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Outline	

•  Why	do	we	need	adversarial	modeling?	
–  Because	of	the	dream	of	AI	
–  Because	of	current	reality	
–  Because	of	possible	dangers	

•  Our	ini-al	approach	and	results	
–  Background:	adversarial	learning	+	collec-ve	
classifica-on	

–  Robustness	through	adversarial	simula-on	
[Torkamani	&	Lowd,	ICML’13]	

–  Robustness	through	regulariza-on	
[Torkamani	&	Lowd,	ICML’14]	
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What	is	StarAI?	
“Theore-cally,	combining	logic	and	probability	in	a	unified	
representa-on	and	building	general-purpose	reasoning	tools	
for	it	has	been	the	dream	of	AI,	da-ng	back	to	the	late	1980s.	
Prac-cally,	successful	StarAI	tools	will	enable	new	applica-ons	
in	several	large,	complex	real-world	domains	including	those	
involving	big	data,	social	networks,	natural	language	
processing,	bioinforma-cs,	the	web,	robo-cs	and	computer	
vision.	Such	domains	are	o\en	characterized	by	rich	rela-onal	
structure	and	large	amounts	of	uncertainty.	Logic	helps	to	
effec-vely	handle	the	former	while	probability	helps	her	
effec-vely	manage	the	la^er.	We	seek	to	invite	researchers	in	
all	subfields	of	AI	to	a^end	the	workshop	and	to	explore	
together	how	to	reach	the	goals	imagined	by	the	early	AI	
pioneers.”		[www.starai.org]	
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The	dream	of	AI:	
Unifying	logic	and	probability!	



Who	is	StarAI?	
“Specifically,	the	workshop	will	encourage	ac-ve	par-cipa-on	
from	researchers	in	the	following	communi-es:	
•  sa-sfiability	(SAT)	
•  knowledge	representa-on	(KR)	
•  constraint	sa-sfac-on	and	programming	(CP)	
•  (induc-ve)	logic	programming	(LP	and	ILP)	
•  graphical	models	and	probabilis-c	reasoning	(UAI)	
•  sta-s-cal	learning	(NIPS,	ICML,	and	AISTATS)	
•  graph	mining	(KDD	and	ECML	PKDD)	
•  probabilis-c	databases	(VLDB	and	SIGMOD).”	
[www.starai.org]	
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Who	is	StarAI?	
“It	will	also	ac-vely	involve	researchers	from	more	applied	
communi-es,	such	as:	
•  natural	language	processing	(ACL	and	EMNLP)	
•  informa-on	retrieval	(SIGIR,	WWW	and	WSDM)	
•  vision	(CVPR	and	ICCV)	
•  seman-c	web	(ISWC	and	ESWC)	
•  robo-cs	(RSS	and	ICRA).”	
[www.starai.org]	
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Almost	everyone	doing	
AI	research!	



Sta-s-cal	Rela-onal	AI	

•  The	real	world	is	complex	and	uncertain	
•  Logic	handles	complexity	
•  Probability	handles	uncertainty	
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Adversarial	Sta-s-cal	Rela-onal	AI	

•  The	real	world	is	complex,	uncertain,	
and	adversarial	

•  Logic	handles	complexity	
•  Probability	handles	uncertainty	
•  Game	theory	handles	adversarial	interac-on	
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• Include	researchers	in	mul--agent	systems	
(AAMAS)	and	security	(CCS)	

If	you	want	to	unify	AI,	why	stop	
with	logic	and	probability?	
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Example:	Social	Network	Spam	
Which	users	are	spammers?	

Image	credit:	[Fakhraei	et	al.,	2015]	
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Figure 1: A time-stamped multi-relation social network with
legitimate users and spammers. Each link hv

1

, v

2

i in the
network represents an action (e.g. profile view, message, or
poke) performed by v

1

towards v
2

at specific time t.

late. Furthermore, many social networks can not monitor
all the generated contents due to privacy and resources con-
cerns. Content-independent frameworks, such as the one
proposed in this paper, can be applied to systems that pro-
vide maximum user privacy with end-to-end encryption.

Perhaps the most important di↵erence between social net-
works and email or web graphs is that social networks have
a multi-relational nature, where users have relationships of
di↵erent types with other users and entities in the networks.
For example, they can send messages to each other, add
each other as friends, “like”each other’s posts, and send non-
verbal signals such as “winks” or “pokes.” Figure 1 shows a
representation of a social network as a time-stamped multi-
relation graph. The multi-relational nature provides more
choices for spammers, but it also empowers detection sys-
tems to monitor patterns across activity types, and time.
In this paper, we propose a content-independent framework
which is based on the multi-relational graph structure of
di↵erent activities between users, and their sequences.

Our proposed framework is motivated by Tagged.com, a
social network for meeting new people which was founded
in 2004 and has over 300 million registered members. More
generally, the framework is applicable to any multi-relational
social network. Our goal is to identify sophisticated spam-
mers that require manual or semi-automated intervention
by the administrative security team. These spammers have
already passed initial classifiers and know how to manipu-
late their accounts and contents to avoid being caught by
automatic filters. We show that our framework significantly
reduces the need for manual administration to control spam.

Our framework consists of three components. First, we
extract graph structure features for each of the relations
and show that considering the multi-relational nature of the
graphs improves the performance. Second, we consider the
activity sequence of each user across these relations and ex-
tract k -gram features and employ mixtures of Markov mod-
els to label spammers. Third, we propose a statistical re-
lational model based on hinge-loss Markov random fields to
perform collective reasoning using signals from an abuse re-
porting system in the social network.

The following sections formally define the problem and our
solution framework along with an experimental validation of
our approach on internet-scale data from Tagged.com.

2. PROBLEM STATEMENT
We represent a social network as a directed time-stamped

dynamic multi-relational graph G = hV, Ei, where V is the
set of vertices of the form v = hf

1

, . . . , f

n

i representing
users and their demographic features f

i

, and E is the set
of directed edges of the form e = hv

src

, v

dst

, r

i

, t

i

i represent-
ing their interactions, relation type r

i

, and a discrete time-
stamp t

i

. The social spam detection problem is to predict
whether v

i

with an unobserved label is a spammer or not,
based on the given network G and a set of observed labels
for already identified spammers. Since the deployed security
system could employ di↵erent measures based on the clas-
sification confidence, we are interested in (un-normalized)
probabilities or ranking scores of the likelihood that each
user is a spammer. In other words, the problem is assign-
ment of a score (e.g., a probability) to user accounts to rank
them from the most to the least probable spammer in the
system: c : v

i

! [0, 1].

3. OUR METHOD
In our framework, we focus on three di↵erent mechanisms

to identify spammers and malicious activities. We first cre-
ate networks from the user interactions and compute net-
work structure features from them. As these are evolving
networks, each user generates a sequence of actions with the
passage of time. Mining these sequences can provide valu-
able insights into the intentions of the user. We use two
methods to study these sequences and extract features from
them. We use the output of these methods as features to
classify spammers. We then employ a collective model to
identify spammer accounts only based on the signals from
the abuse reporting system (G

report

) as a secondary source
to reassure predictions. The following sections discuss our
framework and extracted features in more details.

3.1 Graph Structure Features (XG)
We create a directed graph G

r

= hV, E
r

i for each relation r

in the social network, where vertices V consist of users, and
edges E

r

represent interactions of type r between users, e.g.
if user

1

sends a message to user
2

then G
message

will contain v

1

and v

2

representing the two users, and e

1,2

representing the
relation between them. We have ten di↵erent graphs each
containing the same users as vertices but di↵erent actions
as edges.
We use Graphlab CreateTM3 to generate features based

on each of these graphs for each user. We use six graph
analytics methods m

i

to compute the features. Using each
m

i

we create a set of features for each relation graph G
r

as
following:

Xmi
Gr

=
h
Xmi

Gr1
. . . Xmi

Grn

i

where m

i

is one of the graph analytics methods described
below, and r

i

is one of the relationships considered in the
study.
We then use these features together to get a complete

multi-relational graph feature-set, as the following:

Xm
Gr =

⇥
Xm1

Gr
. . . X

mk
Gr

⇤

The graph analytics methods m

i

we use to extract the
features from each relation network are described in the fol-
3

http://dato.com/products/create

2



Example:	Fraud	Detec-on	
in	Online	Auc-ons	

Which	people	are	fraudsters	or	accomplices?	

Image	credit:	[Chau&al06]	

104 D.H. Chau, S. Pandit, and C. Faloutsos 

 
(a)  Initial (b) Labeled (c) Manually labeled 

Fig. 1. 2LFS in action: (a) given graph (b) after labeling by 2LFS: fraud (red triangles), honest 
(green circles), “accomplices” (yellow diamonds) (c) after manual rearrangement, to highlight 
the “bipartite cores”. The nodes in the two black rectangles are confirmed fraudsters.  

The goal of our work is to treat the auction fraud problem systematically, using 
data mining and machine learning techniques to spot unnatural patterns in auctions. 
We propose the 2LFS algorithm, and illustrate its effectiveness on real, public data 
from a large auction site. Figure 1(a) illustrates a small graph from the large auction 
site, in which it is difficult to spot any suspicious patterns. The result of labeling by 
2LFS is shown in Figure 1(b). Fraudsters are the red triangles and honest users are the 
green circles. The yellow diamonds correspond to accomplices, which we will discuss 
in detail later in the paper. Figure 1(c) shows the same graph after manual rearrange-
ment so that nodes with the same label are grouped together. Now we can clearly 
observe the existence of a bipartite core between the fraudsters and accomplices. As 
we will explain later, such bipartite cores are a tell-tale sign of a popular fraud 
scheme. In fact, the nodes in the two rectangles in Figure 1(c) are confirmed fraud-
sters, who have received many negative feedbacks from buyers who had paid for 
items that never got delivered.  

The rest of the paper is organized as follows. Section 2 provides an overview of re-
lated work. Section 3 describes the auction fraud detection problem. Section 4 de-
scribes in detail the 2LFS algorithm. Section 5 provides empirical evidence for the 
effectiveness, robustness and scalability of our method. Section 6 discusses some 
observations on how easily we can generalize our method to other fraud detection 
problems. Finally, we present a brief summary of our results in Section 7 with point-
ers for future work. 

2   Related Work 

To the best of our knowledge, this is the first work that uses a systematic approach to 
analyze and detect electronic auction frauds. We survey earlier attempts to detect such 
frauds, as well as literature related to trust propagation. 

Auction Frauds and Reputation Systems. Reputation systems are extensively used 
by electronic auctions to prevent frauds. Although helpful, these systems are very sim-
ple and can be easily foiled. To study the effectiveness of today’s reputation systems, 
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Example:	Securi-es	Dealers	

Image	credit:	[Neville&Jensen07]	

NEVILLE AND JENSEN
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Figure 13: RDN for the NASD data set (1999).
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Figure 14: RDN for the WebKB data set.

RDNRPT models. Recall that the RDNRBC uses the entire set of attributes in the resulting subgraphs
and the RDNRPT performs feature selection over the attribute set.

Figure 15 shows AUC results for the first three model types on the five prediction tasks. (We
discuss RMN results below.) Figure 15a graphs the results of the RDNRPT , compared to the RPT
conditional model. Figure 15b graphs the results of the RDNRBC, compared to the RBC conditional
model.

The graphs show AUC for the most prevalent class, averaged over a number of training/test
splits. For Cora, IMDb, and NASD, we used temporal sampling where we learned models on one
year of data and applied the models to the subsequent year. There were four temporal samples for
IMDb and NASD, and five for Cora. For WebKB we used cross-validation by department, learning
on three departments and testing on pages from the fourth, held-out department. For Gene there
was no clear sampling choice, so we used ten-fold cross validation on random samples of genes.
When there were links between the test and training sets, the class labels of the training set were
made available to the RDNs and RMNs for use during inference. We used two-tailed, paired t-tests
to assess the significance of the AUC results obtained from the trials. The t-tests compare the RDN
results to the conditional and ceiling models, with a null hypothesis of no difference in the AUC.

680

Which	brokers	are	likely	to	receive	
complaints	in	the	future?	
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More	Examples	

•  Web	spam	
•  Worm	detec-on	
•  Fake	reviews	
•  Counterterrorism	
	 Common	themes:	

1.  Adversaries	can	be	detected	by	their	
rela-onships	as	well	as	their	a^ributes.	

2.  Adversaries	may	change	their	behavior	
to	avoid	detec-on.	

12	



Outline	

•  Why	do	we	need	adversarial	modeling?	
–  Because	of	the	dream	of	AI	
–  Because	of	current	reality	
–  Because	of	possible	dangers	

•  Our	ini-al	approach	and	results	
–  Background:	adversarial	learning	+	collec-ve	
classifica-on	

–  Robustness	through	adversarial	simula-on	
[Torkamani	&	Lowd,	ICML’13]	

–  Robustness	through	regulariza-on	
[Torkamani	&	Lowd,	ICML’14]	

13	



Robustness	and	Safety	in	AI	

•  Many	AI	systems	interact	with	people	–		
this	is	a	vulnerability	and	a	liability.	

•  How	can	we	know	that	an	AI	system	is	correct,	
safe,	or	robust?	

•  Adversarial	reasoning	and	modeling	can	help	
build	more	robust	systems	by	op-mizing	
pessimis-cally.	
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Related	Work	on	Mul--Agent	StarAI	

•  Poole,	1997:	Independent	Choice	Logic	
•  Repnger	et	al.,	2008:	A	Sta-s-cal	Rela-onal	
Model	for	Trust	Learning	

•  Lippi,	2015:	Sta-s-cal	Rela-onal	Learning	for	
Game	Theory	
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Outline	

•  Why	do	we	need	adversarial	modeling?	
–  Because	of	the	dream	of	AI	
–  Because	of	current	reality	
–  Because	of	possible	dangers	

•  Our	ini-al	approach	and	results	
–  Background:	adversarial	learning	+	collec-ve	
classifica-on	

–  Robustness	through	adversarial	simula-on	
[Torkamani	&	Lowd,	ICML’13]	

–  Robustness	through	regulariza-on	
[Torkamani	&	Lowd,	ICML’14]	
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Special	Case:	
Sta-c	Predic-on	Games	

•  In	general,	we	may	have	arbitrary	agents,	
u-lity	func-ons,	and	game	structures.	Hard.	

•  Predic-on	games	
– First	player	chooses	the	model	(e.g.,	spam	filter)	
– Second	player	chooses	the	test	data	(e.g.,	spam)	

•  Domains:	Social	network	spam,	online	auc-on	
fraud,	bad	securi-es	dealers,	web	spam,	fake	
reviews,	and	more!	
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Example:	Spam	Filtering	

cheap	=		1.0	
mortgage	=		1.5	

Total	score	=		2.5	

From: spammer@example.com 
Cheap mortgage now!!!   

Feature	Weights	

>	1.0	(threshold)	

1.	

2.	

3.	

Spam	
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Example:	Spammers	Adapt	

cheap	=		1.0	
mortgage	=		1.5	
Eugene	=	-1.0	
Oregon	=	-1.0	

Total	score	=		0.5	

From: spammer@example.com 
Cheap mortgage now!!! 
Eugene  Oregon 

Feature	Weights	

<	1.0	(threshold)	

1.	

2.	

3.	

OK	
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Example:	Classifier	Adapts	

cheap	=		1.5	
mortgage	=		2.0	
Eugene	=	-0.5	
Oregon	=	-0.5	

Total	score	=		2.5	

Feature	Weights	

>	1.0	(threshold)	

1.	

2.	

3.	

OK	Spam	

From: spammer@example.com 
Cheap mortgage now!!! 
Eugene  Oregon 
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Adversarial	Classifica-on	as	a	Game	

•  Learner	selects	a	classifier	c.	
•  Adversary	selects	modified	evidence	x.	
•  Each	receives	a	reward	based	on	how	correct	the	
classifier	was	and	how	corrupt	the	evidence	was.	

21	

Previous	work:	Assumes	instances	are	independent!	
	
(e.g.,	Dalvi&al04;	Globerson&Roweis06;	Teo&al08;	
Dekel&Shamir08;	Xu&al09;	Brückner&Scheffer09;	
Brückner&Scheffer11)	



Collec-ve	Classifica-on	

Label	a	set	of	objects	using	the	rela-onships	
among	them	as	well	as	their	a^ributes.	
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Markov	Logic	Networks	
A	Markov	Logic	Network	(MLN)	is	a	log-linear	model	where	the	
features	are	counts	of	sa-sfied	formulas.	Given	a	finite	set	of	
constants,	this	defines	a	probability	distribu-on	over	possible	
worlds:	
	
	
	
	
	

Weight of formula i No. of true groundings of formula i in x 

logP(x) = wini (x)
i
∑ − A

logP(y | x) = wTφ(x, y)− A(x)
Condi-onal	distribu-on	of	query	atoms	(y)	given	evidence	(x):	

= wTφ(x)− A

= score(w, x, y)− A(x)
23	



Markov	Logic	Networks	
for	Collec-ve	Classifica-on	

	
1.	The	label	for	an	object	o	depends	on	its	a^ributes:	

 HasAttribute(o,+a) ⇒ Label(o,+c) 
	
2.	Related	objects	are	more	likely	to	have	similar	labels:

 Related(o,o’) ∧ Label(o,+c) ⇒ 
  Label(o’,+c) 

	
Create	copies	of	these	rules	for	each	class	and	a^ribute,	
and	then	learn	a	weight	for	each	rule.	
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Goal:	Select	w	to	maximize	the	margin	between	true	
labeling						and	any	alternate	labeling					.	

Max-Margin	Weight	Learning	

y0

25	

Maximize	the	margin	
+	weighted	slack	variable	

y

Score	of	the	
true	labeling	

Score	of	an	
alternate	labeling	

Differences	
between	the	
labelings	

min
w

1

2
w

T
w + C⇠

s.t. score(w, x, y) � score(w, x, y0) +�(y, y0)� ⇠ 8y0



Goal:	Select	w	to	maximize	the	margin	between	true	
labeling						and	any	alternate	labeling					.	

Learner’s	loss	from	the	best	
alternate	labeling	

(biggest	margin	viola-on)	

L2	regularizer	
on	the	weights.	

Max-Margin	Weight	Learning	

y y0
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min

w

1

2

w

T
w + C

✓
max

y0
[score(w, x, y

0
)� score(w, x, y) +�(y, y

0
)]

◆



Special	Case:	
Associa-ve	Markov	Networks	

•  If	the	weights	of	the	second	formula	are	posi-ve,	then	
linked	nodes	are	more	likely	to	have	the	same	label:	

•  Inference	can	be	done	in	polynomial	-me		
with	graph	cuts	or	as	a	linear	program.	
[Kolmogorov&Zabin04]	

•  Learning	can	be	done	in	polynomial	-me		
with	a	convex	quadra-c	program.	[Taskar&al04]	
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Outline	

•  Why	do	we	need	adversarial	modeling?	
–  Because	of	the	dream	of	AI	
–  Because	of	current	reality	
–  Because	of	possible	dangers	

•  Our	ini-al	approach	and	results	
–  Background:	adversarial	learning	+	collec-ve	
classifica-on	

–  Robustness	through	adversarial	simula-on	
[Torkamani	&	Lowd,	ICML’13]	

–  Robustness	through	regulariza-on	
[Torkamani	&	Lowd,	ICML’14]	

28	



Adversarial	Collec-ve	Classifica-on	
We	want	to	robustly	label	related	en--es	who	
are	ac-vely	working	to	avoid	detec-on.	

Assume:	Adversary	can	modify	up	to	D	a^ributes.	
(e.g.,	add/remove	words	from	spam	web	pages)	
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Convex	Adversarial	Collec-ve	Classifica-on	
Modify	our	associa-ve	Markov	network	by	assuming	a	
worst-case	adversary:	

Enforce	a	margin	between	true	labeling	and	alternate	
labeling	given	worst-case	adversarially	modified	data.	

�(x, x0)  D

30	

s.t.

min

w

1

2

w

T

w + C

✓
max

x

0
,y

0
[score(w, x

0
, y

0
)� score(w, x

0
, y) +�(y, y

0
)]

◆



Reformula-ng	as	a	quadra-c	program:	
1.  Remove	bilineari-es	in	the	score	func-on	by	introducing	

auxiliary	variables.	
2.  Replace	the	inner	maximiza-on	with	its	dual	minimiza-on	

problem.	
	
Theorem:	For	binary-valued	labels	and	features,	the	
adversary’s	maximiza-on	has	an	integral	solu-on.		
Thus,	the	relaxed	learning	problem	is	exact.	

	
(Can	be	extended	with	mul-ple	types	of	rela-ons,	
as	long	as	all	are	associa-ve.)	

Convex	Adversarial	Collec-ve	Classifica-on	
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Datasets	
•  Poli-cal	blogs	

–  2004	blog	data	collected	by	Adamic	(2005)	
– We	recrawled	in	February	2012	and	May	2012	to	
add	words,	remove	dead	blogs.	

–  Selected	100	words	with	mutual	informa-on	
•  Reuters	

–  4	classes	from	the	ModApte	split:	crude,	grain,	
trade,	money-fx	

–  Split	into	7	-me	periods,	each	with	300-400	ar-cles	
– Added	links	to	2	most	similar	ar-cles	(TF-IDF)	
–  Selected	200	words	with	mutual	informa-on	
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Experimental	Methods	

	
	
	
	
	
Tuning:	Select	parameters	to	maximize	performance	on	
valida-on	data	against	adversary	who	could	modify	
10%	of	the	a^ributes.	

Evalua-on:	Measured	accuracy	on	test	data	against	
simulated	adversaries	with	budgets	from	0%	to	25%.	
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Method	 Rela@onal?	 Adversarial?	
Linear	SVM	 No	 No	
SVM-Invar	[Teo&al08]	 No	 Yes	
AMN	[Taskar&al04]	 Yes	 No	
CACC	[Torkamani&Lowd13]	 Yes	 Yes	



Results:	Poli-cal	Blogs,	
Tuned	for	10%	adversary	
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Results:	Reuters,	
Tuned	for	10%	adversary	
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Weight	Distribu-on	
Intui-vely,	if	an	adversary	can	change	some	of	the	a^ributes	

then	we	want	to	avoid	placing	high	weights	on	any	a^ributes.	
CACC	does	this	automa-cally:	
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Adversarial	Regulariza-on	

•  Empirically,	op-mizing	performance	against	a	
simulated	adversary	can	lead	to	bounded	weights.	

•  What	if	we	avoid	simula-ng	the	adversary	and	
instead	just	bound	the	weights?	

•  We	can	show	that	the	two	are	equivalent!	
(Under	a	slightly	different	adversarial	model	than	we	used	before.)	

•  More	generally,	we	can	achieve	adversarial	
robustness	on	any	structured	predic-on	problem	by	
adding	a	regularizer.	
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Adversarial	Model	

•  Previously,	we	assumed	the	adversary	could	
modify	the	evidence,	x,	by	a	small	number	of	
changes.	

•  Now	we	assume	that	the	adversary	can	modify	
the	feature	vector,	φ(x,y),	by	a	small	vector	δ/2.	
–  Thus,	they	can	modify	the	difference	between	two	
feature	vectors,	φ(x,y’)	–	φ(x,y),	by	δ.	

–  Thus,	they	can	modify	the	difference	between	two	
scores,	score(w,x,y’)	–	score(w,x,y),	by	wTδ.	
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Op-miza-on	Problem	

Which	is	equivalent	to:	
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Ellipsoidal	Uncertainty	

Suppose	the	adversary	is	constrained	by	a	norm:	

Theorem:	Robustness	over	S	is	equivalent	to	adding	the	
dual	norm	as	a	regularizer:	
	

	
Special	case:	For	L1	ball,	the	dual	norm	is											(max).	

S = {�| ||M�||  1}

L1

(c.f.	[Xu	et	al.,	2009]	for	robustness	of	regular	SVMs.)	
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Polyhedral	Uncertainty	
Suppose	the	adversary	is	constrained	to	a	polyhedron:	
	
Theorem:	Robustness	over	S	is	equivalent	to	adding	a	
linear	regularizer	in	a	transformed	weight	space:	
	
	
	
	
We	can	also	let	S	be	the	intersec-on	of	a	polyhedron	and	
an	ellipsoid	and	obtain	a	generaliza-on	of	both	results.	

S = {�|A�  b}
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Robustly	Classifying	11	years	of	Poli-cal	Blogs	

2012	2011	2010	2009	2008	2007	2006	2005	2003	 2004	 2013	

Iraq	War	

•  Goal:	Label	each	blog	as	liberal	or	conserva-ve	
•  Poli-cal	blogs	dataset	(Adamic	and	Glance,	2005)	

+	bag-of-words	features	from	each	year	
•  Train/tune	on	2004	and	test	on	every	year.	
•  Robust	model:	Assume	adversary	can	modify	up	to	k	words	and	k	links.	
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Ongoing	Work:	
Large-Scale	Applica-ons	

•  Comment	spam	on	YouTube	
•  Abuse	and	spam	on	SoundCloud	
•  Social	network	spammers	on	Tagged.com	
•  Fraudulent	images	(DARPA	MediFor	program)	
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• Mul-ple	types	of	rela-ons	
•  Complex	adversaries	
• Millions	of	objects	to	label	

Challenges:	



Detec-ng	Spammy	Comments	
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Detec-ng	Spammy	Comments	
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Detec-ng	Spammy	Comments	
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Detec-ng	Spammy	Comments	
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Detec-ng	Spammy	Comments	
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Adversary	Response	
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Open	Ques-ons	

•  Non-zero-sum	games	
•  Represen-ng	strategies:	
Weights,	decision	nodes,	distribu-ons?	

•  Integrate	with	planning,	reinforcement	
learning	

•  When	is	adversarial	modeling	unnecessary?	
•  Best	methods	for	valida-ng	adversarial	
models	(outside	of	industry)	
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Conclusion	
•  StarAI	needs	adversarial	modeling	

–  To	fulfill	long-term	AI	vision	
–  To	solve	current	applica-ons	
–  To	improve	robustness/safety	

•  Two	ways	to	learn	robust	rela-onal	classifiers:	
–  Embed	the	adversary	inside	the	op-miza-on	problem	
–  Construct	an	equivalent	regularizer	
(Special	case:	set	a	maximum	weight!)	

–  Empirically,	these	models	are	robust	to	malicious	
adversaries	and	non-malicious	concept	dri\.	

•  Many	open	ques-ons	and	challenges!	
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