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Abstract

A number of information extraction (IE) projects
such as NELL and TextRunner seek to build a
usable knowledge base from the rapidly grow-
ing amount of information on the web. How-
ever, these solutions use heuristic approaches to
reasoning rather than sound probabilistic infer-
ence. In this paper, we present a method based
on Markov logic for cleaning an automatically
extracted knowledge base using only the confi-
dence values and ontological constraints of the
original system. Our approach works by reason-
ing jointly over all candidate facts. To achieve
scalability, we introduce a neighborhood ground-
ing method that only instantiates the part of the
network most relevant to the given query. This al-
lows us to partition the knowledge cleaning task
into tractable pieces that can be solved individu-
ally. In experiments on NELL’s knowledge base,
our method improves both F1 and AUC.

1 Introduction

There is a vast amount of unstructured or semi-structured
information on the web in the form of natural language.
Automatically acquiring and integrating this information
into a structured knowledge base (KB) is a challenging task
due to both the large scale of the web and the large de-
gree of uncertainty in the extracted knowledge. A number
of information extraction systems, such as NELL [3] and
TextRunner [1], have been developed for this purpose. Tex-
tRunner uses a bootstrapping approach, starting with some
seed knowledge, using it to extract more knowledge, and
using the additional knowledge to construct more extrac-
tion rules automatically. NELL also uses a bootstrapping
approach, but organizes the extracted information in an on-
tology. In addition to serving as useful organization, the
ontological structure can improve the quality of the knowl-
edge base by enforcing consistency constraints. In this way,

NELL can take advantage of logical structure.

However, NELL’s handling of uncertainty is relatively lim-
ited. It combines the confidences of multiple uncertain in-
formation extraction components using heuristics, excludes
any facts that disagree with its existing knowledge, and
promotes the highest-confidence facts that remain. When
NELL incorporates incorrect facts in its knowledge base,
those facts could lead it to exclude correct but contradic-
tory facts from being added later on, even if they were sup-
ported by overwhelming evidence. NELL also ignores the
relationship between the uncertainty of different candidate
facts. If two related facts have a modest amount of support,
then both are likely to be true. On the other hand, if a con-
tradictory fact has some support, that should decrease the
probability that a given fact is true.

In this paper, we present an application of statistical re-
lational AI to the problem of automatically cleaning a
noisy knowledge base, such as those extracted from the
web. Specifically, we construct a Markov logic network
(MLN) [7] that reasons jointly about uncertain knowl-
edge while enforcing hard ontological constraints. Rather
than repeat the entire knowledge extraction procedure from
scratch using an expensive statistical relational model, we
work on the extracted facts and confidence values of an ex-
isting information extraction system. This allows our ap-
proach to take full advantage of the scalability of the under-
lying system, while improving its results with sound prob-
abilistic reasoning.

Since knowledge bases are often too large to reason about
all at once, we introduce a novel neighborhood-based
grounding procedure which selects a tractable subset of the
knowledge base to reason about. By rotating through dif-
ferent subsets, we can clean a very large knowledge base
without running out of memory. Different subsets can also
be run in parallel.

To evaluate this method, we apply two versions of our
MLN and grounding procedure to NELL and show that
running joint inference usually leads to higher accuracy, as
measured by area under the precision-recall curve (AUC)



and F1. Furthermore, we look at examples of specific facts
and investigate how joint reasoning helps to predict their
correct values.

The rest of the paper is organized as follows. Section 2
gives brief introductions to MLNs, NELL, and other re-
lated work. Section 3 describes our MLN-based approach
in detail. Section 4 shows the experiments and analyzes the
results. Section 5 concludes and discusses some directions
of future work.

2 Background and Related Work

2.1 Markov Logic Networks

First-order logic (FOL) is an expressive language that is
often used to compactly represent complex relationships
among entities, including knowledge bases and ontologies.
In first-order logic, a constant is a symbol representing
an object or concept of interest, such as Basketball
or “Tiger Woods”. Logical variables range over ob-
jects in the domain. A predicate or relation is a map-
ping from tuples of constants to Boolean values. For ex-
ample, TeamPlaysSport(t, s) is a predicate that
is true if team t plays sport s. An atomic formula
or atom is the application of a predicate to a tuple of
variables and/or constants, e.g., TeamPlaysSport(t,
Basketball). Formulas are recursively constructed
from quantifies (∃,∀), logical connectives (∧, ∨, ⇒, ¬,
etc.), and atoms. A knowledge base is often represented
as a set of formulas, {(Fi)}. A ground formula or ground
atom is one where all logical variables have been replaced
by constants.

Inference in first-order logic is semi-decidable in general,
but becomes decidable when all functions have known val-
ues and the set of constants is finite. One key weakness of
first-order logic is that it is very brittle: a single inconsis-
tency renders the entire knowledge base false. In the real
world, our knowledge is often uncertain. Even with per-
fect knowledge of the world, many events are inherently
stochastic.

A Markov logic network [7] softens a first-order knowledge
base by attaching a real-valued weight wi to each formula
Fi. If formulas are viewed as hard constraints on the set of
possible worlds, Markov logic turns these hard constraints
into soft constraints, where larger weights intuitively rep-
resent stronger constraints and smaller weights represent
weaker constraints. Together with a finite set of constants,
a Markov logic network defines a probability distribution
over possible worlds or Herbrand interpretations as a log-
linear model, where the features are the number of times
each formula is satisfied:
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Here, x represents a possible world, specified by assigning
truth values to all ground atoms. ni(x) is the number of
true groundings of Fi in x, x{i} is the state (truth values)
of the predicates appearing in Fi and φ(xi) = ewi .

One of the strengths of MLNs is in performing joint infer-
ence over a set of related, uncertain facts. For example,
Singla and Domingos [20] perform entity resolution based
on Markov logic by jointly inferring which pairs of bibli-
ographic entries refer to the same paper. Their approach
simultaneously infers equivalences among paper authors,
titles, and venues. Poon and Domingos [17] used Markov
logic to extract and match database records from CiteSeer
text, using joint inference to perform simultaneous segmen-
tation and entity resolution.

For more background on Markov logic, see Domingos and
Lowd [7].

Inference Inference helps us reason probabilistically
about complex relations in Markov logic networks. There
are two basic types of inference: maximum a posteriori
(MAP)/most probable explanation (MPE) inference that
finds the most probable state of the world consistent with
some evidence, as well as conditional/marginal probability
inference that finds the conditional/marginal distribution of
a formula or a predicate. Any Markov network inference
algorithm can be applied to Markov networks, but special-
ized algorithms that exploit the structure of MLNs often
give better performance.

In our experiments, we used the MC-SAT algorithm [16],
a Markov chain Monte Carlo algorithm for computing
marginal and conditional probabilities in MLNs. Given a
current state, MC-SAT selects a random satisfying assign-
ment of a random subset of the currently satisfied clauses.
This allows MC-SAT to handle the mix of hard and soft
constraints which are often present in MLNs. It can be
shown that the set of samples from MC-SAT converges
to the correct distribution as long as the satisfying assign-
ments are selected uniformly at random.

Traditional inference algorithm first fully instantiate all the
FOL formulas by grounding and then proceed on a propo-
sitional level. This requires memory on the order of the
number of constants raised to the arity of the clause. Lazy
inference [20, 18] takes advantage of the sparseness in typ-
ical relational domains (most ground predicates are false,
and most clauses are trivially satisfied), by only putting
into memory the non-default value ground predicates and
clauses. With lazy inference, the memory cost does not
scale with total number of groundings, but only with the
number of non-default value groundings. Lazy variants
have been developed for both MaxWalkSAT and MC-SAT.



2.2 Never Ending Language Learner

In this paper, we use the Never-Ending Language Learner
(NELL) system [13, 3, 12] as a case study to explore meth-
ods for automatically refining extracted knowledge bases.
NELL is an information extraction system proposed and
implemented by a group of researchers at Carnegie Mellon
University. The final goal of NELL is to create an AI sys-
tem that runs 24 hours per day, 7 days per week, forever,
performing two tasks each day:

• Reading task: extract information from web and pop-
ulate a knowledge base containing structured facts.

• Learning task: improve its reading ability so that it
can extract more facts from the web, more accurately.

NELL starts from a small number of “seed instances” of
each category and relation in the seed ontology. It uses nat-
ural language processing and information extraction tech-
niques to extract candidate instances from a large web cor-
pus, using the current facts in the knowledge base as train-
ing examples. The four subcomponents that extract can-
didates are Pattern Learner, SEAL, Morphological Clas-
sifier, and Rule Learner, where most candidates are ex-
tracted from the first two subcomponents. The Pattern
Learner is a free-text extractor which learns and uses con-
textual patterns such as “mayor of X” and “X plays for Y”
to extract instances of categories and relations. The ex-
traction patterns are learned using the co-occurrence statis-
tics between noun phrases and contextual patterns. SEAL
is a semi-structured extractor which queries the webpages
with instances, and mines lists and tables to learn new in-
stances of the corresponding predicate. It is based on the
assumption that the entities showing up in the same list
or table tend to belong to the same category or have the
same relation. Morphological Classifier uses a set of bi-
nary L2-regularized logistic regression models to classify
noun phases based on various morphological features. Rule
Learner uses the FOIL similar algorithm to learn proba-
bilistic Horn clauses. The learned rules are used to infer
new relation instances from the current KB.

After extracting candidates, NELL’s Knowledge Integra-
tor (KI) promotes candidate facts to the beliefs using the
following strategy: candidates that have high confidence
(e.g, posterior > 0.9) from a single source (i.e., extraction
subcomponent) are promoted or candidates with lower-
confidence are promoted if they have been proposed by
multiple sources. However, candidate category instances
are not promoted if they already belong to a mutually exclu-
sive category, and relation instances are not promoted un-
less their arguments are at least candidates for the appropri-
ate category types. NELL heuristically promotes the most
likely instances, updates its information extraction systems,
and repeats the process, continually expanding its knowl-
edge base and refining its extraction sub-systems. This

bootstrap learning method takes advantage of the tremen-
dous redundancy in the web corpus. It does not need per-
fect extraction rules, because multiple pieces of evidence
for a new instance can be used to support its correctness.

A major problem of NELL is that the accuracy of the
knowledge it acquires gradually decreases as it continues to
operate. After the first month, NELL had an estimated pre-
cision of 0.9; after two more months, precision had fallen
to 0.71, nearly tripling the fraction of incorrect extractions.
The underlying reason is that the extraction patterns are
not perfectly reliable, so false instances are extracted some-
times. The false instances will be used to extract more and
more unreliable extraction patterns and false instances, and
finally, dominate the knowledge base. Error propagation is
a common problem of bootstrap learning systems.

Coupled training [2, 4] was proposed to alleviate the prob-
lem of error propagation. These constraints can identify
the false candidate instances by reasoning on the subsump-
tion, mutual exclusion, and type checking constraints of
the concepts in the ontology. For instance, candidate cate-
gory instances are not promoted if they already belong to a
mutually exclusive category, and relation instances are not
promoted unless both arguments belong to appropriate cat-
egories.

Periodic human supervision is also used in NELL. Cou-
pled training and human supervision can both slow down
the process of error propagation to some extent. However,
human supervision is very expensive, and both of them
cannot prevent error propagation entirely. Recently, Lao
et al. [9] presented an approach to combine constrained,
weighted, and random walks through the NELL knowledge
base graph to reliably infer new facts for NELL. This ap-
proach can lean to infer different target relations by tuning
the weights associated with random walks that follow dif-
ferent paths through the knowledge base graph.

2.3 Other Related Work

Our research is closely related to ontology-based informa-
tion extraction (OBIE) which combines information extrac-
tion with knowledge representation by using ontologies to
guide information extraction [22]. Many OBIE systems
only extract instances for classes and property values for
properties. Such OBIE systems include PANKOW [5], On-
toSyphon [11], and KIM [19]. The Kylin system [23] con-
structs an ontology based on the structure of Wikipedia in-
foboxes. It is interesting to note that constructing an ontol-
ogy from text and making extractions with respect to that
ontology (in the form of individuals and property values) is
similar in principle to open information extraction, where
relations of interest are automatically discovered from text.
Banko et al. have developed the “TextRunner” IE system,
which discovers relations from text using machine learn-
ing techniques [1]. In addition, Weld et al. consider their



Kylin system to be an open information extraction sys-
tem because it discovers relations from infobox classes of
Wikipedia, allowing it to discover about 50,000 relations
each having around 10 attributes [21]. Other potentials of
OBIE include its ability to create semantic contents for the
Semantic web [5, 23] and the ability to use it as a mecha-
nism of improving ontologies [8, 10].

3 Methodology

In this section, we describe the Markov logic networks we
use for refining an extracted knowledge base, as well as our
neighborhood-based inference method. We begin with the
representation of a knowledge base and associated ontol-
ogy in Markov logic, and then discuss how to extend this
approach to reason more intelligently around the extracted
knowledge. We conclude the section by describing how we
make inference in this model tractable.

Our listings of Markov logic formulas will be in a
monospace font, following the syntax used by the Alchemy
system [6]: conjunction is represented by ˆ, disjunction by
v, implication by =>, and negation by !. Symbols for pred-
icates and constants begin with an uppercase letter while
logical variable are lowercase. Formula weights are shown
to the left of the formula. Hard formulas are represented by
placing a period (.) at the end of the formula.

3.1 Markov Logic Representation of the Knowledge
Base and Ontology

As introduced previously, the NELL knowledge base
has two types of predicates: category, such as
Athlete(Tiger Woods), and relation, such as
TeamPlaysSports(Lakers, Basketball). The
ontology hierarchy and other constraints can be seen as ax-
ioms or rules in first-order logic. For example, we can rep-
resent the ontological constraint that every Athlete is a
Person with the rule: Athlete(x) => Person(x).
Similarly, since every bird is an animal, Bird(x) =>
Animal(x), and so on.

However, rather than creating predicates in our MLNs for
every category and relation in the ontology, we use a more
compact representation in which the names of categories
and relations (such as Bird, Animal, etc.) are viewed
as constants of type “category” or “relation” in the second-
order predicates Cat(x,c) (x is an entity of category c)
or Rel(x,y,r) (x and y have relation r).

In our task, we want to infer the values of Cat(x,c) and
Rel(x,y,r). The formulas we use to capture the joint
distribution of all the ground predicates are as follows.

Ontological constraints We represent four types of on-
tological constraints: subsumption among categories and
relations (e.g., every bird is an animal); mutually exclusive

categories and relations (e.g., no person is a location); in-
version (for mirrored relations like TeamHasPlayer and
PlaysForTeam); and the type of the domain and range
of each predicate (e.g., the mayor of a city must be a per-
son).

We represent the presence of these constraints using the
following predicates: Sub and RSub for the subclass rela-
tionships for categories and relations; Mut and RMut are
the mutual exclusion relationships for categories and rela-
tions; Inv is inversion; and Dom and Ran are the domain
and range relationships. Symbol ! means negation.

The MLN formulas to enforce these constraints are as fol-
lows:

Sub(c1,c2) ˆ Cat(x,c1) => Cat(x,c2).
RSub(r1,r2) ˆ Rel(x,y,r1) => Rel(x,y,r2).
Mut(c1,c2) ˆ Cat(x,c1) => !Cat(x,c2).
RMut(r1,r2) ˆ Rel(x,y,r1) => !Rel(x,y,r2).
Inv(r1,r2) ˆ Rel(x,y,r1) => Rel(y,x,r2).
Domain(r,c) ˆ Rel(x,y,r) => Cat(x,c).
Range(r,c) ˆ Rel(x,y,r) => Cat(y,c).

All of these formulas are maintained as hard constraints,
which is equivalent to having an infinitely large weight.

Prior confidence of instances Different facts extracted
by an IE system often have different degrees of confi-
dence, based on the amount of supporting evidence avail-
able. Rather than simply thresholding or taking the highest-
confidence facts consistent with the current knowledge
base, Markov logic allows to reason jointly over all facts
in order to accept an entire set of facts that is mutually con-
sistent and well-supported by evidence.

In our MLN, we use the predicates
CandCat(x,c,conf) and CandRel(x,y,r,conf)
to represent that x has category c with confidence conf,
and x and y have relation r with confidence conf.
The confidences are real numbers provided by the base
IE system used to extract the candidate categories and
relations. Similarly, we use PromCat(x,c,conf) and
PromRel(x,y,r,conf) to represent the instances
actually promoted to the knowledge base, with confidence
conf.

We can incorporate the IE system’s confidence by using it
as a weight for the corresponding ground fact:

conf CandCat(x,c,conf) => Cat(x,c)
conf CandRel(x,y,r,conf) => Rel(x,y,r)
conf PromCat(x,c,conf) => Cat(x,c)
conf PromRel(x,y,r,conf) => Rel(x,y,r)

We can assign a weight to these formulas as well, which
would effectively scale all of the confidences by a constant
value. For our experiment, we simply use the original con-
fidences, which range from 0 to 1. If the base IE system
doesn’t have a confidence measure, we can just use a con-
stant instead.



Facts not extracted by the system have no assigned confi-
dence, and are assumed to be less likely. We represent this
with the following two formulas:

0.2 (!EXISTS conf: CandCat(x,c,conf))
=> !Cat(x,c)

0.2 (!EXISTS conf: CandRel(x,y,r,conf))
=> !Rel(x,y,r)

In our experiments, we assigned a weight of 0.2 to both
weights, as shown. In future work, we hope to learn
weights such as these automatically.

Seed instances Seed instances used to initialize the infor-
mation extraction system are known to be true. We denote
these with the SeedCat and SeedRel predicates, for cat-
egory and relation facts, respectively. For some categories
and relations, there may be negative seed examples, which
are denoted as NSeedCat and NSeedRel.

We handle seed instances with these hard formulas:

SeedCat(x,c) => Cat(x,c).
NSeedCat(x,c) => !Cat(x,c).
SeedRel(x,y,r) => Rel(x,y,r).
NSeedRel(x,y,r) => !Rel(x,y,r).

3.2 Extensibility of Our Approach

A big advantage of our proposed model compared to other
models is that it provides a general framework to combine
information from different sources, as long as the informa-
tion can be represented in first-order logic. Many ontolo-
gies are well designed and properly reflects the necessary
knowledge of specific domains, and all the knowledge or
constraints are in the form of first-order logic. This sug-
gests that our approach has very good extensibility.

For example, while the current ontology used in NELL is
simple, in some ontologies, we may have more complex
rules such as:

Rel(city,country,Citycapitalofcountry)
ˆ city != city’
=> !Rel(city’,country,Citycapitalofcountry).

which means there is only one capital for each country.
Such formulas can easily be added into the model.

Some current extensions of NELL and similar IE systems
can also be straightforwardly applied to our model. For
instance, [9] proposes an approach to learn the chain rules
in NELL such as:

AthletePlaysForTeam(x,y)
ˆ TeamPlaysInLeague(y,z)

=> AthletePlaysInLeague(x,z)

These rules can be used to facilitate the system through in-
ference by graph random walks. In Markov logic, this pro-
cedure can be viewed as a typical structural learning and
MAP inference procedure. The formulas can be put into
our model as:

ChainRule(AthletePlaysForTeam,
TeamPlaysInLeague,
AthletePlaysInLeague)

ChainRule(r1,r2,r3) ˆ Rel(x,y,r1) ˆ Rel(y,z,r2)
=> Rel(x,z,r3)

3.3 Inference

We used MC-SAT [16] to compute the marginal probability
of each candidate category and relation fact. However, we
needed to modify our inference task in order to make it
tractable, as we describe below.

The major problem we face in inference is that the scale
of an information extraction system is usually extremely
large. For example, NELL extracted more than 943,000
candidate instances by the 165th iteration. These num-
bers are even larger for the later iterations since the sys-
tem keeps running and generating more and more candi-
dates. Lazy inference [18] is a general approach to reduce
complexity for relational inference algorithms. In Markov
logic, it assumes that most atoms are false by default and
most formulas true, so that it only has to instantiate a few
number of necessary atoms and formulas. However, when
the whole ground network is densely connected and many
atoms are supported by weak evidence, lazy inference still
tends to instantiate all those atoms and therefore becomes
very inefficient.

We developed an alternate approach for making these par-
ticular MLN inference problems tractable. First, we notice
that the whole network usually forms several clusters, each
of which represents a domain. Most connections between
atoms are between atoms in the same cluster. Second, for
each cluster, we are mainly concerned with the values of
the query atoms, which for this task consist of the candi-
date categories and relations. Other unknown atoms are
only useful for their role in correctly inferring the query
atoms, and therefore tolerate more error. We treat the query
atoms as well as the atoms in the initial unsatisfied clauses
as the center of the network. Their close neighbors are also
added in to enable the joint inference, but the distant atoms
and formulas are discarded. In practice, we include the 2-
hop neighborhood of the center atoms. We can safely adopt
these two reductions without sacrificing too much accuracy
since most discarded groundings are irrelevant to our query.

Other inference methods, such as box propagation [14] and
expanding frontier belief propagation (EFBP) [15] have
used similar ideas about running inference in a partial net-
work to obtain increased efficiency. Our method is poten-
tially more efficient, since it selects the neighborhood be-
fore grounding the model or considering evidence, but it
lacks the formal guarantees of the other methods.



4 Experiment

4.1 Methodology

We evaluated our approach by applying it to the knowledge
base extracted by NELL. We used the Markov logic formu-
las introduced in the previous sections. NELL’s candidate
instances, candidate extraction patterns, and seed instances
were treated as evidence. Since NELL is a continuously
running system, we took a snapshot for test. We used the
165th iteration as our dataset.

The instances that we chose for comparison spread over
multiple predicates on several domains. Most predicates
are from the sports domain, since this domain is widely
used in NELL-related works for testing. For the com-
parison, we chose 6 relations (TeamPlaysSport,
TeamWonTrophy, TeamPlaysInLeague,
ProducesProduct, CityCapitalOfCountry,
ActorStarredInMovie) and 4 categories (Sport,
Country, Movie, Vegetable). Each relation has
about 2000 instances and each category has about 5000-
10000 instances. For each relation or category, we sampled
about 500-1000 instances for testing.

Our system produces a list of all instances, ordered by
marginal probability as computed by MC-SAT. We com-
puted the precision, recall, and F1 score of our predic-
tions by thresholding these probabilities, so that all atoms
with a probability of at least 0.5 were considered true, and
all atoms with a smaller probability were considered false.
(We also explored using MaxWalkSAT for MAP inference,
but found that it produced worse results.) For NELL, we
evaluated precision, recall, and F1 score on its set of pro-
moted facts.

Since NELL uses a semi-supervised bootstrap learning
method, at each iteration it only promotes a limited num-
ber of high confidence instances into the KB in order to
maintain high precision at the possible cost of lower recall.
Therefore we also compared the two methods using AUC
(area under the precision-recall curve). Our instances were
ordered by their marginal probabilities. For NELL’s result,
we ordered promoted facts by the associated confidence
values, followed by the rest of the candidate facts ordered
by their associated confidences as well. This was neces-
sary because NELL’s confidence values for promoted and
non-promoted facts are not comparable: some promoted
facts have lower confidence than some non-promoted can-
didates. Naively ordering all facts by confidence value led
to lower AUCs for NELL.

In order to see how the ontological constraints help the joint
inference, we used two models to compare with NELL:

• MLN-0: Markov logic with the information of candi-
date and promoted facts, but without the ontological
constraints;

Figure 1: Comparison of F1-score, overall and by predicate
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Figure 2: Comparison of AUC, overall and by predicate
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• MLN-1: Markov logic with the ontological con-
straints.

4.2 Results and Analysis

Table 1 shows that our approach (MLN-1) outperforms
NELL in both AUC value and F1 score for the complete test
set. For the per predicate performance, in 8 out of the 10
predicates our approach outperforms NELL in both AUC
value and F1 score.

MLN-0’s performance is between NELL’s and MLN-1’s.
This model basically assigns the probability of each in-
stance based on the weighted average of two confidence
measures. As we can see, this simple combination is better
than simply trusting NELL’s promoted facts all the time,
but the ontological constraints really play an important role
in our approach.

Although our increases in precision and recall are modest,
we are able to obtain them using only the information that
NELL is already using. These gains are realized by replac-
ing NELL’s heuristic logical inference with a sound statis-
tical relational approach that considers the joint uncertainty
of many facts. The results show that our use of joint prob-
abilistic inference is effective here.

4.3 Discussion

We may further look at some examples to see how exactly
our approach refines the knowledge base and cleans the po-



Table 1: Comparison of knowledge instance results by
predicate

Measure NELL MLN-0 MLN-1
All
Precision 0.880 0.849 0.906
Recall 0.658 0.675 0.664
F1 0.753 0.752 0.766
AUC 0.846 0.865 0.900
TeamPlaysSport
Precision 0.987 0.965 0.942
Recall 0.383 0.408 0.483
F1 0.552 0.573 0.638
AUC 0.914 0.924 0.928
TeamWonTrophy
Precision 0.684 0.695 0.733
Recall 0.595 0.626 0.649
F1 0.637 0.659 0.688
AUC 0.721 0.743 0.759
TeamPlaysInLeague
Precision 0.963 0.961 0.961
Recall 0.295 0.307 0.277
F1 0.451 0.466 0.430
AUC 0.930 0.936 0.955
ProducesProduct
Precision 0.611 0.762 0.774
Recall 0.518 0.565 0.565
F1 0.561 0.649 0.653
AUC 0.682 0.780 0.773
Sport
Precision 0.642 0.662 0.661
Recall 0.750 0.800 0.755
F1 0.692 0.724 0.705
AUC 0.766 0.759 0.780
Country
Precision 0.223 0.327 0.513
Recall 0.442 0.654 0.385
F1 0.297 0.436 0.440
AUC 0.309 0.418 0.491
Movie
Precision 0.554 0.582 0.564
Recall 0.369 0.631 0.369
F1 0.443 0.606 0.446
AUC 0.528 0.520 0.564
Vegetable
Precision 0.264 0.415 0.398
Recall 0.557 0.639 0.541
F1 0.358 0.503 0.458
AUC 0.306 0.405 0.432
CityCapitalOfCountry
Precision 0.958 0.947 0.959
Recall 0.793 0.828 0.816
F1 0.868 0.883 0.882
AUC 0.931 0.937 0.901
ActorStarredInMovie
Precision 0.883 0.925 0.925
Recall 0.432 0.446 0.446
F1 0.569 0.602 0.602
AUC 0.811 0.896 0.902

tential errors.

In the first example, ProducesProduct is a rela-
tion (predicate) whose domain is Company and range is
Product. (Adobe, Acrobat reader software)
and (Adobe, Acrobat reader version) are both
candidate instances of ProducesProduct and have
the same initial confidence. Our approach noticed that
Acrobat reader software has a higher confidence
value (thus higher probability) than Acrobat reader
version to be an instance of product. Therefore it as-
signed a higher probability to the former relation instance
than the latter one. NELL also uses type checking con-
straints, but only to maintain consistency with already pro-
moted facts. Thus, it ignores this additional information.

Another example is that the entity Los Angeles
county is extracted as an instance for both City and
County. Although the former is wrong, it was extracted
before the latter and got promoted by NELL since it had
strong supporting evidence at that time. The latter also has
supporting evidence, but it was not promoted because it vi-
olated the mutual exclusion rule of the two categories (i.e.,
a City cannot be a County, and vice versa). In this case,
NELL’s bootstrapping method tries to use the ontological
constraints to rule out the wrong instances, but it fails when
the wrong instances are promoted first. On the other hand,
our joint inference framework is able to smartly reason
about contradictory instances using all available informa-
tion, rather than stubbornly enforcing earlier decisions.

One weakness of our approach is that the weights of the
formulas are manually assigned and hard to tune. In future
work, we will learn the weights automatically from labelled
data or NELL’s promoted instances.

5 Conclusion and Future Work

We have proposed a method for cleaning an automatically
extracted knowledge base using Markov logic. Our method
uses probabilistic inference to simultaneously reason about
the truth values of many related facts. This is an improve-
ment on systems such as NELL, which uses logical in-
ference and heuristics to update its knowledge base. Our
proposed model is also a generic approach that can be ex-
tended with other sources of knowledge and constraints in
first-order logic. Preliminary experiments show that our
method achieves better F1 score and AUC than NELL’s
knowledge base. We also developed a custom local ground-
ing method to make inference in this problem tractable.

In future work, we plan to extend our method to include
additional information, such as the specific pattern rules
matched by different instances. By learning weights for
different matched patterns, we may be able to create a con-
fidence measure that is better calibrated than NELL’s. We
would also like to explore doing unsupervised or semi-



supervised learning, to automatically learn the strength of
these relationships without requiring many human labels.
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