Exploiting Causal Independence in Markov Logic Networks:
Combining Undirected and Directed Models

Sriraam Natarajan
Univ of Wisconsin-Madison

Prasad Tadepalli
Oregon State University

Abstract

A new method is proposed for compiling causal in-
dependencies into Markov logic networks. A Markov
logic network can be viewed as compactly represent-
ing a factorization of a joint probability into the mul-
tiplication of a set of factors guided by logical for-
mulas. We present a notion of causal independence
that enables one to further factorize the factors into a
combination of even smaller factors and consequently
obtain a finer-grain factorization of the joint probabil-
ity. The causal independence lets us specify the factor
in terms of weighted, directed clauses and an associa-
tive and commutative operator, such as “or”, “sum” or
“max”, on the contribution of the variables involved in
the factors, hence combining both undirected and di-
rected knowledge.

Introduction

Traditional Al methods were based on one of the two ap-
proaches: first-order logic, which excels at capturing the
rich relationships among many objects, or statistical repre-
sentations, which handle uncertain environments and noisy
observations. Statistical relational learning (SRL) (Getoor
and Taskar 2007), an area of growing interest, seeks to unify
these approaches in order to handle problems that are both
complex and uncertain.

The principal attraction of SRL models is that they are
more succinct than their propositional counterparts, lead-
ing to easier specification of their structure by the domain
experts and faster learning of their parameters. However,
different proposed models are good at expressing different
kinds of knowledge, making it difficult to compare their em-
pirical performance. The largest divide is between directed
and undirected representations.

One of the primary advantages of the directed graphical
models is the notion of “Independence of Causal Influence”
(ICI) (Heckerman and Breese 1994; Zhang and Poole 1996)
a.k.a “causal independence,” i.e., there may be multiple in-
dependent causes for a target variable. Directed models can
learn conditional distributions due to each of the causes sep-
arately and combine them using a (possibly stochastic) func-
tion, thus making the process of learning easier. This no-

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Tushar Khot

Univ of Wisconsin-Madison

Kristian Kersting
Fraunhofer IAIS, Germany

Daniel Lowd
Univ Of Oregon

Jude Shavlik

Univ of Wisconsin-Madison

tion of ICI has been extended to the directed SRL models
in two different ways: while PRMs (Getoor et al. 2001) use
aggregators such as max, min, and average to combine
the influences due to several parents, other formalisms such
as BLPs (Kersting and De Raedt 2007) and RBNs (Jaeger
2007) use combination functions such as Noisy-OR, mean,
or weighted mean to combine distributions.

One problem with the directed models is the need to
keep the graph acyclic while preserving sparsity. This prob-
lem is avoided by undirected models such as Markov logic
networks (MLNs) (Domingos and Lowd 2009), which are
based on Markov networks. Undirected models do not con-
sider local models (i.e, do not treat each cause as indepen-
dent from others) and hence do not model the notion of ICI
explicitly. Bayesian Networks with tabular CPDs (one pa-
rameter for each configuration of the parent variables) can
be directly translated to MLNs by introducing one formula
for each BN parameter ' . What is less clear is how com-
bination functions from relational models can best be rep-
resented in an MLN. We consider a subset of combination
functions called decomposable combining rules and derive
a representation of MLNs that captures these rules. The im-
portant aspect of this representation is that we do not use the
“ground” Bayesian network and instead use a “lifted” repre-
sentation that avoids the grounding of the clauses.

Representing combining rules using MLNSs is a key step
towards unifying directed and undirected SRL approaches.
Such a unified view on SRL is not only of theoretical in-
terest. It actually has many important practical implications
such as more natural model specification and development
of specialized, highly efficient inference and learning tech-
niques that can be applied differently to different pieces of
the model.

In this work, we make several major contributions: (1) A
provable linear representation of decomposable combining
functions within MLN; (2) Explicit examples of average-
based and noisy combination functions. (3) A formal de-
scription of the algorithm for converting from directed mod-
els with combining rules to MLNs. (4) Empirical proof that
combining rules can improve the learning of MLNs when
the domain knowledge available is minimal.

We proceed as follows. After introducing the necessary

"http://alchemy.cs.washington.edu/faq/index.html

background, we derive the MLN clauses for representing de-
composable combining rules and provide the clauses for two
common cases of combining rules. Next, we derive a bound
on the number of clauses and provide the pseudo-code for
the compilation. Before the conclusion, we present empiri-
cal results in real-world and synthetic tasks.

MLNSs and Directed Models

A Bayesian network (BN) compactly represents a joint
probability distribution over a set of variables X =
{X1,...,X,} as adirected, acyclic graph and a set of con-
ditional probability distributions (CPDs). The graph con-
tains one node for each variable, and encodes the asser-
tion that each variable is independent of its non-descendants
given its parents in the graph. These conditional indepen-
dence assertions allow us to represent the joint probability
distribution as the product of the conditional probability of
each variable, X, given its parents, parents(X;):P(X) =
[I, P(X;|parents(X;))

A Markov network (MN) (also called a Markov random
field) specifies independencies using an undirected graph.
The graph encodes the assertion that each variable is inde-
pendent of all others given its neighbors in the graph. This
set of independencies guarantees that the probability distri-
bution can be factored into a set of potentials functions de-
fined over cliques in the graph. Unlike BNs, these factors
are not constrained to be conditional probabilities. Instead,
a potential function is allowed to take on any non-negative
value. The joint probability distribution is therefore defined
as follows: P(X = z) = [1; ¢;(D;), where ¢; is the jth
potential function, D is the set of variables over which ¢;
is defined, and Z is a normalization constant. MNs are often
written as log-linear models, where the potential functions
are replaced by a set of weighted features.

One of the most popular and general SRL representations
is Markov logic networks (MLNs) (Domingos and Lowd
2009). An MLN consists of a set of formulas in first-
order logic and their real-valued weights, {(w;, f;)}. To-
gether with a set of constants, we can instantiate an MLN
as a Markov network with a node for each ground predicate
(atom) and a feature for each ground formula. All ground-
ings of the same formula are assigned the same weight, lead-
ing to the following joint probability distribution over all
atoms:P(X =) = £ exp (Y, win;(z)), where n;(z)
is the number of times the ith formula is satisfied by possi-
ble world x and Z is a normalization constant (as in Markov
networks). Intuitively, a possible world where formula f; is
true one more time is e"* times as probable, all other things
being equal.

Directed Models with Combining Rules: Our work
does not assume any representation for the directed models.
We merely use an abstract syntax called as First-Order Con-
ditional Influence (FOCI) statements (Natarajan et al. 2009)
to present the semantics of the directed models. Each state-
ment has the form: If (condition) then {qualitative influ-
ence), where condition is a set of literals, each literal be-
ing a predicate symbol applied to the appropriate number of
variables. The set of literals is treated as a conjunction. A

(qualitative influence) is of the form X1, ..., X Qinf Y,
where the X; and Y are of the form V.a, and V is a variable
that occurs in condition and a is an object attribute. Associ-
ated with each statement is a conditional probability distri-
bution that specifies a probability distribution of the resultant
conditioned on the influents, e.g. P(Y|Xy,..., X)) for the
above statement.

CR2{
If {student (S), course(C)
then T.grade Qinf (CR1)
If {student (S),paper (P, S)
then P.quality Qinf (CR

, takes(T,S,C)}
S.satisfaction.

}
1) S.satisfaction.

}
The first rule specifies that the grade that a student ob-

tains in a course influences his/her satisfaction. The CPD
P(T.grade | S.satisfaction) associated with the first state-
ment (partially) captures the quantitative relationships be-
tween the attributes. The second states that if the student has
authored a paper, then its quality influences the satisfaction
of the student. The distributions due to multiple instantia-
tions of the respective rules (the different course grades or
the different paper qualities) are combined using the CR1
combining rule and the distributions due to different rules
using CR2 combining rule.

Note that there are two levels of combination functions -
one for combining multiple instances of the same rule and
the other for combining different rules. This idea of 2-level
combining rules is sufficient to capture the notion of ICI in
SRL models and hence we address the 2-level combining
rule in this work. The use of combining rules make learn-
ing in directed SRL models easier: multiple instances of the
same rule share the same CPT and hence can be treated as
individual examples while learning the CPTs. Similarly, the
different CPTs can be learned independently of each other
thus exploiting the notion of causal independence. Yet an-
other advantage of the combining rules is that they allow for
richer combination of probability distributions. MLNs in
their default representation use an exponentiated weighted
count as an (indirect) combination function of the different
clauses. To express complex functions, a straightforward
method would be to construct the grounded Bayes net for
each rule and then construct the equivalent Markov net. Un-
fortunately, this leads to an exponential number of clauses
in the MLN making the twin problems of learning and in-
ference computationally expensive. Instead we resort to
a “lifted” method that avoids unrolling (grounding) all the
clauses to create the MLN.

Combination Functions using MLNs

In this section, we present the equivalent MLN representa-
tion for decomposable combining functions .

Decomposable Combining Functions

Decomposable Combination Functions are combination
functions that can be implemented using deterministic or
stochastic functions of the corresponding values of random
variables (Natarajan et al. 2009). This is to say that there
exists a value-based Bayesian Network that can capture the
distribution represented using the combining rule. Note

that most common combination functions used in the lit-
erature (Koller and Pfeffer 1997; Natarajan et al. 2009;
Jaeger 2007; Heckerman and Breese 1994; Zhang and
Poole 1996) can be represented using the above defini-
tion. Noisy combination functions such as Noisy-Or, Noisy-
And, Noisy-Existential, average-based combination func-
tions such as mean, weighted-mean and context specific In-
dependence(CSI) (Heckerman and Breese 1994) combining
rules can also be captured by this notion of decomposable
combining rule. In this work, we show how multi-level com-
bining rules (rules that combine instances of the same clause
and the ones that combine the distributions due to different
clauses) can be represented and learned using MLNSs.

The notion of decomposability is crucial to deriving the
representation of combining rules using MLNs. This allows
us to consider the combining rules as multiplexers on value-
based Bayesian networks. The key idea is to view the com-
bination function as choosing a value among several values
proposed by the parents. For instance, taking the average of
distributions corresponds to choosing the target value using
an uniform distribution among the values proposed by the
parents. The equivalence of weighted mean is choosing a
value based on the distribution given by the weights. Sim-
ilarly, the noisy combination functions can be represented
using value-based network.

Consider the following two FOCI statements:

a(X,Y) Qinf b(Y)

o(Z,Y) Qinf b(Y)
where (a, b, ¢) are predicates and (X,Y, Z) are variables.
Associated with each clause is a conditional probability dis-
tribution P(b(y)|parent(b)) where the parent for the first
statement is a(z,y) and the second is ¢(z,y). Note that
there could be several possible instantiations for X and Z
in the above rules. For simplicity, let us assume that the dis-
tributions due to the different instances of the same rule are
combined using C'R; and the resulting distributions due to
the different rules are combined using C'R.

Consider the value-based network presented in Figure 1.
For ease of explanation, assume that there are n instanti-
ations of each rule and k& such rules (we present only two
of them for brevity). In addition to the a, b and ¢ predi-
cates, we introduce two more types of predicates indicated
using dashed nodes: hidden value predicates (¢ and ¢r) and
multiplexer predicates (h and hr). Since there are two lev-
els of combining functions, there are two different sets of
multiplexers and hidden nodes represented by two different
boxes in the figure. The first box corresponds to choosing a
value from a single rule (given by r(y, i), where 4 is the rule
index) and in the next level the final value of the target is
chosen from one among the different r-values. We now ex-
plain the multiplexers inside the same rule (the top box) and
the same idea is extended for different rules (bottom box).

The hidden predicates ¢’s can be understood as choosing a
value of the target given the instantiation of the parent based
on the CPD. The multiplexers (h-nodes) serve to choose one
of the n t-values for the target. The idea is that if a partic-
ular h is activated, the value of the corresponding ¢ node is
chosen to be the value of the target for the current rule (i.e,
r(y, 1) is set to be that particular ¢-value). Given the differ-

Lo T 2 U A
. . - .- . . ~
YD) St Y) €tz k) Stz k)

Choa) Y i)) S i v

ST sz
NI N
i S
T ToTEIT]
Coulva) vk
3 T
 hr(v,2) hr(vk)
b(Y)

Figure 1: Value-based Bayes Net. The dashed nodes are the hid-
den nodes and the multiplexer nodes, while the solid nodes are ob-
served in the data.

ent values of r(y, I) for all I, the final value of the target b
is chosen using the next level of the multiplexer.

In our formalism, there is no restriction on the equality of
CR; and CR,, i.e., they need not be similar combination
functions as long as they are decomposable. For instance,
it is possible to use a mean combining rule to combine the
instances of a single rule while a Noisy-Or could be used
to combine the different rules themselves. It can be eas-
ily observed from our translation to MLNs (presented later)
that the only change for the different cases would be the en-
coding of the multiplexers. We now present the translation
of the directed models with combining rules to MLNs that
consists for four different kinds of clauses:

1. CPT Clauses: This follows the standard translation of
Bayesian Networks to MLNs. Each independent param-
eter in the CPT of the Bayes net becomes a clause in the
MLN. An example of such a clause is

w}:a(X,Y) = t(X,Y,1)
w) 1 —a(X,Y) = t(X,Y,1) (1)

where w/ = log(lfii), pl = P(b(Y) = 1[a(X,Y) =
4)?. Hence, for each independent parameter of the orig-
inal CPT in the directed model, there is a clause in the

MLN with the weight as a function of the parameter.

2. Multiplexer Clauses: These are the clauses that choose a

particular value of the target given a set of parent values.
For the first-level multiplexer (% in the figure), this set cor-
responds to the set of values due to different instantiations
of the same rule. For the second-level multiplexer, this set
consists of the values due to different rules. For the first
level, the MLN clauses are of the form

00 h(X,Y,I) = t(X,Y,I) = r(Y,I))

The above clause is a hard clause (i.e., infinite weight)

that specifies that for a particular value of X, if h(X,Y,)

is true for a rule 7, then the value of the target for that

rule (r(Y, %)) must be chosen to be the corresponding

) imilarly, for the next level, the multiplexer

AiheeCRBuldibes are defined for rule 1 that uses predicate a.
All the other rules will have similar clauses

oco:hr(Y,I)=tr(Y,I) & bY) 3)

3. Stochastic Function Clauses: These are the clauses that
specify the stochastic function to be employed on the val-
ues. These are essentially the “prior” on the h predicates.
For mean, the idea is to choose a target value from the set
of h-values uniformly. In the case of Noisy-Or, the target
is chosen from using an Or function over the hidden vari-
ables. We present the stochastic function clauses when we
present the two different examples later in the section.

4. Integrity Constraints: These are the constraints that
are used to specify that among the different multiplexer
nodes, only one of them can be true for any particular ex-
ample. These are of the form:

SO h(I17Y7I)/\h(I2,K[):>(I’1:mg)
00 : IX (X, Y, 1) “)

The above set of clauses specifies that if & is true for 2
values of X, they should be identical and there exists a
grounding of X to make h-true. These constraints are
exactly similar for the second level as well.

We now present two most common types of combination
functions from literature: average-based and Noisy com-
bination functions. Let us consider just a single clause
a(X,Y) = b(Y) for ease of explanation. Associated with
this clause is a conditional probability distribution P(b|a)
(we use a and b as shorthand notations for the predicates).
As we mentioned, the differences between different combi-
nation functions lie mainly in the stochastic function clauses.

Average-Based Combining Rules: Assume that the dif-
ferent instantiations of the above rule are combined using
the weighted-mean combining rule. Then the posterior over
the target b given the different sets of parents is given by

1
P(blay,...,a,) = S sz x P(bla;) &)

where a; denotes a(z;,y). For the case of mean, all w; = 1.
The CPT clauses will be of the form presented in the earlier
section, where the weights are log functions of the CPT pa-
rameters (logﬁ) . The multiplexer clause is again a hard

clause that specifies the value of the target based on the value
of the multiplexer (h(X, Y, I)). The integrity constraints are
also the same as the ones presented above. The stochastic
function is the weighted-mean. This specifies the prior on
the multiplexer nodes i.e., defines the prior probability with
which each multiplexer node is true. Hence, they are of the
form: w; : h(x;,y,1), where u; = log% is the log-odds
of the given x;. For mean, u; = log(1/n), where n is the
number of instantiations. The intuition is that each ¢(X)
chooses the value of the target based on the CPT, and the
final value of the target is chosen from the different ¢’s using
the multiplexer nodes. The multiplexer is activated such that
it takes only one value given by the stochastic function(mean
or weighted-mean). It is easy to show mathematically that
such a representation exactly captures the distribution given
by equation 5. We omit the proof in the paper.

Noisy Functions: Let us assume a single rule and that
the different instantiations of that rule are combined using a
noisy function. For Noisy-Or, the marginal is computed as,

P(b="Tlay,...,a,) =1—] £ (6)
i=1

where f;’s represent the probability that a present (Boolean-
valued) cause, a;, fails to make the result b true. When con-
verting these to MLNSs, the transformation is mostly similar
to the earlier case. Though the CPT clauses are constructed
similarly, we present them for clarity. They are of the form:

oo: —a(X,Y)=-t(X,Y,1).
wi: a(x,Y)=t(z;, Y, 1).

where, w; = log((1 — f;)/f:). As can be seen, if a(X,Y")

is false for a particular value of X, ¢(X,Y, 1) will always

be false while if a is true, ¢t can be false due to some noise.

The multiplexer clause is similar to the earlier case, while

the stochastic function (deterministic here) is given by,
oo:r(Y,I) & 3IX4(X,Y, 1)

This asserts that r(Y,4) is true if and only if some
t(X,Y, i) is true, which is effectively deterministic Or ap-
plied to noisy versions of the inputs. It can be shown that
this set of clauses exactly capture the distribution given by
equation 6.

Noisy existentials can be constructed similarly, except
that we have tied weights. When constructing noisy-and, the
noise adds a probability of success instead of a probability
of failure:

w;: —a(X,Y, 1) = (X, Y, 1)

oo: alx;,Y,1) = t(x;, Y, 1).
The multiplexer and the stochastic functions are also modi-
fied accordingly to reflect the And function.

Also, note that any MLN can be seen as a noisy-and in
which the target b(Y") is known to be true and each a(z;,Y)
is a clause from the original MLN. Because of the infinite-
weight conjunction, all a; must be true. Since ¢; is true, we
can simplify each implication —a(z;,Y) = —h(z;,Y,1) to
h(z;,Y,1). The final, simplified MLN is therefore just the
weighted clauses from the original MLN: —w; : =h(z;,Y).

This formulation allows for arbitrary nesting of combin-
ing rules. The combining rules used for combining different
instantiations of different rules could be different. For in-
stance, we can imagine a situation such as NoisyAnd(w;
A, we B, ws NoisyOr(ws C, ws NoisyAnd(ws D, wr
E, ws F))) where we have both Noisy-Or and Noisy-And
inside the function. w;’s are the weights while A through
I are first-order logic Formulae. Such a representation is a
significant generalization of MLNs.

Figure 2 describes the pseudocode for constructing MLNs
from a set of FOCI statements that use combining rule C'Rs.
Each statement s; has its own 1°¢ level combining rule C R} .
Lines 3 through 9 present the methods for constructing the
clauses corresponding to s; and its combining rule. For each
independent parameter in the CPT of s;, a clause is cre-
ated. Also for each s;, one multiplexer clause, one stochastic
function and two integrity constraints are created. Once all
the 15t level combining rules are considered, the clauses cor-
responding to C'Ry are constructed in lines 10 through 14.
We note that it requires O(1) to construct each clause.

Fig. 2. CreateMLNClauses (FOCI Statements .S, C'R2)

: MLNClauses clauseList = [[; _
: // Each FOCI Statement s; has CPT, Predicates, C R}
: For Each FOCI statement s; € S
For Each Independent parameter 67 in s;.CPT
Add one CPT clause to clauseList, e.g. asin Eqn 1
Add to clauseList based on 1°* level combining rule C RY:
One multiplexer clause as in Eqn. 2
One stochastic function clause, e.g. as in Eqn. 7
Two integrity constraint clauses as in Eqn. 4
10: For Each FOCI statement s; € S _
11: Add to clauseList based on the 2" level combining rule CR}:
12: One multiplexer clause as in Eqn. 3
13: One stochastic function clause, e.g. as in Eqn. 7
14: Two integrity constraint clauses as in Eqn. 4

Ve nhw 2

Complexity of the resulting MLN

We now provide a bound on the number of clauses required
by such an MLN. In particular, we consider the general SRL
case of multi-level combining rules where the instantiations
of a single rule are combined using C' Ry and different rules
are combined using C'Rs.

Theorem 0.1. For any joint distribution which can be rep-
resented by n FOCI statements combined with nested de-
composable combining rules, and k independent parame-
ters, there exists an equivalent MLN of O(nk) rules which
can be constructed in O(nk) time.

Proof (sketch) The proof of equivalence is straightfor-
ward from the definition of the various clauses. Let n be the
number of FOCI statements and & be the number of indepen-
dent CPT parameters. From the algorithm in Figure 2, for
each rule, there are k£ CPT clauses, one multiplexer clause,
one stochastic function clause and two integrity constraints
yielding k£ + 4 clauses. Hence the total number of clauses
created in lines (3 — 9) is n(k + 4). For lines 10 — 14 of the
algorithm, the number of clausesis n(1+1)+2 = 2(n+1).
Hence the total number of clauses is n(k + 6) + 2 = O(nk).
Since each clause can be constructed in constant time given
the FOCI statement and the combining rule, the resulting
MLN can be constructed in O(nk) time. Note that the min-
imal number of clauses required to model FOCI statements
using MLN is O(nk) as we need a clause for every param-
eter. Hence, our translation creates a model that is no more
complex than the minimal MLN. B

Experiments

In the following experiments, we used the Alchemy system?
to learn the weights and/or perform inference. The same set-
tings were used for both MLNs with combining rules (de-
noted by M LNT) and the default MLNs(M LN*). The
clauses of the M LN* are the parent configurations of the
CPT of each rule. Hence, for each independent parameter
of the CPT, there exists a clause in M LN*. MLN* was
chosen so that it had the same number of parameters as that
of a directed model to make a fair comparison. The clauses

*http://alchemy.cs.washington.edu/

of MLN™ consist of the CPT clauses and the other multi-
plexer, stochastic function and the integrity clauses.

Real World Datasets: In this section, we present our
learning results in two real-world domains: Cora and UW-
CSE. The goal of the experiment is: given minimal domain
knowledge (typically 2 rules to predict the target), will the
structure imposed by combining rules be useful in learning
a good model? We compared M LN* against M LN T for
Noisy-Or combining rule. For the UW-dataset, the goal was
to predict the advisedBy relationship between a student and
a professor. The rules that we used were:
student (S) A professor (P) A course(C) A
taughtBy (P,C,Q) A ta(s,C,Q)
= advisedBy(S,P).
student (S) A professor (P) A publication (P, W)
A publication(S,W) = advisedBy(S,P).

MLN* used all the combinations of the predicates in the
head of the clauses and learned weights for each of them.

For MLN*, we used Noisy-Or as the combining rule at
both levels. We learned the weights using Alchemy and
used MC-SAT for performing inference on a test set. We
present the average likelihood of the test set in the first
column of Table 1. M LN* was not able to learn reasonable
weights with a small number of rules and hence predicted
everything as 0. In a test-set with 50% positive examples,
this yielded a likelihood of 0.5. On the other hand, with
MLNT, we were able to learn a more reasonable model
that had a higher likelihood. More importantly, M LN+ did
not predict every query predicate as 0 or 1 and instead had
a reasonable distribution over the target. When we added
more rules to M LN* (7 more rules from Alchemy that
were earlier used in other MLN experiments to predict ad-
visedBy) the average likelihood increased to 0.63. This is in
line with our synthetic experiments where the performance
of M LN* improved with increasing number of rules.

Algorithm uw Cora
MLNT 06107 | 0.987
MLN™ 0.5 0.963

Table 1: Results on real world domains.

The results were far more impressive in the case of Cora
dataset where the goal is to predict whether 2 citations refer
to the same one. The two rules that we used were:

Author (bcl,al) A Author (bc2,a2) A

SameAuthor (al,a2) = SameBib (bcl,bc2).
Title(bcl,tl) A Title(bc2,t2) A

SameTitle (tl,t2) = SameBib (bcl,bc2).

As can be seen from the table, MLN* learned nearly
the perfect model for the domain and had a very high
likelihood. This clearly showed that with just two rules,
given some more knowledge (as hard constraints of the
combining rules), M LN' was able to learn a highly
predictive model. While M LN* with exactly the same
setting as M LN predicted all the test examples as 0.
We changed the settings (to generative learning, dropped
some seemingly irrelevant clauses that had a large number
of groundings). With these changes, we were able to get
MLN* to perform comparably with M LN'. Admittedly,

the presence of hidden predicates increased the running
time of Alchemy4, but this motivates the need for learning
algorithms that exploit the special structure efficiently (as
we used the default EM learning algorithm of Alchemy to
learn weights for M LN™).

Synthetic Datasets: The goal here is to verify the accu-
racy of the model and understand the behavior of the com-
bining rule clauses in the presence of varying number of
objects in the domain. To this effect, we created a set of
data sets with different number of rules and with different
number of possible instantiations of each rule. The datasets
were created using Noisy-Or and weighted mean combining
rules with 1000 examples each. For each example, we chose
the instantiations of the non-target predicates according to a
prior, computed the marginal distribution of the target based
on these instantiations and sampled the target according to
the marginal. We measured the mean absolute difference
between the probability values of the target for M LN * and
MLN for 10 runs of each experiment.

Weighted Mean Noisy—OR
02 01
o018 a MLN+ 0.09 a MLN+
——MLN" —=—MLN"

Mean Absolute Difference
Mean Absolute Difference

za

o 20 30 0 50 s 10 15 20 25 30
Number of instantiations Number of instantiations

Figure 3: Results varying # of instantiations

The results corresponding to varying the number of in-
stantiations are presented in Figure 3. The first case is the
one where the first-level combining rule is mean and the sec-
ond level one is weighted mean . As can be seen, for a small
number of instantiations, the M LN outperforms M LN*.
But as the number of instantiations increase, M LN * is able
to model the data better. This is due to the fact that as the
number of instantiations (or rules) increase, the number of
hidden nodes and multiplexers increase and the learning al-
gorithms tend to introduce a small error in these cases due
to the number of unobserved variables in the network.

For Noisy-Or, both the methods converge to similar esti-
mates after about 20 instances (Figure 3). This is very much
in line with the observation made in (Jaeger 1998) where the
author observed that Noisy-Or is exponentially convergent.
This is to say that as the number of instantiations become
very large, the Noisy-Or combining rules converge to 1.0
for the target as they become a huge disjunction of all the
clauses. We also varied the number of rules with constant
number of instantiations and obtained very similar results
for both the combining functions.

Conclusions

Combining rules capture the notion of causal independence
for SRL models. We have presented the algorithm for rep-
resenting a class of combining rules (decomposable com-
bining rules) in an undirected model (MLN). We derived

*The increase in running times was around 5 times on average

the equivalent clauses and provided a bound on the number
of clauses required for the representation. Our experiments
demonstrated that for a small number of clauses , combin-
ing functions are useful in learning more accurate models.
The additional structure imposed by these functions help in
guiding the learning algorithms towards reasonable weights.

However, this translation from combining rules to MLNs
is not without its cost. We found that the inference in the
resulting MLNs is 4-5 times slower than the one that does
not use the combining rules. The problem is that while the
declarative knowledge embedded in the combining rules can
be encoded into clauses and given to MLNSs, they have no
effective means to exploit the causal independence for con-
trolling the inference. To be effective, the inference engine
has to essentially rediscover the hidden structure that is nat-
urally exploited by the directed models. One possible future
direction is to develop specialized inference algorithms that
can detect structure in MLNs and exploit it for efficiency. A
more general and important direction is to develop hybrid
models that allow us to specify different parts of the model
differently and combine them using a decomposable struc-
ture. This should allow the application of specialized learn-
ing algorithms inside each module, and combine the results
in an efficient manner.

Acknowledgement

Sriraam Natarajan, Tushar Khot and Jude Shavlik gratefully ac-
knowledge support of DARPA grant FA8750-09-C-0181. Prasad
Tadepalli greatfully acknowledges the suppor of DARPA grant
FA8750-09-C-0179. Kristian Kersting was supported by the Fraun-
hofer ATTRACT fellowship STREAM and by the Europen Com-
mission under contract number FP7-248258-First-MM. Views and
conclusions contained in this document are those of the authors and
do not necessarily represent the official opinion or policies, either
expressed or implied of the US government or of DARPA.

References
Domingos, P., and Lowd, D. 2009. Markov Logic: An Interface
Layer for Al. San Rafael, CA: Morgan & Claypool.
Getoor, L., and Taskar, B. 2007. Introduction to Statistical Rela-
tional Learning. MIT Press.
Getoor, L.; Friedman, N.; Koller, D.; and Pfeffer, A. 2001. Learn-
ing probabilistic relational models. Relational Data Mining, S.
Dzeroski and N. Lavrac, Eds.
Heckerman, D., and Breese, J. 1994. A new look at causal inde-
pendence. In UAL
Jaeger, M. 1998. Convergence results for relational Bayesian net-
works. In Proceedings of LICS-98.
Jaeger, M. 2007. Parameter learning for relational bayesian net-
works. In ICML.
Kersting, K., and De Raedt, L. 2007. Bayesian logic program-
ming: Theory and tool. In An Introduction to Statistical Relational
Learning.
Koller, D., and Pfeffer, A. 1997. Learning probabilities for noisy
first-order rules. In IJCAI.
Natarajan, S.; Tadepalli, P.; Dietterich, T. G.; and Fern, A. 2009.
Learning first-order probabilistic models with combining rules.
Special Issue on Probabilistic Relational Learning, AMAI.
Zhang, N., and Poole, D. 1996. Exploiting causal independence in
Bayesian network inference. JAIR 5:301-328.

