Closed-Form Learning of Markov Networks from Dependency Networks

Daniel Lowd, University of Oregon

Dependency networks (DNs): Easy to learn, ugly semantics.

Markov networks (MNs): Hard to learn, nice semantics.

Best of both worlds: Learn a DN and convert it into an MN.

How do we convert a DN into an MN?

KEY IDEA: We can express probability ratios using only conditional probabilities, which are given by the DN:

$$\frac{P(A,B)}{P(a^{0}b^{0})} = \frac{P(A|b^{0})}{P(a^{0}|b^{0})} \cdot \frac{P(B|A)}{P(b^{0}|A)}$$

$$a^{0} \to A \qquad b^{0} \to B$$

Use the conditional probability ratios to construct MN factors:

$$\phi_1(A) = \frac{P(A|b^0)}{P(a^0|b^0)}$$
 $\phi_2(A,B) = \frac{P(B|A)}{P(b^0|A)}$

Exact for consistent DNs!
Runs in linear time!

How well does DN2MN work?

Methods: Learned DNs on 12 real-world datasets and converted to MNs by both DN2MN and weight learning.

Results: DN2MN has similar or better accuracy than weight learning and is orders of magnitude faster.

Complete source code: http://libra.cs.uoregon.edu

Closed-Form Learning of Markov Networks
from Dependency Networks
Daniel Lowd, University of Oregon