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Abstract—A number of text mining and information ex-
traction projects such as TextRunner and NELL seek to
automatically build knowledge bases from the rapidly growing
amount of information on the web. In order to scale to the size
of the web, these projects often employ ad hoc heuristics to
reason about uncertain and contradictory information rather
than reasoning jointly about all candidate facts. In this paper,
we present a Markov logic-based system for cleaning an
extracted knowledge base. This allows a scalable system such
as NELL to take advantage of joint probabilistic inference, or,
conversely, allows Markov logic to be applied to a web scale
problem. Our system uses only the ontological constraints and
confidence values of the original system, along with human-
labeled data if available. The labeled data can be used to
calibrate the confidence scores from the original system or
learn the effectiveness of individual extraction patterns. To
achieve scalability, we introduce a neighborhood grounding
method that only instantiates the part of the network most
relevant to the given query. This allows us to partition the
knowledge cleaning task into tractable pieces that can be solved
individually. In experiments on NELL’s knowledge base, we
evaluate several variants of our approach and find that they
improve both F1 and area under the precision-recall curve.
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I. INTRODUCTION

There is a vast amount of unstructured or semi-structured
information on the web in the form of natural language.
Automatically acquiring and integrating this information into
a structured knowledge base (KB) is a crucial text mining
task. Text mining from the web presents particularly large
challenges and opportunities due to the large amount of
knowledge, the wide variety of concepts, and the variable
quality of information.

Several information extraction systems, such as NELL [1]
and TextRunner [2], have been developed for this purpose.
NELL and TextRunner both use a bootstrapping approach,
starting with some seed knowledge, using it to extract more
knowledge, and using the additional knowledge to construct
more extraction rules automatically. NELL, in addition,
organizes the extracted information in an ontology to enforce
consistency and improve the quality of the knowledge base.

However, NELL’s handling of uncertainty is relatively
limited. It simply filters out any candidate facts that disagree
with its existing knowledge, and promotes the highest-

confidence facts that remain. When NELL incorporates
incorrect facts in its knowledge base, those facts could lead it
to exclude correct but contradictory facts from being added
later on, even if they were supported by overwhelming
evidence. Moreover, NELL also ignores the relationship
between confidence values of related (supporting or con-
tradictory) candidate facts.

In order to handle both the large scale and uncertainty
in the web, in this paper, we present a new method for
automatically cleaning a noisy knowledge base using a
Markov Logic Network (MLN). Our method performs joint
probabilistic inference over candidate facts. Ontological con-
straints from the original information extraction (IE) system
serve as hard constraints in the MLN, while confidence
values on individual facts serve as soft constraints. We
use human labeled facts to learn the weights of the soft
constraints, which effectively calibrate the confidence values
provided by the IE system. Our method achieves scalability
by working on an extracted knowledge base rather than the
original text corpus, which could contain millions or billions
of web pages. Since the extracted knowledge base could
still be very large, we introduce a novel neighborhood-based
grounding procedure which divide the knowledge bases into
tractable subsets. To evaluate this method, we apply several
versions of our MLN and grounding procedure to NELL and
show that running joint inference usually leads to higher
accuracy, as measured by area under the precision-recall
curve (AUC) and F1. Furthermore, we look at examples of
specific facts and investigate how joint reasoning helps to
predict their correct values.

The rest of the paper is organized as follows. Section II
gives brief introductions to MLNs, NELL, and other related
work. Section III describes our MLN-based approach in
detail. Section IV shows the experiments and analyzes the
results. Section V concludes and discusses some directions
of future work.

II. BACKGROUND AND RELATED WORK

A. Markov Logic Networks

A Markov logic network [3] consists of a set of weighted
formulas in first-order logic, {wi, Fi}. Together with a
finite set of constants, a Markov logic network defines a
probability distribution over possible worlds or Herbrand



interpretations as a log-linear model, where the features are
the number of times each formula is satisfied:

P (X = x) =
1

Z
exp

(∑
i

wini(x)

)
Here, x represents a possible world, specified by assigning
truth values to all ground atoms. ni(x) is the number of true
groundings of Fi in x. Intuitively, this means that a world
in which the ith formula has one more true grounding than
another is ewi times as likely, all other things being equal.
Thus, larger weights correspond to stronger constraints. Hard
constraints are represented by infinite weights. For more
background on Markov logic, see Domingos and Lowd [4].

B. Never Ending Language Learner

In this paper, we use the Never-Ending Language Learner
(NELL) system [1], [5] as a case study to explore methods
for automatically refining extracted knowledge bases.

There are two types of knowledge that NELL
would explore and import into the knowledge
base, namely categories and relations. They can be
represented as unary and binary predicates respectively.
For example, Athlete(Tiger Woods) means that
Tiger Woods has the category of Athlete, and
TeamPlaysSports(Lakers, Basketball) means
that Lakers are related to Basketball by the relation
TeamPlaysSports.

NELL starts from a few “seed instances” of each cat-
egory and relation. It uses natural language processing
and information extraction techniques to extract candidate
instances from a large web corpus, using the current facts
in the knowledge base as training examples. NELL has
four subcomponents that extract candidates, namely Pattern
Learner, SEAL, Morphological Classifier, and Rule Learner,
where most candidates are extracted from the first two.

After extracting candidates, NELL’s Knowledge Integrator
(KI) promotes candidate facts to beliefs when they have
support from multiple extraction components or a very high
confidence from a single component. Additionally, NELL
uses coupled training [6], [7] to leverage the ontology
hierarchy or other constraints to filter out or share instances
among predicates. The ontological constraints can be seen
as axioms or rules in first-order logic. For example, we
can represent the ontological constraint that every Athlete

is a Person with the rule: Athlete(x) ⇒ Person(x).
Similarly, since a City is always not a Person, City(x)
⇒ ¬ Person(x), and so on. The KI will not promote an
instance if it violates a constraint with another instance that
is already in the KB.

A major problem of NELL is that the accuracy of the
knowledge it acquires gradually decreases. After the first
month, NELL had an estimated precision of 0.9; after two
more months, precision had fallen to 0.71, nearly tripling
the fraction of incorrect extractions. The underlying reason

is that the extraction patterns are not perfectly reliable,
so some false instances are extracted as well. The false
instances will be used to extract more and more unreliable
extraction patterns and false instances, eventually dominat-
ing the knowledge base. This kind of error propagation is
a common problem of bootstrap learning systems. Coupled
training slows the degradation, but does not entirely prevent
it. NELL also uses periodic human supervision to remove
incorrect facts. However, human labels are often expensive.

C. Other Related Work

Our research is closely related to ontology-based infor-
mation extraction (OBIE) which combines information ex-
traction with knowledge representation by using ontologies
to guide information extraction [8]. Many OBIE systems
only extract instances for classes and property values for
properties. Such OBIE systems include PANKOW [9], [10]),
SOBA [11], OntoSyphon [12], Vulcain [13], and KIM [14].
The Kylin system [15] constructs an ontology based on
the structure of Wikipedia infoboxes. Other potentials of
OBIE include its ability to create semantic contents for the
Semantic web [9] and the ability to use it as a mechanism
of improving ontologies [16], [17].

III. METHODOLOGY

In this section, we begin with the representation of a
knowledge base and associated ontology in Markov logic.
Then we discuss how to extend this model to reason more
intelligently about the extracted knowledge. We conclude by
describing how we make inference and weight learning in
this model tractable.

A. Markov Logic Representation of the Knowledge Base and
Ontology

For simplicity of our MLN, we use a compact rep-
resentation in which the names of categories and rela-
tions (such as Bird, Animal, etc.) are viewed as con-
stants of type “category” or “relation” in the second-
order predicates Cat(x,c) (x is an entity of category
c) or Rel(x,y,r) (x and y have relation r). For ex-
ample, our sample facts from the previous paragraph
would be represented as Cat(Tiger Words, Athlete)

and Rel(Lakers, Basketball, TeamPlaysSports).
In our task, we want to infer the values of Cat(x,c)

and Rel(x,y,r). The formulas we use to capture the joint
distribution of all the ground predicates are as follows.

1) Ontological constraints: The four types of ontological
rules used in NELL are: subsumption among categories and
relations (e.g., every bird is an animal); mutually exclusive
categories and relations (e.g., no person is a location);
inversion (for mirrored relations like TeamHasPlayer and
PlaysForTeam); and the type of the domain and range of
each predicate (e.g., the mayor of a city must be a person).



We represent these constraints using the following pred-
icates: Sub and RSub for the subclass relationships; Mut

and RMut are the mutual exclusion relationships; Inv is
inversion; and Dom and Ran are the domain and range
relationships. These constraints are shown as follows, where
the period (.) at the end represents a hard formula:

Sub(c1,c2) ∧ Cat(x,c1) ⇒ Cat(x,c2).
RSub(r1,r2) ∧ Rel(x,y,r1) ⇒ Rel(x,y,r2).
Mut(c1,c2) ∧ Cat(x,c1) ⇒ ¬ Cat(x,c2).
RMut(r1,r2) ∧ Rel(x,y,r1) ⇒ ¬ Rel(x,y,r2).
Inv(r1,r2) ∧ Rel(x,y,r1) ⇒ Rel(y,x,r2).
Domain(r,c) ∧ Rel(x,y,r) ⇒ Cat(x,c).
Range(r,c) ∧ Rel(x,y,r) ⇒ Cat(y,c).

2) Prior confidence of instances: Facts extracted by an
IE system often have different degrees of confidence, based
on the amount of supporting evidence available. Rather than
simply thresholding or taking the highest-confidence facts
consistent with the current knowledge base, Markov logic
enables us to reason jointly over all facts in order to select
an entire set of facts that is mutually consistent and well-
supported by evidence.

We use CandCat(x,c,conf) and CandRel(x,y,r,

conf) to represent that x has category c with confi-
dence conf, and x and y have relation r with confi-
dence conf. Similarly, we use PromCat(x,c,conf) and
PromRel(x,y,r,conf) to represent the instances actually
promoted to the knowledge base, with confidence conf.
Note that in NELL, the two confidence values may be dif-
ferent, because they are evaluated by different components.

We can incorporate this information using the following
formulas:

w1 · conf CandCat(x,c,conf) ⇒ Cat(x,c)
w2 · conf CandRel(x,y,r,conf) ⇒ Rel(x,y,r)
w3 · conf PromCat(x,c,conf) ⇒ Cat(x,c)
w4 · conf PromRel(x,y,r,conf) ⇒ Rel(x,y,r)

Here wi· conf is the formula weight, which depends on the
IE system’s original confidence. wi can be either set to 1 or
learned from data.

3) Seed instances: Positive and negative seed instances
are fixed to be true and false.

B. Confidences Evaluated by Extraction Patterns

Many IE systems use extraction patterns or rules as
a primary means to generate knowledge [2]. Extraction
patterns are manually or automatically created and may vary
considerably in their effectiveness. If the patterns used to
extract each candidate fact and the reliabilities of them are
provided, this extra information can help us better determine
the truth of the candidate fact.

We use a simple logistic regression model for each cate-
gory or relation to predict the truth of candidate instances.
The features are whether each pattern co-occurs with the
instance in the text, and the coefficients reflect the reliability
of patterns in extracting facts. If the human labels are

available, we can use them to learn the logistic regression
model. When labels are not available, we can still use the
promoted facts in the knowledge base as labels for learning.

Finally the probabilities of candidate facts are incorpo-
rated into the Markov logic by the formulas:

w5· conf PattCat(x,c,conf) ⇒ Cat(x,c)
w6· conf PattRel(x,y,r,conf) ⇒ Rel(x,y,r)

where PattCat(x,c,conf) and PattRel(x,y,r,

conf) represent a category fact Cat(x,c) or a relation
fact Rel(x,y,r) with probability conf learned from
logistic regression models.

C. Weight Learning of Formulas

Ideally, we can adopt standard weight learning algo-
rithms [18] to learn weights of the formulas in Markov logic.
However, these algorithms tend to be slow, especially in
the presence of hard constraints. In this particular problem
though, we notice that all facts are independent when hard
constraints are absent. In this case, the MLN is equivalent
to a logistic regression model. Therefore, we use logistic
regression to approximate the weight learning. There are
only six soft formulas, whose weights are denoted by
wi, i = 1, · · · , 6 in the previous sections. The weight learn-
ing leverages the training labels to automatically determine
how good each measure is for the specific knowledge base.
Since we do not know how a base IE system calculates
the confidence measures, we can also add some simple
transformations of the original measures (e.g., log-odds) as
additional features.

Huynh and Mooney [19] used a similar approach of
learning weights for independent predicates and adding in a
hard transitivity constraint at inference time. Using logistic
regression may sacrifice some accuracy, but it is much faster
than standard Markov logic weight learning algorithms.

D. Inference

Finding the truth value of each fact is a typical MPE
inference task. However, due to the large scale and existence
of hard constraints, MaxWalkSAT [3] for MPE inference did
not produce reasonably good results. As an alternative, we
used MC-SAT [20] to compute the marginal probability of
each candidate category and relation fact.

The major problem we face in inference is that the scale
of an IE system is usually extremely large. For example,
NELL extracted more than 943,000 candidate instances by
the 165th iteration. This number is even larger for later
iterations since the system keeps running and generating
more and more candidates. Lazy inference [21] is a gen-
eral approach to reduce complexity for relational inference
algorithms by only instantiating non-default value atoms
and formulas. However, when the whole ground network is
densely connected and many atoms are supported by weak
evidence, lazy inference still tends to instantiate all those
atoms and therefore becomes very inefficient.



We developed an alternate approach for making these par-
ticular MLN inference problems tractable. First, we notice
that the whole network usually forms several clusters, each
of which represents a domain, such as facts related to sports
or business. Most connections between atoms are between
atoms in the same cluster. Second, for each cluster, we are
mainly concerned with the values of the query atoms, which
for this task consist of the candidate categories and relations
in the domain. Other unknown atoms are only useful for their
role in correctly inferring the query atoms, and therefore
tolerate more error. We treat the query atoms as the center
of the network. The close neighbors of them are added
in to enable the joint inference, but the distant ones are
discarded. In practice, we include 2-hop neighborhood of the
central atoms. We can safely adopt these reductions without
sacrificing too much accuracy.

The idea of this grounding strategy is similar to lazy
inference or cutting plane inference [22]. Compared to lazy
inference, our approach further reduces the complexity for
large scale problems by explicitly controlling the size of
the grounded network. However, unlike lazy inference, it
is not guaranteed to produce the same result, but merely
approximates it. Our method is also similar to expanding
frontier belief propagation (EFBP) [23]. But instead of
dynamically selecting a set of atoms affected by updated
evidence, we generate the set in advance of the inference
phase, which is more efficient and specific for the task.

E. Extensibility of Our Approach

A big advantage of our proposed model compared to
other models is that it provides a general framework to
combine information from different sources, as long as the
information can be represented in first-order logic. This
includes many ontologies, which typically encode a large
amount of domain-specific knowledge and constraints in
first-order logic.

For example, we can easily add extra ontological rules,
such as “There is only one capital for each country”. Some
extensions of NELL and similar IE systems can also be
straightforwardly applied to our model. For instance, Lao et
al. [24] proposed an approach to learn chain rules in NELL
such as “If an athlete x plays for a team y, and team y plays
in league z, then x plays in league z.” The chain rules can
be used to facilitate the system through inference by graph
random walks. In Markov logic, this can be viewed as a
typical structural learning and MPE inference procedure.

IV. EXPERIMENT

A. Methodology

Since NELL is a continuously running system, we used
NELL’s KB by the 165th iteration as a snapshot for our test.
We chose 13 relations and 10 categories, mostly from the
sports domain since this domain is widely used in NELL-
related research for testing. Each relation has about 1,000

Table I
COMPARISON OF ALL 8 METHODS

Method AUC Prec Recall F1
NELL 0.765 0.801 0.580 0.673
MLN 0.804 0.726 0.939 0.819
MLN-P 0.817 0.719 0.937 0.814
MLN-PL 0.823 0.833 0.809 0.821
MLN-O 0.874 0.736 0.946 0.828
MLN-PO 0.881 0.739 0.927 0.822
MLN-PLO 0.899 0.836 0.837 0.836
MLN-PO* 0.840 0.694 0.751 0.721

to 2,000 candidate facts and each category has about 5,000
to 10,000 candidate facts. We randomly sampled about 200
facts for each category and relation, 4,511 in total, as the
test set. We labeled another 9,887 instances from 5 of the
relations and 6 of the categories as the training set.

Our system produces a list of all test instances, ordered
by marginal probability as computed by MC-SAT. We con-
sidered all facts with a probability of at least 0.5 as true,
and all others as false. For NELL, we took the promoted
facts as its result. In addition to precision, recall and F1,
we also compared the two methods using area under the
precision-recall curve (AUC). Our instances were ordered by
their marginal probabilities. For NELL’s result, we ordered
promoted facts by the associated confidence values, followed
by the rest of the candidate facts ordered by their associated
confidences as well. This was necessary because NELL’s
confidence values for promoted and non-promoted facts are
not comparable: some promoted facts have lower confidence
than some non-promoted candidates. Naively ordering all
facts by confidence value led to lower AUCs for NELL.

In order to see how the ontological constraints and pattern
information help the joint inference, we experimented on
several Markov logic networks to compare with NELL:

• MLN: Uses only the candidate and promoted facts (No
extraction patterns or ontological constraints are used);

• MLN-O: MLN adding the ontological constraints;
• MLN-P: MLN adding the extraction patterns, where

confidences evaluated by extraction patterns are trained
using NELL’s promoted facts;

• MLN-PO: MLN-P adding the ontological constraints;
• MLN-PO*: MLN-PO with all wi set to 1;
• MLN-PL: same as MLN-P, except that confidences

evaluated through extraction patterns are trained using
human labeling instead;

• MLN-PLO: MLN-PL adding the ontological con-
straints.

B. Results and Analysis

First, we show a brief comparison of the overall per-
formance of all the 8 methods in Table I. Without the
ontological constraints, the MLNs are equivalent to logistic
regression models of individual training instances. Table I



shows that MLN, MLN-P and MLN-PL achieve better AUCs
and F1 than naively trusting NELL’s promoted facts.

The MLNs with ontological constraints, on the other
hand, leverage the dependencies between the instances in
the joint inference. All the three models with ontological
constraints outperform their counterparts without ontological
constraints.

The comparison of MLN-O, MLN-PO and MLN-PLO’s
results show that adding pattern information as an extra
feature improves the overall performance. When the labeled
training data are available, the results are even better than
using NELL’s promoted facts as the training data. However,
the latter approach can be extended to any new categories
or predicates without extra labels, while the former one
needs labels in all the categories and predicates to train the
pattern’s logistic regression model.

It would also be interesting to look into the performances
of individual predicates. Due to the limitation of space, we
show the detailed overall and per-predicate performance only
for NELL, MLN-PO* and MLN-PLO in Table II. MLN-PO*
does not use any labeled training data so it is perfectly fair
to be compared with NELL, while MLN-PLO is the best
MLN with the training data.

As we can see from the table, MLN-PLO has better F1
than NELL in 19 out of 23 predicates, and better AUCs in
16 out of 23 predicates. For the 8 relations and 4 categories
that have no labeled training data, MLN-PLO outperforms
in 5 relations and 4 categories for F1, and in 3 relations and
3 categories for AUC. MLN-PO* does somewhat better on
the relations and categories with no labeled data, obtaining
a higher AUC than NELL for 3 out of 4 categories and 6 out
of 8 relations, and a higher F1 for all 4 categories and 7 out
of 8 relations. Therefore, while both methods are effective,
MLN-PO* appears to better generalize to new categories
and relations since it does not rely on any training data.

Although the increases in precision and recall are modest,
we are able to obtain them using only the information that
NELL is already using. These gains are realized by replacing
NELL’s heuristic logical inference with a sound statistical
relational approach that considers the joint uncertainty of
many facts. The results show that our use of joint proba-
bilistic inference is effective.

C. Discussion

We may further look at some examples to see how exactly
our approach refines the knowledge base and cleans the
potential errors.

In the first example, ProducesProduct is a relation
whose domain is Company and range is Product. (Adobe,
Acrobat reader software) and (Adobe, Acrobat

reader version) are both candidate instances of
ProducesProduct and have the same initial confidence.
Our approach notices that Acrobat reader software

has a higher confidence value (and thus higher probability)

Table II
COMPARISON OF KNOWLEDGE INSTANCE RESULTS BY PREDICATE

F1 AUC
Predicate NELL PO* PLO NELL PO* PLO
All 0.673 0.719 0.836 0.765 0.840 0.899
Relations with training data
AthletePlaysForLeague 0.719 0.723 0.973 0.948 0.917 0.982
AthletePlaysSport 0.708 0.961 0.972 0.939 0.947 0.983
StadiumLocatedInCity 0.413 0.413 0.433 0.668 0.610 0.669
TeamHomeStadium 0.423 0.430 0.876 0.941 0.927 0.918
TeamPlaysInLeague 0.419 0.466 0.939 0.979 0.997 0.996
Relations without training data
TeamPlaysSport 0.571 0.803 0.916 0.916 0.925 0.866
TeamWonTrophy 0.640 0.687 0.742 0.721 0.733 0.826
ProducesProduct 0.560 0.580 0.589 0.683 0.687 0.742
Acquired 0.605 0.617 0.591 0.650 0.740 0.639
CityCapitalOfCountry 0.869 0.800 0.797 0.936 0.928 0.814
ActorStarredInMovie 0.570 0.764 0.557 0.814 0.828 0.837
AthletePlaysForTeam 0.395 0.402 0.992 0.986 0.988 0.967
TeamPlaysInCity 0.410 0.435 0.583 0.718 0.654 0.467
Categories with training data
SportsTeam 0.962 0.977 0.969 0.979 0.997 0.996
Athlete 0.973 0.984 0.984 0.954 0.993 0.999
SportsLeague 0.467 0.516 0.812 0.597 0.541 0.843
StadiumOrEventVenue 0.940 0.958 0.960 0.946 0.953 0.964
AwardTrophyTournament 0.430 0.189 0.549 0.396 0.815 0.649
City 0.960 0.982 0.956 0.988 0.999 0.998
Categories without training data
Sport 0.691 0.746 0.723 0.717 0.697 0.708
Country 0.326 0.379 0.500 0.346 0.462 0.614
Movie 0.448 0.730 0.465 0.534 0.670 0.690
Vegetable 0.353 0.417 0.626 0.332 0.406 0.572

than Acrobat reader version to be an instance of
product. Therefore it assigns a higher probability to the
former relation instance than the latter one. NELL also
uses type checking constraints, but its logical approach
only allows the true relation instance to identify the true
category instance, not vice versa.

Another example is that the entity Los Angeles

county is extracted as a candidate for two disjoint cate-
gories City and County. Although the former is wrong, it
was extracted first and got promoted since it had strong sup-
porting evidence at that time. The latter was not promoted
by NELL because it violated the mutual exclusion rule with
an existing fact, even though it has stronger evidence. In this
case, our joint inference framework is able to smartly reason
about contradictory instances using all available information,
rather than stubbornly enforcing earlier decisions.

V. CONCLUSION AND FUTURE WORK

We have proposed a method for cleaning an automati-
cally extracted knowledge base using Markov logic. Our
method uses probabilistic inference to simultaneously reason
about the truth values of many related facts. This is an



improvement on systems such as NELL, which uses logical
inference and heuristics to update its knowledge base. Our
proposed model is also a generic approach that can be
extended with other sources of knowledge and constraints
in first-order logic. Preliminary experiments show that our
method achieves better F1 score and AUC than NELL’s
knowledge base. We also developed a custom local ground-
ing method to make inference in this problem tractable.
By learning weights with logistic regression for different
matched patterns, we are able to create a confidence measure
that is better calibrated than NELL’s. In the future work,
we would also like to explore doing unsupervised or semi-
supervised learning, to automatically learn the strength of
these relationships without requiring many human labels.
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