# On Multi-Point, In-Network Filtering of Distributed Denial-of-Service Traffic

Mingwei Zhang, Lumin Shi, Devkishen Sisodia, Jun Li (UOregon),
Peter Reiher (UCLA)
IM 2019
April 10th, 2019





# Outline

- Background on DDoS attacks and defense
- Modeling the in-network defense algorithms
  - Types of algorithms
  - Cost of defense
  - Performance metrics
- Performance Evaluation of defense algorithms
- Conclusion

# Distributed Denial-of-Service (DDoS) Attacks

**TECHNOLOGY** 

# Mirai offshoot offers 'greater firepow

ABTV

# **Arbor Networks: 1.7Tbit/s DDoS Attack Sets Record**



#### ts Twitter, Spotify, Reddit

d Dyn, a company that provides core Internet Reddit and a host of other sites, causing outage

and slowness for many of Dyn's customers.



Twitter is experiencing problems, as seen through the social media platform Hootsuite.

# Distributed Denial-of-Service (DDoS) Attacks

- Utilizing large number of compromised to hosts to send junk traffic
  - Traditional Botnet
  - IoT Botnets
- Use reflectors to amplify volume of traffic
  - DNS
  - NTP
- Volume reaches Terabits-per-second le
  - 2016, Dyn DNS (Mirai Botnet): 1.2 Tbps
  - 2018, GitHub: 1.3 Tbps
  - 2018, Arbor: 1.7 Tbps
- It's getting worse



# Attacks in 2015



http://www.digitalattackmap.com/

# Attacks in 2019



http://www.digitalattackmap.com/



# DDoS Defense in Tbps DDoS Era

- Arms' race between DDoS Protection Services and Attackers
  - Larger attacks -> bigger pipes
  - Bigger pipes -> larger attacks
- Problem 1: capacity hard to catchup
  - CloudFlare has 30 Tbps of capacity<sup>[1]</sup>
  - But that's shared across all of it's customers
- Problem 2: congestion before reaching defense points
  - Overwhelming traffic aggregates before reaching the point of filtering
- Solution: defend on multiple points and earlier

### In-network DDoS Defense

- In-network defense:
  - Happens inside the Internet
  - Multiple ASes collaborating for defense
  - Filters traffic before reaching the victim
- Benefits
  - Scalable: no single-entity should handle the whole defense burden
  - Effective: defense happen early on, less traffic to cause congestion
- Requirement: collaboration
  - Remotely Triggered Black Hole (RTBH): RFC5635, RFC7999
  - BGP FlowSpec
- Why don't people use them already?
  - 1. Many types of in-network defense
  - 2. No guidelines for what to use which types defense
  - 3. No cost/performance comparison among types of defenses

# In this study

- Summarize the in-network defense algorithms from the current literature
  - Propose improved algorithm
- Performance evaluation quantitatively across defense algorithms
  - Cost of the defense
  - Performance of the defense
- Based on evaluation results, provide usable guidelines on when to use what types of collaborative defense

# Modeling and Quantitative Comparison of the In-network DDoS Defense Algorithms

### In-network Defense

- Assuming infrastructure in place, where should we place the filters?
- Two basic types of in-network defense algorithms in the literature
  - PushBack: push defense from the victim to the source if pressure mounts
  - SourceEnd: place filters at the sources

MiddlePolice[10], Keromytis et al.[24], Andersen et al.[25]

| • Ot | Work                                                          | Single-AS | Multi-AS |           |     |
|------|---------------------------------------------------------------|-----------|----------|-----------|-----|
| • 00 | WOIR                                                          | Single-AS | PushBack | SourceEnd | Oth |
| mι   | RADAR[11], Sahay et al.[12], SPIFFY[13], Bohatei[14]          | <b>✓</b>  |          |           | _   |
|      | ScoreForCore[15], Yau et al.[16], Mahajan et al.[9]           |           | <b>✓</b> |           |     |
|      | FireCol[17], DefCOM[8], AITF[18], COSSACK[19],                |           |          |           |     |
|      | StopIt[20], D-WARD[21], Argyraki et al.[22], Huici et al.[23] |           |          | Ť         |     |
|      |                                                               | I .       |          |           |     |

TABLE I: DDoS defense solution categorizations

# In-network DDoS Defense Algorithms



# What algorithm should we use?

- Plenty of weapons in hand, what are the most effective?
  - Cost
  - Performance
- In-network defense doesn't come without cost
  - ASes involved in defenses
  - Filtering rules needed for defenses
- Performance metrics
  - Traffic reached to the victim
  - Traffic running on the Internet before reaching the victim

# Cost of In-network DDoS Defense

- Cost of collaborative defense is not negligible
- Dmax: Number of ASes participating in defense
- Rmax: Number of filtering rules

#### DDoS Traffic Leakage and Pollution

- Metrics for evaluating a DDoS defense solution:
  - Leakage: how much traffic leaked through the defense line?
  - Pollution: how much traffic running across the Internet before filtered?
- Why do we care about pollution?
  - Less pollution, less congestion



#### Simulation-based Evaluation

- Build topology route data from all collectors of RouteViews and RIPE RIS
- Simulate DDoS attacks using real-world attack traces
  - Attack collected by CAIDA/UCSD in 2007
  - Δttack on RADR service collected by Merit in 2016

| Trace name      | # of sources | # of source ASes |
|-----------------|--------------|------------------|
| CAIDA-2007 [29] | ~4,700       | $\sim$ 1,400     |
| Merit-2016 [30] | ~2,300       | ~1,300           |

TABLE II: DDoS attack traces used in simulation.

#### DDoS Traffic Leakage



- Rmax (# of rules); Dmax (# of defenders)
- PushBack and StrategicPoints performances are similar
- SourceEnd requires a lot higher Dmax to perform well

#### **DDoS Traffic Pollution**



- PushBack left high pollution when resource is abundant
- StrategicPoints performance remain stable
- SourceEnd's pollution metric hammered by high leakage

## Summary

| algorithm       | leakage | pollution | dynamic attack resiliency | key resource | when to use                     |
|-----------------|---------|-----------|---------------------------|--------------|---------------------------------|
| PushBack        | low     | high      | medium                    | Rmax         | very low $Dmax$ or $Rmax$       |
| SourceEnd       | high    | medium    | low                       | Dmax         | Dmax close to total source ASes |
| StrategicPoints | low     | low       | high                      | Dmax         | all other cases                 |

- When to use PushBack?
  - Very low number of collaborative ASes, or low number of filtering rules
- When to use SourceEnd?
  - Very high number of collaborative ASes
- When to use StrategicPoints
  - All other cases

# Takeaways

- Collaborative DDoS defense is the most effective way of dealing with DDoS attacks, both in terms of cost and performance
- Choosing

#### Conclusion

- In-network DDoS defense the effective way of dealing with DDoS attacks
- Choosing appropriate method to place filters are very important
- We summarized three types of defense algorithms
- Quantitatively evaluated the performance of algorithms
- Provided usage guidelines for algorithms under different scenarios

#### Effective collaboration is better than arms race



OF OREGON

Contact:

Professor Jun Li
Center for Cyber Security and Privacy, University of Oregon
<a href="mailto:ccsp@uoregon.edu">ccsp@uoregon.edu</a>
<a href="https://ccsp.uoregon.edu/">https://ccsp.uoregon.edu/</a>



# Backup Slides

# Resiliency Against Dynamic Attacks

- What happens when attack sources shifts?
- Use 15% attack sources for training to find defense locations
- PushBack is very ineffective due to lack of extra space for defense
- StrategicPoints and SourceEnd both perform better



(a) Duch Rack





# Distributed Denial-of-Service (DDoS) Attacks



http://www.digitalattackmap.com/

