasi-Newton optimization methods [28]. Another alternative
is iterative scaling [8]. Features can also be learned from data, for example by
greedily constructing conjunctions of atomic features [8].

4 Markov Logic

A first-order KB can be seen as a set of hard constraints on the set of possible
worlds: if a world violates even one formula, it has zero probability. The basic
idea in Markov logic is to soften these constraints: when a world violates one
formula in the KB it is less probable, but not impossible. The fewer formulas a
world violates, the more probable it is. Each formula has an associated weight
(e.g., see Table 1) that reflects how strong a constraint it is: the higher the weight,
the greater the difference in log probability between a world that satisfies the
formula and one that does not, other things being equal.

Definition 1. [36] A Markov logic network (MLN) L is a set of pairs (Fi, wi),
where Fi is a formula in first-order logic and wi is a real number. Together with



a finite set of constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C

(Equations 1 and 2) as follows:

1. ML,C contains one binary node for each possible grounding of each atom
appearing in L. The value of the node is 1 if the ground atom is true, and 0
otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi

in L. The value of this feature is 1 if the ground formula is true, and 0
otherwise. The weight of the feature is the wi associated with Fi in L.

Thus there is an edge between two nodes of ML,C iff the corresponding
ground atoms appear together in at least one grounding of one formula in L. For
example, an MLN containing the formulas ∀x Smokes(x) ⇒ Cancer(x) (smoking
causes cancer) and ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) (friends
have similar smoking habits) applied to the constants Anna and Bob (or A and
B for short) yields the ground Markov network in Figure 1. Its features include
Smokes(Anna) ⇒ Cancer(Anna), etc. Notice that, although the two formulas
above are false as universally quantified logical statements, as weighted features
of an MLN they capture valid statistical regularities, and in fact represent a
standard social network model [47].

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Fig. 1. Ground Markov network obtained by applying an MLN containing the formulas
∀x Smokes(x)⇒ Cancer(x) and ∀x∀y Friends(x, y)⇒ (Smokes(x) ⇔ Smokes(y)) to the
constants Anna(A) and Bob(B).

An MLN can be viewed as a template for constructing Markov networks. From
Definition 1 and Equations 1 and 2, the probability distribution over possible
worlds x specified by the ground Markov network ML,C is given by

P (X =x) =
1

Z
exp

(

F
∑

i=1

wini(x)

)

(3)



where F is the number of formulas in the MLN and ni(x) is the number of true
groundings of Fi in x. As formula weights increase, an MLN increasingly resem-
bles a purely logical KB, becoming equivalent to one in the limit of all infinite
weights. When the weights are positive and finite, and all formulas are simul-
taneously satisfiable, the satisfying solutions are the modes of the distribution
represented by the ground Markov network.

Most importantly, Markov logic allows contradictions between formulas, which
it resolves simply by weighing the evidence on both sides. This makes it well
suited for merging multiple KBs. Markov logic also provides a natural and pow-
erful approach to the problem of merging knowledge and data in different rep-
resentations that do not align perfectly, as will be illustrated in the application
section. Both of these tasks are also key to the success of the Semantic Web.

It is interesting to see a simple example of how Markov logic generalizes
first-order logic. Consider an MLN containing the single formula ∀x R(x) ⇒ S(x)
with weight w, and C = {A}. This leads to four possible worlds: {¬R(A),¬S(A)},
{¬R(A), S(A)}, {R(A),¬S(A)}, and {R(A), S(A)}. From Equation 3 we obtain that
P ({R(A),¬S(A)}) = 1/(3ew + 1) and the probability of each of the other three
worlds is ew/(3ew + 1). (The denominator is the partition function Z; see Sec-
tion 3.) Thus, if w > 0, the effect of the MLN is to make the world that is
inconsistent with ∀x R(x) ⇒ S(x) less likely than the other three. From the
probabilities above we obtain that P (S(A)|R(A)) = 1/(1 + e−w). When w → ∞,
P (S(A)|R(A)) → 1, recovering the logical entailment.

It is easily seen that all discrete probabilistic models expressible as products
of potentials, including Markov networks and Bayesian networks, are expressible
in Markov logic. In particular, many of the models frequently used in AI can be
stated quite concisely as MLNs, and combined and extended simply by adding
the corresponding formulas. Most significantly, Markov logic facilitates the con-
struction of non-i.i.d. models (i.e., models where objects are not independent
and identically distributed).

When working with Markov logic, we typically make three assumptions about
the logical representation: different constants refer to different objects (unique
names), the only objects in the domain are those representable using the con-
stant and function symbols (domain closure), and the value of each function for
each tuple of arguments is always a known constant (known functions). These
assumptions ensure that the number of possible worlds is finite and that the
Markov logic network will give a well-defined probability distribution. These
assumptions are quite reasonable in most practical applications, and greatly
simplify the use of MLNs. After describing how each one can be relaxed, we will
make these assumptions for the remainder of the chapter. See Richardson and
Domingos [36] for further details on the Markov logic representation.

The unique names assumption can be removed by introducing the equality
predicate (Equals(x, y), or x = y for short) and adding the necessary axioms to
the MLN: equality is reflexive, symmetric and transitive; for each unary predicate
P , ∀x∀y x = y ⇒ (P(x) ⇔ P(y)); and similarly for higher-order predicates and



functions [10]. This allows us to deal with instance and reference uncertainty, as
illustrated in Section 7.1.

We can relax the domain closure assumption by introducing new constants
to represent unknown objects. This works for any domain whose size is bounded.
Markov logic can also be applied to a number of interesting infinite domains,
such as when each node in the resulting infinite Markov network has a finite
number of neighbors. See Singla and Domingos [43] for details on Markov logic
in infinite domains.

Infinite domains can also be approximated as finite ones. Consider the transi-
tive, anti-symmetric relation AncestorOf(x, y), meaning “x is an ancestor of y.”
In a logical KB, the rule “Everyone has an ancestor” is only valid in infinite or
empty domains. In Markov logic, the rule can easily be applied to finite domains,
so that worlds are more likely when more objects have an ancestor within the
domain. Therefore, although Markov logic semantics are well-defined for many
infinite domains, a finite approach suffices for most practical applications.

Let HL,C be the set of all ground terms constructible from the function
symbols in L and the constants in L and C (the “Herbrand universe” of (L, C)).
We can remove the known function assumption by treating each element of HL,C

as an additional constant and applying the same procedure used to remove the
unique names assumption. For example, with a function G(x) and constants A

and B, the MLN will now contain nodes for G(A) = A, G(A) = B, etc. This leads
to an infinite number of new constants, requiring the corresponding extension
of MLNs. However, if we restrict the level of nesting to some maximum, the
resulting MLN is still finite.

5 Inference

Recall that an MLN acts as a template for a Markov network. Therefore, we can
always answer probabilistic queries using standard Markov network inference
methods on the instantiated network. We have extended and adapted several of
these standard methods to take particular advantage of the logical structure in
a Markov logic network, yielding tremendous savings in memory and time. We
describe these algorithms in this section.

For many queries, only a small subset of the instantiated Markov network
is relevant. In such cases, we need not instantiate or even consider the entire
MLN. The proof DAG from a logical inference engine can be used to generate
the set of ground formulas and atoms relevant to a particular query. Together
with the MLN weights, this can be used to generate a sub-network to answers the
probabilistic query. In this way, Markov logic can easily be paired with traditional
logical inference methods. This method, traditionally known as knowledge-based
model construction (KBMC) [27], allows us to potentially reason efficiently over
a very large knowledge base (like the Semantic Web), as long as only a small
fraction of it is relevant to the query. In our descriptions, we will assume that
inference is done over the entire MLN, but our methods apply to the sub-network
case as well.



5.1 MAP/MPE Inference

In the remainder of this chapter, we assume that the MLN is in function-free
clausal form for convenience, but these methods can be applied to other MLNs
as well. A basic inference task is finding the most probable state of the world
given some evidence. (This is known as MAP inference in the Markov network
literature, and MPE inference in the Bayesian network literature.) Because of the
form of Equation 3, in Markov logic this reduces to finding the truth assignment
that maximizes the sum of weights of satisfied clauses. This can be done using
any weighted satisfiability solver, and (remarkably) need not be more expensive
than standard logical inference by model checking. (In fact, it can be faster, if
some hard constraints are softened.) We have successfully used MaxWalkSAT,
a weighted variant of the WalkSAT local-search satisfiability solver, which can
solve hard problems with hundreds of thousands of variables in minutes [13].
MaxWalkSAT performs this stochastic search by picking an unsatisfied clause
at random and flipping the truth value of one of the atoms in it. With a cer-
tain probability, the atom is chosen randomly; otherwise, the atom is chosen to
maximize the sum of satisfied clause weights when flipped. This combination of
random and greedy steps allows MaxWalkSAT to avoid getting stuck in local
optima while searching. Pseudocode for MaxWalkSAT is shown in Algorithm 1.
DeltaCost(v) computes the change in the sum of weights of unsatisfied clauses
that results from flipping variable v in the current solution. Uniform(0,1) returns
a uniform deviate from the interval [0, 1].

One problem with this approach is that it requires propositionalizing the
domain (i.e., grounding all atoms and clauses in all possible ways), which con-
sumes memory exponential in the arity of the clauses. We have overcome this
by developing LazySAT, a lazy version of MaxWalkSAT which grounds atoms
and clauses only as needed [42]. This takes advantage of the sparseness of re-
lational domains, where most atoms are false and most clauses are trivially
satisfied. For example, in the domain of scientific research, most groundings of
the atom Author(person, paper) are false, and most groundings of the clause
Author(person1, paper) ∧ Author(person2, paper) ⇒ Coauthor(person1,
person2) are satisfied. In LazySAT, the memory cost does not scale with the
number of possible clause groundings, but only with the number of groundings
that are potentially unsatisfied at some point in the search.

Algorithm 2 gives pseudo-code for LazySAT, highlighting the places where
it differs from MaxWalkSAT. LazySAT maintains a set of active atoms and a
set of active clauses. A clause is active if it can be made unsatisfied by flipping
zero or more of its active atoms. (Thus, by definition, an unsatisfied clause is
always active.) An atom is active if it is in the initial set of active atoms, or if
it was flipped at some point in the search. The initial active atoms are all those
appearing in clauses that are unsatisfied if only the atoms in the database are
true, and all others are false. The unsatisfied clauses are obtained by simply going
through each possible grounding of all the first-order clauses and materializing
the groundings that are unsatisfied; search is pruned as soon as the partial
grounding of a clause is satisfied. Given the initial active atoms, the definition



Algorithm 1 MaxWalkSAT(weighted clauses, max flips, max tries, target, p)

vars ← variables in weighted clauses
for i ← 1 to max tries do

soln ← a random truth assignment to vars
cost ← sum of weights of unsatisfied clauses in soln
for i ← 1 to max flips do

if cost ≤ target then

return “Success, solution is”, soln
end if

c ← a randomly chosen unsatisfied clause
if Uniform(0,1) < p then

vf ← a randomly chosen variable from c
else

for each variable v in c do

compute DeltaCost(v)
end for

vf ← v with lowest DeltaCost(v)
end if

soln ← soln with vf flipped
cost ← cost + DeltaCost(vf )

end for

end for

return “Failure, best assignment is”, best soln found

of active clause requires that some clauses become active, and these are found
using a similar process (with the difference that, instead of checking whether a
ground clause is unsatisfied, we check whether it should be active). Each run of
LazySAT is initialized by assigning random truth values to the active atoms. This
differs from MaxWalkSAT, which assigns random values to all atoms. However,
the LazySAT initialization is a valid MaxWalkSAT initialization, and we have
verified experimentally that the two give very similar results. Given the same
initialization, the two algorithms will produce exactly the same results.

At each step in the search, the variable that is flipped is activated, as are any
clauses that by definition should become active as a result. When evaluating the
effect on cost of flipping a variable v, if v is active then all of the relevant clauses
are already active, and DeltaCost(v) can be computed as in MaxWalkSAT. If v
is inactive, DeltaCost(v) needs to be computed using the knowledge base. This is
done by retrieving from the KB all first-order clauses containing the atom that
v is a grounding of, and grounding each such clause with the constants in v and
all possible groundings of the remaining variables. As before, we prune search as
soon as a partial grounding is satisfied, and add the appropriate multiple of the
clause weight to DeltaCost(v). (A similar process is used to activate clauses.)
While this process is costlier than using pre-grounded clauses, it is amortized
over many tests of active variables. In typical satisfiability problems, a small core
of “problem” clauses is repeatedly tested, and when this is the case LazySAT
will be quite efficient.



Algorithm 2 LazySAT( weighted KB, DB, max flips, max tries, target, p)

for i ← 1 to max tries do

active atoms ← atoms in clauses not satisfied by DB

active clauses ← clauses activated by active atoms

soln ← a random truth assignment to active atoms
cost ← sum of weights of unsatisfied clauses in soln
for i ← 1 to max flips do

if cost ≤ target then

return “Success, solution is”, soln
end if

c ← a randomly chosen unsatisfied clause
if Uniform(0,1) < p then

vf ← a randomly chosen variable from c
else

for each variable v in c do

compute DeltaCost(v), using weighted KB if v 6∈ active atoms

end for

vf ← v with lowest DeltaCost(v)
end if

if vf 6∈ active atoms then

add vf to active atoms

add clauses activated by vf to active clauses

end if

soln ← soln with vf flipped
cost ← cost + DeltaCost(vf )

end for

end for

return “Failure, best assignment is”, best soln found

At each step, LazySAT flips the same variable that MaxWalkSAT would, and
hence the result of the search is the same. The memory cost of LazySAT is on
the order of the maximum number of clauses active at the end of a run of flips.
(The memory required to store the active atoms is dominated by the memory
required to store the active clauses, since each active atom appears in at least
one active clause.)

Experiments on entity resolution and planning problems show that this can
yield very large memory reductions, and these reductions increase with domain
size [42]. For domains whose full instantiations fit in memory, running time
is comparable; as problems become larger, full instantiation for MaxWalkSAT
becomes impossible.

5.2 Marginal and Conditional Probabilities

Another key inference task is computing the probability that a formula holds,
given an MLN and set of constants, and possibly other formulas as evidence.



By definition, the probability of a formula is the sum of the probabilities of the
worlds where it holds, and computing it by brute force requires time exponential
in the number of possible ground atoms. An approximate but more efficient
alternative is to use Markov chain Monte Carlo (MCMC) inference [11], which
samples a sequence of states according to their probabilities, and counting the
fraction of sampled states where the formula holds. This can be extended to
conditioning on other formulas by rejecting any state that violates one of them.

For the remainder of the chapter, we focus on the typical case where the
evidence is a conjunction of ground atoms. In this scenario, further efficiency can
be gained by applying a generalization of knowledge-based model construction
[49]. This constructs only the minimal subset of the ground network required to
answer the query, and runs MCMC (or any other probabilistic inference method)
on it. The network is constructed by checking if the atoms that the query formula
directly depends on are in the evidence. If they are, the construction is complete.
Those that are not are added to the network, and we in turn check the atoms they
depend on. This process is repeated until all relevant atoms have been retrieved.
While in the worst case it yields no savings, in practice it can vastly reduce the
time and memory required for inference. See Richardson and Domingos [36] for
details.

One problem with applying MCMC to MLNs is that it breaks down in the
presence of deterministic or near-deterministic dependencies (as do other prob-
abilistic inference methods, e.g., belief propagation [52]). Deterministic depen-
dencies break up the space of possible worlds into regions that are not reachable
from each other, violating a basic requirement of MCMC. Near-deterministic
dependencies greatly slow down inference, by creating regions of low probability
that are very difficult to traverse. Running multiple chains with random starting
points does not solve this problem, because it does not guarantee that different
regions will be sampled with frequency proportional to their probability, and
there may be a very large number of regions.

We have successfully addressed this problem by combining MCMC with sat-
isfiability testing in the MC-SAT algorithm [32]. MC-SAT is a slice sampling
MCMC algorithm. It uses a combination of satisfiability testing and simulated
annealing to sample from the slice. The advantage of using a satisfiability solver
(WalkSAT) is that it efficiently finds isolated modes in the distribution, and as
a result the Markov chain mixes very rapidly. The slice sampling scheme ensures
that detailed balance is (approximately) preserved.

MC-SAT is orders of magnitude faster than standard MCMC methods such
as Gibbs sampling and simulated tempering, and is applicable to any model that
can be expressed in Markov logic, including many standard models in statisti-
cal physics, vision, natural language processing, social network analysis, spatial
statistics, etc.

Slice sampling [5] is an instance of a widely used approach in MCMC inference
that introduces auxiliary variables to capture the dependencies between observed
variables. For example, to sample from P (X = x) = (1/Z)

∏

k φk(x{k}), we
can define P (X = x, U = u) = (1/Z)

∏

k I[0,φk(x{k})](uk), where φk is the kth



Algorithm 3 MC-SAT(clauses, weights, num samples)

x(0) ← Satisfy(hard clauses)
for i← 1 to num samples do

M ← ∅
for all ck ∈ clauses satisfied by x(i−1) do

With probability 1− e−wk add ck to M

end for

Sample x(i) ∼ USAT (M)

end for

potential function, uk is the kth auxiliary variable, I[a,b](uk) = 1 if a ≤ uk ≤ b,
and I[a,b](uk) = 0 otherwise. The marginal distribution of X under this joint is
P (X =x), so to sample from the original distribution it suffices to sample from
P (x, u) and ignore the u values. P (uk|x) is uniform in [0, φk(x{k})], and thus
easy to sample from. The main challenge is to sample x given u, which is uniform
among all X that satisfies φk(x{k}) ≥ uk for all k. MC-SAT uses SampleSAT [48]
to do this. In each sampling step, MC-SAT takes the set of all ground clauses
satisfied by the current state of the world and constructs a subset, M , that
must be satisfied by the next sampled state of the world. (For the moment we
will assume that all clauses have positive weight.) Specifically, a satisfied ground
clause is included in M with probability 1−e−w, where w is the clause’s weight.
We then take as the next state a uniform sample from the set of states SAT (M)
that satisfy M . (Notice that SAT (M) is never empty, because it always contains
at least the current state.) Algorithm 3 gives pseudo-code for MC-SAT. US is the
uniform distribution over set S. At each step, all hard clauses are selected with
probability 1, and thus all sampled states satisfy them. Negative weights are
handled by noting that a clause with weight w < 0 is equivalent to its negation
with weight −w, and a clause’s negation is the conjunction of the negations of
all of its literals. Thus, instead of checking whether the clause is satisfied, we
check whether its negation is satisfied; if it is, with probability 1 − ew we select
all of its negated literals, and with probability ew we select none.

It can be shown that MC-SAT satisfies the MCMC criteria of detailed balance
and ergodicity [32], assuming a perfect uniform sampler. In general, uniform
sampling is #P-hard and SampleSAT [48] only yields approximately uniform
samples. However, experiments show that MC-SAT is still able to produce very
accurate probability estimates, and its performance is not very sensitive to the
parameter setting of SampleSAT.

We have applied the ideas of LazySAT to implement a lazy version of MC-
SAT that avoids grounding unnecessary atoms and clauses. A working version
of this algorithm is present in the open-source Alchemy system [16].

It is also possible to carry out lifted first-order probabilistic inference (akin to
resolution) in Markov logic [3]. These methods speed up inference by reasoning
at the first-order level about groups of indistinguishable objects rather than
propositionalizing the entire domain. This is particularly applicable when the
population size is given but little is known about most individual members.



6 Learning

In this section, we discuss methods for automatically learning weights, refin-
ing formulas, and constructing new formulas from data. Of course, learning is
but one method for generating an MLN. In a distributed knowledge base such
as the Semantic Web, formulas could come from many different sources and
their weights could be set by the sources themselves or using credibility or trust
propagation (e.g., [35]). When data is available, learning methods allow us to
automatically adjust weights and refine or add formulas to an MLN.

6.1 Generative Weight Learning

MLN weights can be learned generatively by maximizing the likelihood of a
relational database (Equation 3). This relational database consists of one or
more “possible worlds” that form our training examples. Note that we can learn
to generalize from even a single example because the clause weights are shared
across their many respective groundings. This is essential when the training
data is a single network, such as in the Semantic Web. The gradient of the
log-likelihood with respect to the weights is

∂

∂wi

log Pw(X =x) = ni(x) −
∑

x′

Pw(X =x′) ni(x
′) (4)

where the sum is over all possible databases x′, and Pw(X = x′) is P (X = x′)
computed using the current weight vector w = (w1, . . . , wi, . . .). In other words,
the ith component of the gradient is simply the difference between the number of
true groundings of the ith formula in the data and its expectation according to
the current model. In the generative case, even approximating these expectations
tends to be prohibitively expensive or inaccurate due to the large state space.
Instead, we maximize the pseudo-likelihood of the data, a widely-used alternative
[2]. If x is a possible world (relational database) and xl is the lth ground atom’s
truth value, the pseudo-log-likelihood of x given weights w is

log P ∗
w(X =x) =

n
∑

l=1

log Pw(Xl =xl|MBx(Xl)) (5)

where MBx(Xl) is the state of Xl’s Markov blanket in the data (i.e., the truth
values of the ground atoms it appears in some ground formula with). Computing
the pseudo-likelihood and its gradient does not require inference, and is therefore
much faster. Combined with the L-BFGS optimizer [20], pseudo-likelihood yields
efficient learning of MLN weights even in domains with millions of ground atoms
[36]. However, the pseudo-likelihood parameters may lead to poor results when
long chains of inference are required.

In order to reduce overfitting, we penalize each weight with a Gaussian prior.
We apply this strategy not only to generative learning, but to all of our weight
learning methods, even those embedded within structure learning.



6.2 Discriminative Weight Learning

Discriminative learning is an attractive alternative to pseudo-likelihood. In many
applications, we know a priori which atoms will be evidence and which ones will
be queried, and the goal is to correctly predict the latter given the former. If
we partition the ground atoms in the domain into a set of evidence atoms X
and a set of query atoms Y , the conditional likelihood (CLL) of Y given X

is P (y|x) = (1/Zx) exp
(
∑

i∈FY
wini(x, y)

)

= (1/Zx) exp
(

∑

j∈GY
wjgj(x, y)

)

,

where FY is the set of all MLN clauses with at least one grounding involving a
query atom, ni(x, y) is the number of true groundings of the ith clause involving
query atoms, GY is the set of ground clauses in ML,C involving query atoms,
and gj(x, y) = 1 if the jth ground clause is true in the data and 0 otherwise.
The gradient of the CLL is

∂

∂wi

log Pw(y|x) = ni(x, y) −
∑

y′

Pw(y′|x)ni(x, y′)

= ni(x, y) − Ew[ni(x, y)] (6)

In the conditional case, we can approximate the expected counts Ew[ni(x, y)]
using either the MAP state (i.e., the most probable state of y given x) or by
averaging over several MC-SAT samples. The MAP approximation is inspired
by the voted perceptron algorithm proposed by Collins [4] for discriminatively
laerning hidden Markov models. We can apply a similar algorithm to MLNs using
MaxWalkSAT to find the approximate MAP state, following the approximate
gradient for a fixed number of iterations, and averaging the weights across all it-
erations to combat overfitting [40]. We get the best results, however, by applying
a version of the scaled conjugate gradient algorithm [26]. We use a small number
of MC-SAT samples to approximate the gradient and Hessian matrix, and use
the inverse diagonal hessian as a preconditioner. See Lowd and Domingos [22]
for more details and results.

6.3 Structure Learning

The structure of a Markov logic network is the set of formulas or clauses to
which we attach weights. While this knowledge base is often specified by one or
more experts, such knowledge is not always accurate or complete. In addition
to learning weights for the provided clauses, we can revise or extend the MLN
structure with new clauses learned from data. The inductive logic programming
(ILP) community has developed many methods for learning logical rules from
data. However, since an MLN represents a probability distribution, much better
results are obtained by using an evaluation function based on pseudo-likelihood,
rather than typical ILP ones like accuracy and coverage [14]. Log-likelihood or
conditional log-likelihood are potentially better evaluation functions, but are
vastly more expensive to compute. In experiments on two real-world datasets,
our MLN structure learning algorithm found better MLN rules than the standard



ILP algorithms CLAUDIEN [6], FOIL [34], and Aleph [45], and even a hand-
written knowledge base.

MLN structure learning can start from an empty network or from an existing
KB. Either way, we have found it useful to start by adding all unit clauses
(single atoms) to the MLN. The weights of these capture (roughly speaking)
the marginal distributions of the atoms, allowing the longer clauses to focus on
modeling atom dependencies. To extend this initial model, we either repeatedly
find the best clause using beam search and add it to the MLN, or add all “good”
clauses of length l before trying clauses of length l + 1. Candidate clauses are
formed by adding each predicate (negated or otherwise) to each current clause,
with all possible combinations of variables, subject to the constraint that at least
one variable in the new predicate must appear in the current clause. Hand-coded
clauses are also modified by removing predicates.

Recently, Mihalkova and Mooney [25] introduced BUSL, an alternative, bot-
tom-up structure learning algorithm for Markov logic. Instead of blindly con-
structing candidate clauses one literal at a time, they let the training data guide
and constrain clause construction. First, they use a propositional Markov net-
work structure learner to generate a graph of relationships among atoms. Then
they generate clauses from paths in this graph. In this way, BUSL focuses on
clauses that have support in the training data. In experiments on three datasets,
BUSL evaluated many fewer candidate clauses than our top-down algorithm,
ran more quickly, and learned more accurate models.

We are currently investigating further approaches to learning MLNs, includ-
ing automatically inventing new predicates (or, in statistical terms, discovering
hidden variables) [15].

7 Applications

We have already applied Markov logic to a variety of problems relevant to the
Semantic Web, including link prediction and collective classification, for filling in
missing attributes and relationships; entity resolution, for matching equivalent
entities that have different names; information extraction, for adding structure
to raw or semi-structured text; and other problems [36, 40, 14, 41, 32, 33]. Even
our simple Friends and Smokers example touches on link prediction, collective
classification, and social network analysis. In this section, we will show in detail
how Markov logic can be used to build state-of-the-art models for entity resolu-
tion and information extraction, and present experimental results on real-world
citation data.

Others have also applied Markov logic in a variety of areas. A system based
on it recently won a competition on information extraction for biology [37].
Cycorp has used it to make parts of the Cyc knowledge base probabilistic [24].
The CALO project is using it to integrate probabilistic learning and inference
across many components [9]. Of particular relevance to the Semantic Web is
the recent work of Wu and Weld [51] on automatically refining the Wikipedia
infobox ontology.



7.1 Entity Resolution

The application to entity resolution illustrates well the power of Markov logic
[41]. Entity resolution is the problem of determining which observations (e.g.,
database records, noun phrases, video regions, etc.) correspond to the same
real-world objects. This is an important and difficult task even on small, well-
defined, and well-maintained databases. In the Semantic Web, automatically
determining which objects, fields, and types are equivalent becomes much harder
since the data may come from many different sources with varied quality. Manual
annotation does not scale, so automatically determining these relationships is
essential for maintaining connectedness in the Semantic Web.

Entity resolution is typically done by forming a vector of properties for each
pair of observations, using a learned classifier (such as logistic regression) to pre-
dict whether they match, and applying transitive closure. Markov logic yields an
improved solution simply by applying the standard logical approach of removing
the unique names assumption and introducing the equality predicate and its ax-
ioms: equality is reflexive, symmetric and transitive; groundings of a predicate
with equal constants have the same truth values; and constants appearing in a
ground predicate with equal constants are equal. This last axiom is not valid in
logic, but captures a useful statistical tendency. For example, if two papers are
the same, their authors are the same; and if two authors are the same, papers
by them are more likely to be the same. Weights for different instances of these
axioms can be learned from data. Inference over the resulting MLN, with entity
properties and relations as the evidence and equality atoms as the query, nat-
urally combines logistic regression and transitive closure. Most importantly, it
performs collective entity resolution, where resolving one pair of entities helps
to resolve pairs of related entities.

As a concrete example, consider the task of deduplicating a citation database
in which each citation has author, title, and venue fields. We can represent the
domain structure with eight relations: Author(bib, author), Title(bib, title),
and Venue(bib, venue) relate citations to their fields; HasWord(author/title/
venue, word) indicates which words are present in each field; SameAuthor (author,
author), SameTitle(title, title), and SameVenue(venue,venue) represent field
equivalence; and SameBib(bib, bib) represents citation equivalence. The truth
values of all relations except for the equivalence relations are provided as back-
ground theory. The objective is to predict the SameBib relation.

We begin with a logistic regression model to predict citation equivalence
based on the words in the fields. This is easily expressed in Markov logic by
rules such as the following:

Title(b1, t1) ∧ Title(b2, t2) ∧ HasWord(t1, +word)
∧ HasWord(t2, +word) ⇒ SameBib(b1, b2)

The ‘+’ operator here generates a separate rule (and with it, a separate learnable
weight) for each constant of the appropriate type. When given a positive weight,
each of these rules increases the probability that two citations with a particular
title word in common are equivalent. We can construct similar rules for other



fields. Note that we may learn negative weights for some of these rules, just as
logistic regression may learn negative feature weights. Transitive closure consists
of a single rule:

SameBib(b1, b2)∧ SameBib(b2, b3) ⇒ SameBib(b1, b3)

This model is similar to the standard solution, but has the advantage that the
classifier is learned in the context of the transitive closure operation.

We can construct similar rules to predict the equivalence of two fields as well.
The usefulness of Markov logic is shown further when we link field equivalence
to citation equivalence:

Author(b1, a1) ∧ Author(b2, a2) ∧ SameBib(b1, b2) ⇒ SameAuthor(a1, a2)
Author(b1, a1) ∧ Author(b2, a2) ∧ SameAuthor(a1, a2) ⇒ SameBib(b1, b2)

The above rules state that if two citations are the same, their authors should be
the same, and that citations with the same author are more likely to be the same.
The last rule is not valid in logic, but captures a useful statistical tendency.

Most importantly, the resulting model can now perform collective entity res-
olution, where resolving one pair of entities helps to resolve pairs of related
entities. For example, inferring that a pair of citations are equivalent can pro-
vide evidence that the names AAAI-06 and 21st Natl. Conf. on AI refer to the
same venue, even though they are superficially very different. This equivalence
can then aid in resolving other entities.

Experiments on citation databases like Cora and BibServ.org show that these
methods can greatly improve accuracy, particularly for entity types that are
difficult to resolve in isolation as in the above example [41]. Due to the large
number of words and the high arity of the transitive closure formula, these models
have thousands of weights and ground millions of clauses during learning, even
after using canopies to limit the number of comparisons considered. Learning at
this scale is still reasonably efficient: preconditioned scaled conjugate gradient
with MC-SAT for inference converges within a few hours [22].

7.2 Information Extraction

In this citation example, it was assumed that the fields were manually segmented
in advance. The goal of information extraction is to extract database records
starting from raw text or semi-structured data sources. This has many appli-
cations for the Semantic Web, including using the vast amount of unstructured
information on the Web to bootstrap the Semantic Web. Information extraction
could also be used to segment labeled fields, such as “name,” into more specific
fields, such as “first name,” “last name,” and “title.”

Traditionally, information extraction proceeds by first segmenting each can-
didate record separately, and then merging records that refer to the same entities.
Such a pipeline architecture is adopted by many AI systems in natural language
processing, speech recognition, vision, robotics, etc. Markov logic allows us to
perform the two tasks jointly [33]. This enables us to use the segmentation of



one candidate record to help segment similar ones. For example, resolving a well-
segmented field with a less-clear one can disambiguate the latter’s boundaries.
We will continue with the example of citations, but similar ideas could be applied
to other data sources, such as Web pages or emails.

The main evidence predicate in the information extraction MLN is Token(t, i,
c), which is true iff token t appears in the ith position of the cth citation. A token
can be a word, date, number, etc. Punctuation marks are not treated as separate
tokens; rather, the predicate HasPunc(c, i) is true iff a punctuation mark appears
immediately after the ith position in the cth citation. The query predicates are
InField(i, f, c) and SameCitation(c, c′). InField(i, f, c) is true iff the ith po-
sition of the cth citation is part of field f, where f ∈ {Title, Author, Venue},
and inferring it performs segmentation. SameCitation(c, c′) is true iff citations
c and c′ represent the same publication, and inferring it performs entity resolu-
tion.

Our segmentation model is essentially a hidden Markov model (HMM) with
enhanced ability to detect field boundaries. The observation matrix of the HMM
correlates tokens with fields, and is represented by the simple rule

Token(+t, i, c) ⇒ InField(i, +f, c)

If this rule was learned in isolation, the weight of the (t, f)th instance would be
log(ptf/(1−ptf)), where ptf is the corresponding entry in the HMM observation
matrix. In general, the transition matrix of the HMM is represented by a rule of
the form

InField(i, +f, c) ⇒ InField(i+ 1, +f′, c)

However, we (and others, e.g., [12]) have found that for segmentation it suffices
to capture the basic regularity that consecutive positions tend to be part of the
same field. Thus we replace f′ by f in the formula above. We also impose the
condition that a position in a citation string can be part of at most one field; it
may be part of none.

The main shortcoming of this model is that it has difficulty pinpointing field
boundaries. Detecting these is key for information extraction, and a number of
approaches use rules designed specifically for this purpose (e.g., [17]). In citation
matching, boundaries are usually marked by punctuation symbols. This can be
incorporated into the MLN by modifying the rule above to

InField(i, +f, c)∧ ¬HasPunc(c, i) ⇒ InField(i+ 1, +f, c)

The ¬HasPunc(c, i) precondition prevents propagation of fields across punctu-
ation marks. Because propagation can occur differentially to the left and right,
the MLN also contains the reverse form of the rule. In addition, to account
for commas being weaker separators than other punctuation, the MLN includes
versions of these rules with HasComma() instead of HasPunc().

Finally, the MLN contains rules capturing a variety of knowledge about ci-
tations: the first two positions of a citation are usually in the author field, and
the middle one in the title; initials (e.g., “J.”) tend to appear in either the au-
thor or the venue field; positions preceding the last non-venue initial are usually



Table 2. CiteSeer entity resolution: cluster recall on each section.

Approach Constr. Face Reason. Reinfor.

Fellegi-Sunter 84.3 81.4 71.3 50.6
Lawrence et al. (1999) 89 94 86 79
Pasula et al. (2002) 93 97 96 94
Wellner et al. (2004) 95.1 96.9 93.7 94.7
Joint MLN 96.0 97.1 95.1 96.7

not part of the title or venue; and positions after the first venue keyword (e.g.,
“Proceedings”, “Journal”) are usually not part of the author or title.

By combining this segmentation model with our entity resolution model from
before, we can exploit relational information as part of the segmentation pro-
cess. In practice, something a little more sophisticated is necessary to get good
results on real data. In Poon and Domingos [33], we define predicates and rules
specifically for passing information between the stages, as opposed to just using
the existing InField() outputs. This leads to a “higher bandwidth” of commu-
nication between segmentation and entity resolution, without letting excessive
segmentation noise through. We also define an additional predicate and modify
rules to better exploit information from similar citations during the segmentation
process. See [33] for further details.

We evaluated this model on the CiteSeer and Cora datasets. For entity resolu-
tion in CiteSeer, we measured cluster recall for comparison with previously pub-
lished results. Cluster recall is the fraction of clusters that are correctly output
by the system after taking transitive closure from pairwise decisions. For entity
resolution in Cora, we measured both cluster recall and pairwise recall/precision.
In both datasets we also compared with a “standard” Fellegi-Sunter model (see
[41]), learned using logistic regression, and with oracle segmentation as the input.

In both datasets, joint inference improved accuracy and our approach out-
performed previous ones. Table 2 shows that our approach outperforms previous
ones on CiteSeer entity resolution. (Results for Lawrence et al. (1999) [19], Pasula
et al. (2002) [29] and Wellner et al. (2004) [50] are taken from the correspond-
ing papers.) This is particularly notable given that the models of [29] and [50]
involved considerably more knowledge engineering than ours, contained more
learnable parameters, and used additional training data.

Table 3 shows that our entity resolution approach easily outperforms Fellegi-
Sunter on Cora, and has very high pairwise recall/precision.

8 The Alchemy System

The inference and learning algorithms described in the previous sections are
publicly available in the open-source Alchemy system [16]. Alchemy makes it
possible to define sophisticated probabilistic models with a few formulas, and



Table 3. Cora entity resolution: pairwise recall/precision and cluster recall.

Approach Pairwise Rec./Prec. Cluster Recall

Fellegi-Sunter 78.0 / 97.7 62.7
Joint MLN 94.3 / 97.0 78.1

to add probability to a first-order knowledge base by learning weights from a
relevant database. It can also be used for purely logical or purely statistical
applications, and for teaching AI. From the user’s point of view, Alchemy pro-
vides a full spectrum of AI tools in an easy-to-use, coherent form. From the
researcher’s point of view, Alchemy makes it possible to easily integrate a new
inference or learning algorithm, logical or statistical, with a full complement of
other algorithms that support it or make use of it.

Alchemy can be viewed as a declarative programming language akin to Pro-
log, but with a number of key differences: the underlying inference mechanism
is model checking instead of theorem proving; the full syntax of first-order logic
is allowed, rather than just Horn clauses; and, most importantly, the ability
to handle uncertainty and learn from data is already built in. Table 4 com-
pares Alchemy with Prolog and BUGS [23], one of the most popular toolkits for
Bayesian modeling and inference.

Table 4. A comparison of Alchemy, Prolog and BUGS.

Aspect Alchemy Prolog BUGS

Representation First-order logic + Markov nets Horn clauses Bayes nets
Inference Model checking, MCMC Theorem proving MCMC
Learning Parameters and structure No Parameters
Uncertainty Yes No Yes
Relational Yes Yes No

9 Current and Future Research Directions

We are actively researching better learning and inference methods for Markov
logic, as well as extensions of the representation that increase its generality and
power.

Exact methods for learning and inference are usually intractable in Markov
logic, but we would like to see better, more efficient approximations along with
the automatic application of exact methods when feasible.

One method of particular interest is lifted inference. In short, we would like
to reason with clusters of nodes for which we have exactly the same amount



of information. The inspiration is from lifted resolution in first order logic, but
must be extended to handle uncertainty. Prior work on lifted inference such as
[31] and [3] mainly focused on exact inference which can be quite slow. We have
recently extended loopy belief propagation, an approximate inference method for
probabilistic graphical models, to perform lifted inference in Markov logic net-
works [44]. When the amount of evidence is limited, this can speed up inference
by many orders of magnitude.

We are also working to develop a general framework for decision-making in
relational domains. This can be accomplished in Markov logic by adding utility
weights to formulas and finding the settings of all action predicates that jointly
maximize expected utility. Decision-making is key to the original Semantic Web
vision, which called for intelligent agents to act on the information they gathered.

Numerical attributes must be discretized to be used in Markov logic, but we
have recently introduced methods to incorporate continuous random variables
and features [46]. Continuous values could be useful in a variety of Semantic
Web problems, such as incorporating numeric features into similarities for entity
resolution, ontology alignment, or schema matching.

Current work also includes semi-supervised learning, and learning with in-
complete data in general. The large amount of unlabeled data on the Web is an
excellent resource that, properly exploited, could help bootstrap or enrich the
Semantic Web.

10 Conclusion

The Semantic Web must deal with uncertainty from many sources, including
inconsistent knowledge bases, incorrect or untrustworthy information, missing
data, different ontologies and schemas, and more. Markov logic is a simple yet
powerful approach for adding probability to logical representations such as those
already used by the Semantic Web: Given a set of formulas, just add weights. We
have developed a series of learning and inference algorithms for it, and success-
fully applied them in a number of domains. These algorithms are included in the
open-source Alchemy system (available at alchemy.cs.washington.edu). We hope
that Markov logic and its implementation in Alchemy will be of use to Semantic
Web researchers and practitioners who wish to have the full spectrum of logi-
cal and statistical inference and learning techniques at their disposal, without
having to develop every piece themselves.

11 Acknowledgements

This research was partly supported by DARPA grant FA8750-05-2-0283 (man-
aged by AFRL), DARPA contract NBCH-D030010, NSF grant IIS-0534881,
ONR grants N00014-02-1-0408 and N00014-05-1-0313, a Sloan Fellowship and
NSF CAREER Award to the first author, and a Microsoft Research fellowship
awarded to the second author. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as necessarily



representing the official policies, either expressed or implied, of DARPA, NSF,
ONR, or the United States Government.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284 (5)(5):34–43, 2001.

2. J. Besag. Statistical analysis of non-lattice data. The Statistician, 24:179–195,
1975.

3. R. Braz, E. Amir, and D. Roth. Lifted first-order probabilistic inference. In Pro-
ceedings of the Nineteenth International Joint Conference on Artificial Intelligence,
pages 1319–1325, Edinburgh, UK, 2005. Morgan Kaufmann.

4. M. Collins. Discriminative training methods for hidden Markov models: Theory
and experiments with perceptron algorithms. In Proceedings of the 2002 Conference
on Empirical Methods in Natural Language Processing, pages 1–8, Philadelphia,
PA, 2002. ACL.

5. P. Damien, J. Wakefield, and S. Walker. Gibbs sampling for Bayesian non-
conjugate and hierarchical models by auxiliary variables. Journal of the Royal
Statistical Society, Series B, 61, 1999.

6. L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99–146,
1997.

7. M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks,
D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL web ontology
language reference. 2004. http://www.w3.org/TR/owl-ref/.

8. S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random
fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:380–
392, 1997.

9. T. Dietterich and X. Bao. Integrating multiple learning components through
Markov logic. In Proceedings of the Twenty-Third National Conference on Ar-
tificial Intelligence, Chicago, IL, 2008. AAAI Press.

10. M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann, San Mateo, CA, 1987.

11. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte
Carlo in Practice. Chapman and Hall, London, UK, 1996.

12. T. Grenager, D. Klein, and C. D. Manning. Unsupervised learning of field segmen-
tation models for information extraction. In Proceedings of the Forty-Third Annual
Meeting on Association for Computational Linguistics, pages 371–378, Ann Arbor,
Michigan, 2005. Association for Computational Linguistics.

13. H. Kautz, B. Selman, and Y. Jiang. A general stochastic approach to solving prob-
lems with hard and soft constraints. In D. Gu, J. Du, and P. Pardalos, editors, The
Satisfiability Problem: Theory and Applications, pages 573–586. American Mathe-
matical Society, New York, NY, 1997.

14. S. Kok and P. Domingos. Learning the structure of Markov logic networks. In
Proceedings of the Twenty-Second International Conference on Machine Learning,
pages 441–448, Bonn, Germany, 2005. ACM Press.

15. S. Kok and P. Domingos. Statistical predicate invention. In Proceedings of the
Twenty-Fourth International Conference on Machine Learning, pages 433–440,
Corvallis, OR, 2007. ACM Press.



16. S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, and P. Domingos.
The Alchemy system for statistical relational AI. Technical report, Department of
Computer Science and Engineering, University of Washington, Seattle, WA, 2007.
http://alchemy.cs.washington.edu.

17. N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial Intel-
ligence, 118(1-2):15–68, 2000.

18. N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, Chichester, UK, 1994.

19. S. Lawrence, K. Bollacker, and C. L. Giles. Autonomous citation matching. In
Proceedings of the Third International Conference on Autonomous Agents, New
York, 1999. ACM Press.

20. D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(3):503–528, 1989.

21. J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, Germany, 1987.
22. D. Lowd and P. Domingos. Efficient weight learning for Markov logic networks.

In Proceedings of the Eleventh European Conference on Principles and Practice
of Knowledge Discovery in Databases, pages 200–211, Warsaw, Poland, 2007.
Springer.

23. D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter. WinBUGS – a Bayesian
modeling framework: concepts, structure, and extensibility. Statistics and Com-
puting, 10:325–337, 2000.

24. C. Matuszek and M. Witbrock. Personal communication. 2006.
25. L. Mihalkova and R. Mooney. Bottom-up learning of Markov logic network struc-

ture. In Proceedings of the Twenty-Fourth International Conference on Machine
Learning, pages 625–632, Corvallis, OR, 2007. ACM Press.

26. M. Møller. A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks, 6:525–533, 1993.

27. L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science, 171:147–177, 1997.

28. J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, NY, 2006.
29. H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. Identity uncertainty

and citation matching. In Advances in Neural Information Processing Systems 14,
Cambridge, MA, 2002. MIT Press.

30. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco, CA, 1988.

31. D. Poole. First-order probabilistic inference. In Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, pages 985–991, Acapulco,
Mexico, 2003. Morgan Kaufmann.

32. H. Poon and P. Domingos. Sound and efficient inference with probabilistic and de-
terministic dependencies. In Proceedings of the Twenty-First National Conference
on Artificial Intelligence, pages 458–463, Boston, MA, 2006. AAAI Press.

33. H. Poon and P. Domingos. Joint inference in information extraction. In Proceedings
of the Twenty-Second National Conference on Artificial Intelligence, pages 913–
918, Vancouver, Canada, 2007. AAAI Press.

34. J. R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239–266, 1990.

35. M. Richardson, R. Agrawal, and P. Domingos. Trust management for the Semantic
Web. In Proceedings of the Second International Semantic Web Conference, pages
351–368, Sanibel Island, FL, 2003. Springer.

36. M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62:107–136, 2006.



37. S. Riedel and E. Klein. Genic interaction extraction with semantic and syntactic
chains. In Proceedings of the Fourth Workshop on Learning Language in Logic,
pages 69–74, Bonn, Germany, 2005. IMLS.

38. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12:23–41, 1965.

39. D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82:273–
302, 1996.

40. P. Singla and P. Domingos. Discriminative training of Markov logic networks. In
Proceedings of the Twentieth National Conference on Artificial Intelligence, pages
868–873, Pittsburgh, PA, 2005. AAAI Press.

41. P. Singla and P. Domingos. Entity resolution with Markov logic. In Proceedings
of the Sixth IEEE International Conference on Data Mining, pages 572–582, Hong
Kong, 2006. IEEE Computer Society Press.

42. P. Singla and P. Domingos. Memory-efficient inference in relational domains.
In Proceedings of the Twenty-First National Conference on Artificial Intelligence,
Boston, MA, 2006. AAAI Press.

43. P. Singla and P. Domingos. Markov logic in infinite domains. In Proceedings of the
Twenty-Third Conference on Uncertainty in Artificial Intelligence, pages 368–375,
Vancouver, Canada, 2007. AUAI Press.

44. P. Singla and P. Domingos. Lifted first-order belief propagation. In Proceedings
of the Twenty-Third National Conference on Artificial Intelligence, Chicago, IL,
2008. AAAI Press.

45. A. Srinivasan. The Aleph manual. Technical report, Computing Laboratory, Ox-
ford University, 2000.

46. J. Wang and P. Domingos. Hybrid Markov logic networks. In Proceedings of the
Twenty-Third National Conference on Artificial Intelligence, Chicago, IL, 2008.
AAAI Press. To appear.

47. S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge, UK, 1994.

48. W. Wei, J. Erenrich, and B. Selman. Towards efficient sampling: Exploiting random
walk strategies. In Proceedings of the Nineteenth National Conference on Artificial
Intelligence, San Jose, CA, 2004. AAAI Press.

49. M. Wellman, J. S. Breese, and R. P. Goldman. From knowledge bases to decision
models. Knowledge Engineering Review, 7, 1992.

50. B. Wellner, A. McCallum, F. Peng, and M. Hay. An integrated, conditional model
of information extraction and coreference with application to citation matching. In
Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence,
pages 593–601, Banff, Canada, 2004. AUAI Press.

51. F. Wu and D. Weld. Automatically refining the Wikipedia infobox ontology. In
17th International World Wide Web Conference (WWW-08), Beijing,China, 2008.

52. J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation. In
T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information
Processing Systems 13, pages 689–695. MIT Press, Cambridge, MA, 2001.


