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Abstract

Statistical relational artificial intelligence combines
first-order logic and probability in order to handle the
complexity and uncertainty present in many real-world
domains. However, many real-world domains also in-
clude multiple agents that cooperate or compete accord-
ing to their diverse goals. In order to handle such do-
mains, an autonomous agent must also consider the ac-
tions of other agents. In this paper, we show that ex-
isting statistical relational modeling and inference tech-
niques can be readily adapted to certain adversarial or
non-cooperative scenarios. We also discuss how learn-
ing methods can be adapted to be robust to the behavior
of adversaries. Extending and applying these methods
to real-world problems will extend the scope and impact
of statistical relational artificial intelligence.

Introduction

Statistical relational models provide a powerful framework
for artificial intelligence by combining first-order logic
and probabilistic models. With some notable exceptions
(e.g., (Poole 1997)), previous work in statistical relational
artificial intelligence has mainly focused on representation,
learning, and non-adversarial reasoning in statistical rela-
tional models. However, intelligent agents also need adver-
sarial reasoning in order to be robust to worst-case situations
or handle environments with multiple agents.

In this position paper, we discuss the problem of adver-
sarial statistical relational reasoning and the related problem
of adversarially robust statistical relational learning. We use
the term “adversarial” informally to refer to both zero-sum
games and general-sum non-cooperative games. We show
that, when the domain is represented as a log-linear model
such as a Markov logic network, certain adversarial reason-
ing tasks can be reduced to standard maximum a posteri-
ori (MAP) inference. A similar transformation can convert
learning methods that are based on MAP inference into ad-
versarially robust learning methods.

Background
A number of statistical relational representations have been
introduced over the years, either by extending probabilistic
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graphical models to handle relational domains or by extend-
ing logic programming to handle uncertainty. In this paper,
we focus on the former case in general, and Markov logic
networks (MLNs) (Domingos and Lowd 2009) in particular.
An MLN uses first-order formulas as the features in a log-
linear model. Together with a finite set of constants (and
assuming known functions), this defines a probability distri-
bution over possible worlds:

log P(X =x) = wl¢(x) — log Z,

where X = x is a possible world, consisting of the truth
values of all ground atoms; ¢;(x) is the number of satisfied
groundings of the ith formula; w; is its weight; and Z is a
normalization constant.

One notable extension of Markov logic is Markov logic
decision networks (MLDNSs), which adapt MLNs for the
problem of utility maximization in uncertain relational do-
mains (Nath and Domingos 2009). An MLDN distinguishes
between evidence atoms, e; action atoms controlled by
agent, a; and other state atoms, x. An MLDN assigns a
utility weight u,; to each formula. The utility of a world is
the total utility weight of the satisfied formulas:

The agent’s goal is to select a configuration of the action
atoms to maximize the expected utility, defined as follows:

E[U(x,a,e)la,e] = Y  P(x|a,e)U(x,a,e)

This can naturally model many decision-theoretic problems,
but it does not consider the actions of other rational agents
in the environment.

Adversarial Relational Reasoning

MLDNSs use an expected utility over many possible out-
comes. In general, this expectation is very difficult to com-
pute. We begin by considering the simpler case, in which
there are no state atoms, and then extend this to include mul-
tiple agents. Efficiently incorporating state atoms with mul-
tiple agents remains an important direction for future work.

If there are no state atoms, then maximizing the utility is
a combinatorial optimization problem:

a, = argmax U(a, e) = argmaxu’ ¢(a, e).
a a



This problem has the same form as standard maximum a
posteriori (MAP) inference in a log-linear model and can be
solved with the same (approximate) inference algorithms.

Now we extend this model to consist of two agents: s
(“self”’) with utility weights ug, and o (“opponent”) with
utility weights u,. We model the game as follows: First,
Agent s selects an action, a;. Agent o observes this action
and selects a response, a,. Agents s and o then receive re-
wards ul ¢(a,, a5, e) and ul ¢(a,, a, e), respectively. As-
suming that o is rational, the optimal action of s is given by
the following optimization problem:

maximize u’ ¢(a,, a, e)
as

where a, = argmaxu’ ¢(a,, as, e).
a,
This corresponds to a Stackelberg game where s is the
leader. For mathematical convenience, we assume the
arg max is unique; if not, we can break ties arbitrarily. We
can equivalently state that a, has higher utility than all alter-
nate actions, a’:

maximize u’ ¢(a,,a,,e)

as,a0
st. ulg(a,,as,e) >ulp(al,a,e) Va, #a,.

Solving this optimization problem in either form is typically
intractable: the first is a bilevel optimization problem, and
the second involves an exponential number of constraints —
one for each of the exponentially many possible actions a,,.
We can make the second form more tractable by reducing
the number of constraints. For example, suppose we only
consider a single alternate action a. Taking the Lagrangian
relaxation,

maximize min uzﬂ(b(ao7 ag, e)+
as,a, A>0

)\ug((b(aoaasae) —¢(a:)7357e))- (1)

For a fixed value of A, Equation 1 can be represented as a
single MAP inference problem:

maximize W’T¢’(ao,as,e) )
where w' = [(us — Au,);A\u,] and ¢'(a,,as,e) =

[#(as,as, e); p(al,as, e)]. We can search over different
values of \ as necessary to obtain tighter bounds.

To summarize, this optimization problem finds actions ag
to maximize the utility of agent s, assuming that agent o will
respond with an action a, that has higher utility than refer-
ence action a. If most of the opponent’s high-utility actions
are similar, then this could be a reasonable approximation.
If not, then we can iteratively introduce more reference ac-
tions and Lagrange multipliers, obtaining a better and better
approximation of the true objective.

Example: Consider a webspam domain, in which the
spammer’s goal is to create a set of webpages with many
advertisements and have them appear among the results of
popular search engines. We wish to predict the actions of

spammers in order to understand their behavior, develop bet-
ter defenses, and evaluate the robustness of these defenses.

The spammer’s opponent is the search engine’s anti-spam
component, which uses an MLN to label web pages as spam
or non-spam, after they have been modified by the spammer.
We view the MLN weights as utility weights, which makes
the search engine’s MAP labeling its maximum utility ac-
tion. We can represent the spammer’s utility as the number
of spam web pages that are not detected by the search en-
gine, minus a penalty for the number of words and links
modified in order to disguise these web pages (representing
the effort or cost of evading detection). To make the problem
more tractable, we use the true spam/non-spam labels as the
alternate reference action, a/. Thus, the task is to find web
page modifications, a,, and alternate labeling, a,, to maxi-
mize the spammer’s utility, under the constraint that a, is a
“better” labeling than the true labels. Following Equation 2,
this can be solved by standard MAP inference in an MLN.

Adversarial relational reasoning can also be used to de-
velop adversarially robust learning methods. For example,
suppose we wish to learn the parameters of a webspam clas-
sification system that will be robust to adaptive spammers.
In standard max-margin learning, this is done by enforcing a
margin between the true labels and all alternate labelings.
With cutting plane methods, these margin constraints are
added one at a time using MAP inference (Tsochantaridis et
al. 2005). For adversarially robust learning, we instead en-
force a margin between true and alternate labelings for any
adversarially selected action. The most violated adversarial
margin constraints can be found by solving a problem sim-
ilar to Equation 2. In previous work (Torkamani and Lowd
2013), we have solved a special case of this problem, but the
more general case has a lot of potential.

Ongoing Work and Future Directions

Adpversarial reasoning is a core component of artificial intel-
ligence that has mostly been neglected by research in statis-
tical relational methods. In ongoing work, we are exploring
how statistical relational models can detect spam and fraud
in relational domains such as Twitter (Yang, Harkreader,
and Gu 2011) and YouTube (O’Callaghan et al. 2012), how
adversarial reasoning can automatically predict spammer
strategies and model weaknesses, and how adversarial learn-
ing can construct provably robust models. As a first step,
we are extending RocklIt (Noessner, Niepert, and Stucken-
schmidt 2013) to perform adversarial reasoning in any MLN
with any linear utility model.

However, the general problem of adversarial and multi-
agent reasoning in relational domains is much larger. To
cope with the complexities of real-world environments,
agents must handle rational adversaries, boundedly rational
or irrational adversaries, multiple cooperating or compet-
ing adversaries, and random (non-adversarial) effects from
the environments. Moving forward, we need to identify
the most promising domains for exploration, extend statis-
tical relational representations to efficiently model these ad-
ditional factors, and scale up learning and inference methods
to handle these problems.
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