
Learning
Arithmetic
 Circuits

Pedro Domingos
University of Washington

<pedrod@cs.washington.edu>

Daniel Lowd
University of Washington

<lowd@cs.washington.edu>

A

B C

Answers!Data Model Jointree

SLOW SLOW
A

B C

Answers!Data

Model

Circuit

×

+ +

()

Our new approach:
• Apply standard structure learning

algorithm but penalize models
with high inference cost.

• Represent the distribution more
compactly using arithmetic
circuits and context-specific
independence.

λA θA λ¬A θ¬A λB λ¬B

×

×

+

×

× ×

λA θA|B λ¬A θ¬A|B λA θA|¬B λ¬A θ¬A|¬B

λB
λ¬B

Traditional: Bayesian network
structure learning often selects models
for which inference is intractable.

KEY IDEA: Prefer models that allow for more efficient inference

BACKGROUND: From Bayesian networks to arithmetic circuits

ALGORITHM: Struct. learning + Circuit size penalty + Incremental compilation

EXPERIMENTS: Better accuracy, >10,000 times faster inference

D: parameter nodes to be split
V: indicators for the splitting variable
M: first mutual ancestors of D and V

Pseudocode
create initial product of marginals circuit
create initial split list
until convergence:

for each split in list
apply split to circuit
score result
undo split

apply highest-scoring split to circuit
add new child splits to list
remove inconsistent splits from list

λA θA

×

×

+ +

λ¬A θ¬A

×

λB θB

×

λ¬B θ¬B

×

Bayesian networks…
Problem: Compactly represent probability
distribution over many variables
Solution: Conditional independence

P(A,B,C,D) = P(A) P(B|A) P(C|A) P(D|B,C)

A

B C

D

with decision-tree CPDs…
Problem: Number of parameters is exponential in the
maximum number of parents
Solution: Context-specific independence

 P(D|B,C) = B=?

0.2

0.5 0.7

false

false
C=?

tru
e

tru
e

compiled to circuits.
Problem: Inference is exponential in tree-width
Solution: Compile to arithmetic circuits

Details: ACs for Inference
• Bayesian network:
P(A,B,C) = P(A) P(B) P(C|A,B)
• Network polynomial:
λAλBλC θAθBθC|AB + λ¬AλBλC θ¬AθBθC|¬AB + …
• Can compute arbitrary marginal queries by
evaluating network polynomial.
• Arithmetic circuits (ACs) offer efficient, factored
representations of this polynomial.
• ACs can take advantage of local structure such as
context-specific independence.

Optimizations
We avoid rescoring splits every iteration by:
1. Noting that likelihood gain never changes, only

number of edges added
2. Evaluating splits with higher likelihood gain first,

since likelihood gain is an upper bound on score.
3. Reevaluate number of edges added only when

another split may have affected it (AC-Greedy).
4. Assume the number of edges added by a split only

increases as the algorithm progress. (AC-Quick)

Objective function
For an arithmetic circuit C on an i.i.d. training sample T:

Inference time is linear in circuit size, so this penalizes
models with slow inference. Each split effects a constant
change in model accuracy and number of parameters. The
change in circuit size depends on circuit structure and may
increase or decrease as other splits are applied.

We applied our algorithms (AC-Greedy, AC-Quick) to three real-world
datasets, using the WinMine Toolkit as the baseline. WinMine’s
algorithm is very similar to that of Chickering et al. (1996).

For inference, we generated queries from the test data with varying
numbers of evidence and query variables. We used Gibbs sampling on
the WinMine models since exact inference was not feasible.

3912s
452s
42.5s
7.22s

162ms
62ms

EachMovie

1556s1124sGibbs (1M steps)
154s106sGibbs (100k steps)
15.6s11.3sGibbs (10k steps)
1.89s1.46sGibbs (1k steps)

115ms198msAC-Quick
91ms194msAC-Greedy

MSWebKDD CupAlgorithm

Results: Inference time

Results:
Learned Models

For each indicator λ in V,
 Copy all nodes between M and D or V,
 conditioned on λ.
For each m in M,
 Replace children of m that are ancestors of
 D or V with a sum over copies of the ancestors
 times the λ each copy was conditioned on.

How to split a circuitBasic algorithm
Following Chickering et al. (1996), we induce our statistical
models by greedily selecting splits for the decision-tree
CPDs. Our approach has two key differences:
1. We optimize a different objective function
2. We return a Bayesian network that has already been
 compiled into a circuit

Now we can
learn complex
models that allow
exact inference
in milliseconds!

Efficiency
Compiling each candidate AC from scratch at each step
is too expensive. Instead, we incrementally modify the
circuit as we add splits.

3m22h>72hTime
2815435Treewidth

483065214070Leaves
372k155kEdges

–53.7–54.9–55.7Log-likelih.
WinMineAC-QuickAC-GreedyEachMovie

3m3h50hTime
533838Treewidth

226744634574Leaves
365k382kEdges

–2.16–2.16–2.16Log-likelih.
WinMineAC-QuickAC-GreedyKDD Cup

2m3h8hTime
118127114Treewidth

171018701353Leaves
256k204kEdges

–9.69–9.85–9.85Log-likelih.
WinMineAC-QuickAC-GreedyMSWeb

score(C,T) = log P(T|C) – ke ne(C) – kp np(C)
 (accuracy – circuit size – # parameters)

