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Motivation
 Sybil Attack: injection of multiple forged identities into a target 

system with malicious intention

 Current major research direction: exploit Online Social 
Networks (OSNs) of users in target system

 Idea: it will be difficult for an attacker to create links to 
(become friends with) a benign user
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Motivation
Recent research suggests: Assumption invalid!

1) Sybils can create only few links? [1,2,3] 

 Attackers can in fact easily establish SRs to benign nodes,

success rates range from 26% to 90%!
 Regular users even click on links sent by attackers which just 

established SR with 50% probability 
 Up to 170 established links per Sybil on average
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Motivation
Recent research suggests: Assumption invalid!

 2) Sybils keep among themselves? [2] 

 Sybils create ¾ SRs to benign users, only ¼ to other Sybils 
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Motivation
Recent research suggests: Assumption invalid!

3) Attacker has to take initiative? [4,5] 

 Simple attack strategies lure users into initiating contact with 
attacker. 

 Socialbots can acquire hundreds of SRs to benign users per 
day, per profile. 

 Spammers on twitter gain hundreds of followers 
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Motivation
 Our work: systematically analyze the State of the Art with 

regards to the new observations
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Some Notations
 Sybil node: A forged identity controlled by the attacker

 Benign node/user: A regular, non malicious node/user

 Attack Edge: An edge e(s,b) in the OSN graph G=(V,E) that 
connects a Sybil node s to a benign node b, i.e., a SR 
between s and b

 Sybil/Benign Community: A densely connected community 
consisting solely of Sybils/benign nodes

e(s,b)b
s
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OSN-based Sybil Defenses
 Two categories: Sybil Detection (SD) and Sybil Tolerance (ST) 

schemes

 SD: Detect Sybils and exclude them from the system
 e.g., SybilGuard/SybilLimit [NSDI'06/SP'08], SybilInfer [NDSS'09], 

SybilRank [NSDI'12], GateKeeper [INFOCOM'11]

 ST: Accept that there are Sybils – tolerate them and mitigate 
their impact instead

 e.g., Ostra [NSDI'08], SumUp [NSDI'09]
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SD Approaches - Overview

 Most SD approaches use (modified) random walks to detect 
Sybils

 Use bottleneck cut defined by the few attack edges

 Random walk starting at b unlikely to cross to Sybil region, 
thus unlikely to end at/intersect with walk starting at s

 Only exception: GateKeeper, uses ticket distribution
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SD Approaches - Overview

 Yes/no decision, whether suspect is admitted

 Basically the same idea over all approaches:

Low reachability of Sybils from honest users

 Random walks of Sybils should not intersect with honest 
users' walks (SybilGuard/Limit)

 Sybils should have lower rank than honest nodes (SybilRank)
 Sybils should obtain less tickets than honest nodes 

(GateKeeper)
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SD Approaches – Example: SybilLimit
 Every node (suspect) has to be admitted by a verifier

 Admission Concept: Intersections of tails (last edge of the 
random walk)

– Idea: Honest users will have a lot of intersections with 
honest verifiers...

– ... while Sybils will not

v

b

s
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SD Approaches – Example: SybilLimit

What now?
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SD Approaches – Example: SybilLimit

 Suspect gets admitted if there are 
intersections on the tails with a verifier

 Few attack edges: few intersecting tails 
between Sybils and honest nodes (e.g., 
walks starting at A are not likely to have 
intersecting tails with those at the Sybil C)

 More attack edges: SybilLimit can not 
distinguish between Sybils and honest 
nodes (e.g., nodes B and D)
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SD Approaches – Example: SybilLimit
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SD Approaches – Example: SybilLimit
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SD Approaches - Overview

 We observe the same problem in every approach

Low distinguishing ability of the schemes

 Significant difference in intersections... (SybilGuard/Limit)
 ...or obtained rank... (SybilRank)
 ...or ticket count (GateKeeper) no longer given
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SD Evaluation - Methodology
 Datasets with different characteristics (no dependency on dataset) : 

– 1 synthetic, 1000 nodes, 2000 links, scale-free topology

– 1 Facebook, 65000 nodes, over 3 million links

 Attackers are not allowed to deviate from System protocol

– i.e., evaluate their gain by position in graph alone!

 Main parameter: 

– Number of attack edges per Sybil, k

– Edge placement:

• Random: each Sybil places k edges to benign nodes randomly

• 100 different, independent placements to avoid biased results 
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SD Evaluation - SybilLimit 
 Original SybilLimit: virtually admits every Sybil when k=1

– Not surprising: guarantee of O(log n) admitted Sybils per attack edge

 Modification: try to distinguish on number of intersecting tails
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SD Evaluation - Commonalities
 Same problem in all defenses: Sybils are able to outperform large 

fractions of honest nodes with little effort

– SybilInfer, SybilRank, GateKeeper: 1-2 attack edges sufficient 

– Effort can even be reduced by more intelligent placement strategies

– Confirms the low distinguishing ability
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ST Approaches - Overview

 ST approaches try to limit the impact of each admitted Sybil

 Most approaches are built on credit networks

 A message can only be sent along a path if every link on the 
path has credit available

 ST approaches exploit that credit should deplete quickly on 
attack edges
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ST Approaches – Example: Ostra

 Assigns credits to links; messages may only be routed over 
links with credit

 If message is labeled as unwanted, credit on the path is 
deducted

 Sybils have to use few attack edges to transmit their spam
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ST Approaches – Example: Ostra

What now?
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ST Approaches – Example: Ostra

 Dependency on attack edges

 Amount of spam grows proportionally to number of attack 
edges

 But there's more:

 Spam sent along critical

edges also affects benign

nodes!
 Communities may be

blocked from sending

to outside!
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Evaluation: Ostra Performance

 Here: k = overall ratio of attack edges in network
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ST Approaches - Overview

 ST approaches have the same general working principle, but 
more specific weaknesses

 Reason: Designed for a specific application

– e.g., in SumUp (a vote collection scheme):

An intelligent voting strategy can lead to attackers outvote 
honest users
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Summary
 Previous assumptions for Sybil Defenses do not hold anymore

 We reveal severe weaknesses in all recent Sybil Defenses 
revealed by qualitative and quantitative analysis

– Low distinguishing ability of solutions

– In SD approaches, mostly 1 or 2 attack edges are enough

– In ST approaches, issues are more specific, but still severe
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What do future OSN-based 
approaches need?

 Use meta-data of relations in addition to graph structure itself

– Intensity of the relation (e.g., message frequency)

• But: High false positive rate?

– Lifetime of a user's relations (i.e., a node is suspicious if a 
lot of its relations are short-lived)

 Challenge: How to get a data set that would provide such info 
for testing the approach and verifying it?
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Thank You! Any Questions?
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