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Abstract. Distributed denial-of-service (DDoS) attacks are becoming
more frequent and powerful. Traditional edge defense solutions can no
longer keep up, and in-network defense solutions are needed that in-
volve multiple Internet Service Providers (ISPs) to collaboratively de-
fend against the attacks. While collaborative defense solutions are tech-
nically more effective at stopping large-scale attacks, the incentives for
ISPs to deploy these solutions remain unexplored. In this study, we de-
velop a game theoretic model to capture the economic benefits and costs
of deployment for ISPs competing for customers. Through large-scale
simulations at the Internet level, we find that the majority of ISPs on
the Internet have an economic incentive to participate in DDoS defense,
driven by competition; and that the severity of DDoS attacks and the
level of competition affect an ISP’s charge for filtering DDoS traffic for
its customers.

Keywords: DDoS, DDoS defense, in-network DDoS defense, DDoS de-
fense incentive

1 Introduction

Distributed denial-of-service (DDoS) attacks have plagued the Internet for more
than two decades. DDoS attacks use a large number of attack sources (e.g.
compromised computers) to flood victims’ networks with unwanted traffic in
order to exhaust victims’ network, computation, and other types of resources.
DDoS attacks of more than 1 terabit per second have become common [19, 1],
which can pose a severe threat to all online services.

Traditionally, DDoS defense has been thought of as edge defense, where ei-
ther the DDoS victim itself or an entrusted third party conducts the defense at
the edge of the Internet. There are two problems that make edge defense less
effective against current and future DDoS attacks. First, the cost for a single
entity to handle DDoS attack traffic at the terabit-per-second level is usually
very high. To make matters worse, today’s attackers can more easily tap into
the increasingly popular but less secure Internet of Things devices to launch
high-volume DDoS attacks. Second, even with sufficient investment in handling
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incoming DDoS traffic at the edge, in many cases the defense is already late due
to traffic congestion that occurs before reaching the edge. For example, research
in [18] showed that attackers can create traffic congestion around the victim
without directly launching an attack at the victim.

So people turn to in-network DDoS defense, which, as the name implies,
places defense efforts along the paths of DDoS traffic, blocking DDoS traffic from
inside the Internet before it reaches the victim. It has the following advantages
over edge defense. First, in-network defense allows the defense load to be shared
among the defense parties, reducing the defense effort required at each party
while potentially achieving a higher overall defense capacity. Second, the filtering
of DDoS traffic can be done earlier, reducing the traffic load on the victim while
mitigating the traffic congestion on the links before reaching the victim. Overall,
in the current Internet environment, in-network DDoS defense appears more
suitable and attractive than edge defense.

However, it is still unknown whether in-network defenses are economically
beneficial to the defenders in the network. In edge defense cases, the defender is
either the victim or directly serves the victim, so the incentive to defend is clear.
However, for anyone involved in in-network defense, the incentive to participate
is unclear. Filtering DDoS traffic to its customers would reduce an ISP’s profit
due to the reduction of the amount of traffic it forwards. For example, if an
Internet service provider (ISP) is the sole provider for its customers, as long as
its revenues exceed its costs, it is always in the ISP’s best interest to forward as
much traffic as possible.

On the other hand, as the Internet infrastructure grows, no single ISP can
monopolize the entire service market. Instead, ISPs compete with each other.
Customers who pay for Internet access expect uninterrupted service and will
naturally choose the ISP that does the most to stop or mitigate incoming DDoS
attacks. By investing more in DDoS defense, an ISP has a better chance of being
selected by customers among its competitors, and the right to carry traffic for
customers generates revenue. Nonetheless, providing DDoS defense service is not
without its costs. First, an ISP would lose revenue by dropping the DDoS traffic
that would have been delivered to customers. Second, deploying new defense
solutions is expensive, both in terms of equipment and maintenance costs. In
a nutshell, while the benefits of winning the competition can incentivize ISPs
to invest in DDoS defense, it is also possible that an ISP may choose not to
compete due to the potential loss of revenue and increase in workload and costs.

In this study, we propose a game theoretical model to analyze the profit
maximization decisions of ISPs who are competing for customers by investing
in DDoS defense. We design and implement a simulation framework to simulate
the decision process of DDoS defense deployment for all ISPs on the Internet.
The simulation results show that we can find an equilibrium, and the majority
of ISPs would decide to participate in DDoS defense to maximize their profits.
Depending on the severity of DDoS attacks and the level of competition, ISPs
can charge different rates to achieve their optimal profits.
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The rest of the paper is organized as follows. Section 2 summarizes the related
work of this study; Section 3 introduces a game theoretical model of competition
among ISPs for customers; Section 4 describes the simulation setup and algo-
rithms for this study; section 5 discusses the simulation results; and Section 6
concludes the paper.

2 Related Work

There is a large body of work that addresses cybersecurity problems from both
incentive and game theory perspectives [26, 28, 22, 20]. Some studies look at the
interactions between attackers and defenders, while other work explores interde-
pendencies and cooperation among defenders.

Numerous research projects have explored the use of game theory to study
interactions between attackers and defenders in the context of cybersecurity.
Bedi et al. in [3] proposed a model to study optimal firewall settings for DDoS de-
fense against attackers. Bohawek et al. in [6] introduced game theoretic stochas-
tic routing (GTSR) to minimize the impact of link and router failures against
intelligent attackers. Shiva et al. in [32] proposed a holistic architecture that in-
corporates attacker behavior and decides actions for the defenders, but the work
lacks concrete evaluation. Wu et al. [34] developed a game-theoretic model to
study the most effective firewall settings to block DoS/DDoS traffic. All of the
above work attempts to model and design systems to mitigate attacks (which can
be intelligent and dynamic) from a single, centrally controlled entity. However,
current cyber attacks on the Internet, especially DDoS attacks, can no longer be
easily mitigated by single AS.

There are studies that investigate the potential cooperation among defenders
against cyber attacks. Grossklags et al. in [15] analyzed how influences among
heterogeneous entities could reach different security outcomes under five differ-
ent economic environments. Later, they studied how the interdependent defend-
ers could switch between public good (protection) and private good (insurance)
given the choices [16]. Similarly, Miura-ko et al. [25] model the impact of secu-
rity investments among interdependent organizations using an influence network.
However, the lack of quantitative evaluation and conclusion makes it less appli-
cable to real-world problems.

Some work studies cybersecurity with a focus on defense incentives. Early
work by Huang et al. [17] analyzed the broken incentive chain that stops ISPs
from participating in DDoS defense. They argue that the subscription-based
pricing model among ISPs at the time, which often leads to overprovisioning
and ignores actual traffic volume patterns, discourages ISPs from participating
in defense by doing extra work. They suggest that a traffic-usage-based pricing
model would incentivize ISPs to help filter out unwanted traffic. Unfortunately,
the authors did not consider the potential revenue that the ISPs could have made
by not participating in DDoS defense; therefore, as the Internet gradually moves
to a usage-based pricing model, the apparent lack of incentive persists. Gill et al.
[13] argue that efforts to deploy more secure inter-domain routing protocol would
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attract more inter-domain traffic, and thus generate more revenue, consistent
with the results of the earlier discussion in [29]. Unlike DDoS defense, securing
inter-domain routing has no disincentive, i.e., not defending does not introduce
additional revenue. However, as the authors suggest, both strong early adopters
and a simplified protocol are needed for global deployment. Shen et al. [31]
use game theory to investigate the deployment incentive in their previous work
They model the deployment problem as a social dilemma, and suggest that
ISPs can be incentivized by combining the benefits of achieving the public good
and the potential punishment for untrustworthy behavior. However, we believe
that public good is not a strong motivation for private firms, and that trust
assessment and behavioral punishment require enforcement by global central
authorities, which is not a realistic assumption under the context of today’s
Internet.

3 Game of DDoS Defense Investment

In this section, we introduce a game-theoretic model to capture the strategic
interactions between parties on the Internet that are involved in DDoS defense
and analyze their profit and cost in DDoS defense.

3.1 Network Modeling

Internet Topology The Internet is composed of interconnected Autonomous
Systems (ASes), where each AS decides autonomously how its networks are
connected to each other and to other ASes. Every ISP is one or more ASes. We
consider the Internet as a weighted directed graph G = {V,E}. V represents the
set of all nodes (vertices) in the graph, where every node vi ∈ V represents an
AS on the Internet. E represents the set of all edges in the graph, where every
edge ei,j ∈ E represents an inter-AS directed link between two neighboring ASes
vi and vj .

ASes form business relationships to establish links (both physical and topo-
logical) to connect themselves to other entities and further to the rest of the
Internet. As summarized by Gao [12], there are three common types of business
relationships between ASes: customer-to-provider, peer-to-peer, and sibling-to-
sibling. In a customer-to-provider relationship, the provider AS carries traffic to
and from the customer AS, and the customer AS pays its provider AS for the
traffic the provider carries for it. In a peer-to-peer or sibling-to-sibling relation-
ship, two ASes forward traffic for each other, usually for free. In this study, we
mainly consider the ASes with customer-to-provider relationship.

For any IP prefix (i.e., a block of IP addresses with a common prefix) to be
reachable by end hosts connected to the Internet, the AS that owns the IP prefix
must advertise the IP prefix to the Internet using the Boarder Gateway Protocol
(BGP). BGP is used to propagate the prefix reachability information across the
Internet between each pair of neighboring ASes. Upon receiving an advertised
path to a prefix, an AS decides whether to use the path for reaching the prefix
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Fig. 1: An example of DDoS attack with different routes to reach the victim.

and also to which neighbors it should further propagate the reachability of the
prefix. This process results in a fully-connected Internet.

DDoS Attack Figure 1 shows a simple example of a DDoS attack where the
attack traffic can have different routes to reach the victim, depending on the
provider AS that the victim chooses. If the victim chooses Provider 1 as its
provider AS, it will announce its prefixes via Provider 1, and as a result, the
rest of the Internet (including the DDoS attackers) can reach the victim via
Provider 1.

We model the DDoS attacks as follows. We assume that DDoS attacks can
originate from any AS v ∈ V on the Internet and can happen at any time. We
define the set of the attack source ASes as SRC = {vs1, vs2, .., vsn}, where vsi is the
ith attack source AS, and SRC ⊂ V . A DDoS attacker controls large botnets to
launch the attacks, thus the size of the set SRC is usually very large. Also, we
assume that any AS on the Internet can be a victim of DDoS attacks.

DDoS Defense There are multiple ways to defend against DDoS attacks. The
defense can happen at the victim side or at any third-party AS that defend for
the victim, i.e., edge defense; it can also be carried out by multiple ASes on
the paths of the attack traffic, i.e., in-network defense. In this paper, we allow
each AS on the Internet to freely choose whether or not to participate in DDoS
defense efforts, assuming that the means of communicating defense details is
available to all ASes.

3.2 A Game Theoretical Model of Provider Selection

As the Internet infrastructure grows, it is common for a customer AS to have
multiple provider ASes to select from. Since a customer AS can select which
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providers to use independently, provider ASes compete with each other to at-
tract more customers and thus more profit. While a key selection criterion is
a potential provider’s traffic forwarding service, the effectiveness of a potential
provider’s protection against DDoS attacks is also an important factor. A com-
mon practice is for a provider AS to charge a customer AS for 95% of the peak
traffic volume (i.e., 95th percentile bandwidth metering). If a provider AS does
not provide DDoS defense to filter the DDoS traffic toward the customer AS,
because DDoS attacks are frequent and can bring a large amount of DDoS traf-
fic to a customer AS, the customer AS will have to carry not only the normal
traffic but also a large amount of DDoS traffic at a significantly higher cost. A
rational customer AS would choose a provider AS that provides services at a
lower cost, taking into account the cost of forwarding or filtering DDoS traffic
by the provider AS.

Provider ASes are driven by the profit they can make while competing with
other potential provider ASes for the same customer. When a provider AS invests
in DDoS defense, it affects not only its own profit, but also the choice of provider
AS by its current and potential customers, as well as the profit of its competitors.
A provider AS that offers DDoS defense is more likely to win a customer than a
provider AS that does not, and thus carrying that customer’s traffic. Similarly,
a provider AS that charges less for DDoS defense is more likely to attract a
customer AS than a provider AS that charges more. The losing AS would then
miss out on the potential profit that could have been made from the customer
AS.

Below, we mathematically describe the probability that an AS will win cus-
tomers from a game theory perspective. Note that a provider AS does not nec-
essarily filter DDoS traffic for free for its customers. In this paper, we assume
that each provider charges its customers for both forwarding traffic and filtering
unwanted traffic.

Without losing generality, consider an example where two provider ASes
v1 and v2 compete for a customer AS vc. When under DDoS attack, the cus-
tomer AS vc receives a total of Tc,ddos DDoS traffic and Tc,normal normal traffic.
Providers v1 and v2 must each make a decision about whether to provide DDoS
filtering service and how much to charge for filtering DDoS traffic. A provider
charges its customer for forwarding traffic at the rate of rforward and for filtering
DDoS traffic—if it decides to participate in defense—at the rate of rfilter. If v1
decides to participate in defense, it would charge the customer

r1,c = r1,forward ∗ Tc,normal + r1,filter ∗ Tc,ddos.

In this case, it charges separately for the forwarding of normal traffic and the
filtering of DDoS traffic at different rates. On the other hand, if provider v2
decides not to participate in DDoS defense, it would charge the customer

r2,c = r2,forward ∗ (Tc,normal + Tc,ddos).

Here, v2 charges for forwarding both normal and DDoS traffic at the same for-
warding rate.
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The customer AS vc chooses v1 or v2 as his provider based on their charges
(i.e., r1,c vs. r2,c). Obviously, the customer would choose the provider with the
lower charge. We assume that the charging rate for filtering DDoS traffic is gener-
ally lower than that for forwarding DDoS traffic, so a provider with DDoS defense
service is generally preferred over a provider without. However, the customer is
likely to make errors in evaluating r1,c and r2,c due to imperfect estimation of
its normal and DDoS traffic. This is called the bounded rationality assumption,
which is widely used in the recent economics literature to capture the empirical
fact that decision makers are not necessarily perfectly rational (see, for example,
McKelvey and Palfrey [24] and Goeree et al. [14]). Given the errors and misin-
formation, the customer makes a probabilistic rather than a deterministic choice
between the two providers, with a higher probability of choosing the provider
with a lower expected charge.

Suppose that the customer’s learned charge from provider v1 is given by
r1,c+ ε1, and that from provider v2 is given by r2,c+ ε2, where ε1 and ε2 are two
independent noise terms. Also define x as r2,c − r1,c. The probability that the
customer will choose v1 over v2 as its provider, denoted as Prob1(c), is then

Prob1(c) = Prob(r1,c + ε1 ≤ r2,c + ε2) (1)

i.e.,

Prob1(c) = Prob(ε1 − ε2 ≤ r2,c − r1,c) = Prob(ε1 − ε2 ≤ x) (2)

A common assumption is that these noise terms are extreme value distributed
(usually double exponential) (see Brock and Durlauf [8, 9], Durlauf and Ioan-
nides [11], Blume et al. [5], among many others). This assumption implies
that the difference of the two noise terms is logistically distributed (see Mc-
Fadden [23], Anderson et al. [2], Blume [4], Brock [7] for discussions of the
importance of logistic models in economics). So we have

Prob1(c) = Prob(ε1 − ε2 ≤ x) =
1

1 + e−λx
, (3)

where λ is a parameter that measures the “noisiness” of the two noise terms.
As λ increases, the customer’s learned values are more accurate. Also, from
Equation (3), we can see that with a larger value of x, i.e., more savings if v1 is
chosen instead of v2, v1 has a higher chance of being chosen. (When x is 0, r1,c
and r2,c are equal and Prob1(c) will be simply 0.5.)

3.3 Profit Calculation

We assume that each provider AS tries to maximize its profit by taking into
account the competition described above. As an example, consider two ASes:
vp and vc. vc will make a decision whether to use vp as its provider based on
the estimated charge rp,c. The total amount of normal traffic that vc needs a
provider to carry is given by Tc,normal, and the total amount of DDoS traffic that
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vc faces is given by Tc,ddos. If vp is chosen as the provider (wins the competition),
the expected profit of vp made from vc is given by

Profitp,c = Probp(c)× rp,c, (4)

which is equal to the probability that vp will be chosen by vc as the provider
times the charge of provider vp. Note that increasing the charge rp,c has two
opposite effects: it increases vp’s profit from handling traffic for vc if it wins and
is selected as a provider, but it also decreases vp’s probability of winning the
competition due to a higher charge.

The total expected profit of an AS vp is the sum of all the profits it can earn
from its customers,

Profitp =
∑
c∈Cp

Profitp,c, (5)

where Cp is the set of all potential customer ASes of vp.

3.4 Cost of Defense

Providing DDoS defense also incurs costs for a provider AS. We define the total
defense cost function for an AS vi as

Costi = Costequip(Ti,ddos) + Costlabor(|Ci|),

where Costequip(Ti,ddos) is the equipment cost to filter the DDoS traffic toward
all of its customers for an amount Ti,ddos, and Costlabor(|Ci|) is the labor cost
to maintain all of its customers. For simplicity, we assume that the equipment
and labor cost functions are the same for all ASes. We assume that Costequip
increases as the total traffic to be filtered increases, and Clabor increases as a
provider AS has more customer ASes.

4 Simulation Design

In the previous section, we described our modeling of the incentives of ASes
to deploy DDoS defense. To study the real-world implications of the model, we
design a simulation system that allows us to simulate the DDoS defense decisions
of ASes on the Internet and explore the outcomes. Designing and implementing
a simulation system with more than 60,000 interconnected entities is not a trivial
task. In this section, we describe our design of the simulation system and explain
how the system can help us explore the outcomes of defense decisions.

4.1 Simulation Setup

Customer-provider pairs The simulation relies on the full Internet topology
to study all possible interactions among the provider ASes and their potential
customers on the Internet. The topology includes not only the current links
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Table 1: Simulation parameters and their value ranges.
parameter meaning value range

ddos_ratio Ratio of DDoS to
normal traffic volume

0.0 – 5.0

do_defense Whether an AS par-
ticipates in DDoS de-
fense

true / false

filter_charge If do_defense is
true, how much it
charges for filtering
traffic

0.0 – 1.0

(relationships) between ASes, but also all possible/potential relationships that
could be established. Ideally, we would like to know which neighboring (directly
connected) ASes each AS has and could have, including how it relates to them.
However, relationship information is considered private and is often concealed
by ASes, even for currently established ones. To best estimate the current and
potential relationships between ASes, we use CAIDA AS relationship data [21,
10] from the past 10 years to compile a relatively comprehensive set of inter-
connection information for the entire Internet.

Traffic estimation We also use full routing tables of all collectors from RIPE
RIS [27] and RouteViews [33] to construct a best-effort Internet topology. The
connected peer routers are considered traffic originators in the simulation for
both DDoS traffic and normal traffic. From this, we estimate the relative amount
of traffic for each AS and use this as the base unit for the profit calculation (see
Section 3).

Provider AS’s action options Each provider AS has several options to opti-
mize its profit. It can choose not to participate in DDoS defense and thus charge
the same rate for forwarding both normal and DDoS traffic. It can also choose
to participate in DDoS defense and charge forwarding normal traffic at the reg-
ular rate, and charge filtering of DDoS traffic at a fraction of the regular rate,
ranging from 0.0 to 1.0. If the filtering charge rate is 0.0, it indicates that the
AS provide DDoS defense service for free; if the filtering charge rate at 1.0, the
provider charges as much for filtering traffic as for forwarding it; any filtering
charge above 1.0 would make filtering more expensive than forwarding for the
customer, and we do not consider these cases in this paper.

DDoS traffic ratio Another important factor that could affect providers’ de-
fense decisions is the severity of the DDoS attacks their customers are experi-
encing. We define the term ddos_ratio as the ratio of DDoS attack traffic to
normal legitimate traffic to/from a customer AS. In this study, we range the
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Algorithm 1: Static simulation algorithm.
V = {vi|vi is an AS} ←− set of all ASes;
A = {ai|ai is a defense option} ←− set of defense options;
D = θ ←− set of defense decisions;
# first-one-to-deploy scenario
for vi ∈ V do

# calculate options
for ak ∈ A do

for vj is a customer of vi do
set competitors to no defense
calculate probability Probi(j, ak)

end
calculate profit

∑
Profiti,j

end
end
# last-one-to-deploy scenario
for vi ∈ V do

# calculate options
for ak ∈ A do

for vj is a customer of vi do
set competitors to defend at fixed charge
calculate probability Probi(j, ak)

end
calculate profit

∑
Profiti,j

end
end

DDoS ratio from 0.5, where the volume of DDoS traffic is half that of normal
traffic, to 5.0, where the DDoS traffic is five times that of normal traffic.

4.2 Static Simulation

In a static simulation, each provider AS makes a defense decision based on its
competitors’ initial states. Once the decision is made, no further adjustment
is considered. Specifically, we study the profit changes for each provider AS in
the Internet when it switches from not defending to defending. We consider two
scenarios in this study: the first AS to participate in defense among competitors
(or first-one-to-deploy); the last AS to participate in defense among competitors
(or last-one-to-deploy). The first scenario shows the likelihood of early adoption
of defense solutions, while the second scenario shows how defense decisions can
influence competitors’ defense decisions. For each provider AS, we exhaust the
defense options from no defense to defense at different charge rates and calculate
the expected profit for each defense option under both scenarios. In each scenario,
we also examine the total number of providers who can make more profit at a
certain charge rate than by not participating in the defense.
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Algorithm 2: Dynamic simulation algorithm.
V = {vi|vi is an AS} ←− set of all ASes;
A = {ai|ai is a defense option} ←− set of defense options;
D = {ai|ai ∈ A and vi ∈ V } ←− set of defense decisions;
D′ = θ ←− set of previous decisions;
isConverged =false ←− convergence indicator;
while !isConverged do

# update defense decisions
for vi ∈ V do

# calculate options
for vj is a customer of vi do

for ak ∈ A do
calculate probability Probi(j, ak)

end
end
# find best action
Di = ak where maxak∈A Profiti

end
# test convergence
if D == D′ then

isConverged = true
else

D′ ← D
isConverged = false

end
end

4.3 Dynamic Simulation

The simulation runs several rounds of decision making for all ASes. In each
round, each AS will choose a DDoS defense effort that can optimize its profit
based on the knowledge of its competitors’ defense efforts from the previous
round. We call such a decision rule used by the ASes the myopic best response
rule, because each AS chooses the optimal effort level without considering the
strategic changes of its competitors.

Given a configuration, we want to use the simulation to find the Nash equi-
librium of the game. The equilibrium (or convergence) state represents the state
where no individual player wants to unilaterally change his effort level. The
detailed steps are as follows.

We initiate all ASes by setting their defense preference to no defense. As de-
scribed in Section 3, each provider AS calculates its probability of being selected
by its potential customers for each action choice it has. Using the customer-
winning probabilities, the simulation system recalculates the expected profit of
a provider AS, given that the AS would choose the option that can maximize the
winning probability. After all ASes have updated their decisions, the simulation
determines if it has converged, i.e., if any AS has made different decisions com-
pared to the previous round. If the simulation has not converged, it continues
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Fig. 2: Profitable first-one-to-deploy providers.

with the previous procedure and updates the defense efforts for all ASes. If the
simulation has converged, it then produces the report of the final states for all
ASes. See Algorithm 2 for more details.

5 Simulation Results

In this section, we discuss the simulation results. As discussed in Section 4, we
divide the simulation into two types:

– Static simulation, where only the AS under study can change its defense
configuration, while other ASes, especially competitors, remain static;

– dynamic simulation, where each AS can change its configuration to seek
higher profit.

The static simulation shows a snapshot of ASes’ responses under a fixed con-
figuration, while the dynamic simulation shows how ASes can update their de-
fense decisions and whether the simulation achieves equilibrium. We also study
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Fig. 3: Profitable last-one-to-deploy providers.

these scenarios with different DDoS-to-normal traffic ratios (ddos_ratio), rang-
ing from 0.5 (i.e., the volume of DDoS traffic’s is half that of normal traffic) to
5.0 (i.e., the volume of DDoS traffic is five times that of normal traffic). Each
provider AS that chooses to defend can also select a different charge rate for
processing and filtering DDoS traffic (filter_charge).

5.1 Static Simulation

We first examine the incentives of provider ASes participating in in-network
DDoS defense. Specifically, we study the profit changes for each provider AS on
the Internet when it switches from not defending to defending. We consider two
scenarios in this study: the first AS among competitors to participate in defense
(or first-one-to-deploy); the last AS among competitors to participate in defense
(or last-one-to-deploy). The first scenario reveals the likelihood of early adoption
of defense solutions, while the second scenario reveals how defense decisions can
influence competitors’ defense decisions.
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Figure 2 shows the results for the first-one-to-deploy scenario. We first ex-
amine how many providers can make a positive profit by switching from no
defense to defense. Figure 2a shows the percentage of all provider ASes that can
gain profit by switching to defense at a certain filter charge. It indicates that
almost all provider ASes can make extra profit at some filter charge. Figure 2b
further reveals at what charge the majority of provider ASes can make a profit
by switching. It clearly shows that the number of profitable providers peaks at
different filter charges; and as the DDoS becomes more severe, the peak of the
filter charge increases.

Figure 3 shows the results for the last-one-to-deploy scenario. Figure 3a shows
that almost all provider ASes can make profit at some filter charge, but there are
less profitable providers when the DDoS volume is low (i.e., ddos_ratio = 0.5).
We further investigate at what charge most of the provider ASes can gain profit
by switching when all competitors defend with 0.5 filter charge. Figure 3b shows
that most of the providers can make a profit by charging slightly less than
their competitors (i.e., 0.4 as opposed to 0.5). Unlike the previous scenario, it
also shows that the severity of the DDoS attacks (i.e., ddos_ratio) does not
significantly affect the profitability of an AS when its competitors all defend.

From both results, we can see that when given the freedom to compensate
DDoS defense costs by charging for filtering efforts, the majority of the providers
on the Internet can find some charge rate that allows them to make profits by
providing filtering services. If a provider is the first to provide services, the
amount of DDoS traffic ratio affects how much it should charge to maximize
profits; on the other hand, if a provider is the last to join the defense, no matter
how severe the DDoS attacks are, the profitability is significantly decided by
its competitor’s choice. In most cases, charging similar or slightly less than the
competitors would result in the best profits for the majority of the providers.
In other words, charging too much would risk losing the customers altogether,
while charging too little would cause the provider to miss out on a large portion
of the profit it could make.

5.2 Individual Provider Profit Patterns

The previous study focused on the overall statistics of the providers that can gain
profit by switching to participate in defense. We now study how each individual
AS’s profit can change when different filter_charge is selected. Figure 4 shows
four different types of profit patterns:

– Bell-shaped profit curve with gain;
– Bell-shaped profit curve without gain;
– Increasing profit curve;
– Decreasing profit curve.

We will discuss these types of profit patterns and their indications in this section.
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Fig. 4: Number of providers that gain by switching from not defending to de-
fending.

Bell-shaped profit curve with gain Figure 4a shows AS37468’s profit value
as the filter_charge changes when it participates in defense. Compared to the
profit baseline when it does not participate in defense, the bell-shaped profit
value curve exceeds the baseline between 0.1 and 0.5 and peaks at 0.3. The
AS makes more profit by increasing the filtering charge when the charge is low
(< 0.3), and less profit when the charge is high (> 0.3). This is a clear example of
diminishing returns [30], and indicates that the AS has an incentive to participate
in the defense when the charge is properly set.

Bell-shaped profit curve without gain Figure 4b shows a similar profit
pattern with diminishing returns, but the peak of the profit when participate in
defense is lower than the baseline. This figure indicates that the AS in question
cannot make enough profit to justify switching to DDoS defense, regardless of
the filter_charge choices.

Increasing profit curve The increasing profit curve (Figure 4c) indicates that
the ASes have not yet reached their peak profit, even when charging at the 1.0
rate. This pattern shows that these ASes face less competitors that compete by
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Fig. 5: Profitable providers when no competitors participate in defense.

charging prices (such as provider ASes that have customers that have no other
potential providers).

Decreasing profit curve The decreasing profit curve (Figure 4d, after 0.1),
on the other hand, indicates that the ASes have passed their peak profit at
low or almost no charge for filtering DDoS traffic. Such ASes tend to be highly
competitive, where charging high prices for defense would significantly decrease
the chances of being selected by their potential customers.

5.3 Dynamic Simulation

We further study the decisions of provider ASes regarding DDoS defense in a
more dynamic environment. In this section, we examine the results for dynamic
simulation, where each AS makes a decision dynamically based on the decisions
of its competitors, and the process is repeated until the decisions converge.
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Fig. 6: Average charges.

Provider AS’s choices In each round, a provider AS can in general decide
whether or not to participate in DDoS defense based on its overall profit calcu-
lation. When deciding its options, it calculates the profit as if

– it does not participate in the defense;
– or it participates in defense and charges filter_charge for processing and

filtering DDoS traffic.

The rate ranges from 0.0 to 1.0 with 0.1 as the increment. The AS will then
choose the best option that maximizes its profit based on the calculation in-
troduced in Section 3.3. Note that the current configuration of its competitors
(i.e., the results of their previous decision) is taken into account during the profit
calculation, and its decision will then also affect its competitors’ future decisions.

Percentage of providers defending We first examine the number of provider
ASes that decide to participate in defense, given that each provider AS tries to
maximize its profit in each round. Figure 5 shows the summary results for the
dynamic simulation in terms of provider participation and configuration changes.
Figure 5a shows the percentage of provider ASes that decided to participate in
defense in each round of the simulation. It is clear that a very high number of
provider ASes decided to participate in the defense at the very first round, and
the numbers for different DDoS attack scenarios remain high and stable. This
indicates that in terms of defense participation, the simulation converges quickly
and result in a high level of participation for all provider ASes.

Since almost all ASes participate in defense, do they alternate their defense
charges? Figure 5b shows that there is a very number of ASes that update
their filter_charge configuration and only appear in one of the simulations
where ddos_ratio = 1. Combining this result with the results of Figure 5a, we
can conclude that if given the opportunity to freely change and optimize their
defense decisions, the majority of the provider ASes would choose to
defend and settle on their filter_charge rates.
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Fig. 7: CDF of number of customers and competitors for provider ASes.

Filter charges Since the majority of the provider ASes would choose to defend,
the next question is how much would they charge their customers to maximize
their profit? To answer this question, we dig deeper into the simulation results
and examine the optimal charge of each individual AS and the overall distribu-
tion of charge values.

Figure 6 shows the average filter_charge for all provider ASes that decide
to participate in defense under different DDoS traffic ratios. When the DDoS
attack traffic is relatively small (i.e., < 0.5), the average charge for filtering traffic
is around 0.5, meaning that a provider AS charges its customer about half the
price for filtering DDoS traffic than forwarding normal traffic. As the volume of
DDoS traffic increases, the charge also increases, up to about 0.8 when DDoS
attack traffic is five times the normal traffic.

We also look at the distribution of filter_charge for all provider ASes under
different severities of DDoS attacks. Figure 8 shows the histograms of the number
of provider ASes with different filter_charge after the simulation converges.
As the DDoS ratio increases from 0.5 (Fig.8a), 1.0 (Fig.8b), 2.0 (Fig.8c), to 5.0
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Fig. 8: Provider ASes charge distribution.

(Fig.8d), there is 1) a group of ASes with lower charges that move to higher
charges (which also form a bell-shape in the figures), and 2) a constant number
of ASes (around 2,500 to 3,000) that always charge the highest possible rate. To
understand why there are two groups of ASes with different charge patterns, we
examine each AS in each group to reveal their internal correlations. Specifically,
we take Fig.8a as an example and divide all provider ASes into two groups by
their filter_charge: low filter_charge group where filter_charge < 0.5 and
high filter_charge group where filter_charge ≥ 0.5. Figure 7 shows the CDF
plots of the number of customers and competitors for each group. It is clear
that ASes with higher filter_charge have fewer customers (Fig.7a) and fewer
competitors (Fig.7b).

5.4 Summary

In this section, we investigate the incentive of provider ASes on the Internet
to participate in DDoS defense by examining the profit each provider can make
under different environments, while customer ASes are free to choose the provider
they want to use.

From the static simulation, we learned that most provider ASes can make
profit by offering DDoS defense service to potential customers; providers reach
their maximum expected profit with different charges for filtering traffic, which
is affected by the severity of DDoS attacks as well as their competitors’ defense
decisions.
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Further dynamic simulation showed that for most provider ASes, if they
choose to charge for DDoS filtering that maximizes their profit (assuming no
competitors offer similar services), they can all reach their stable peak profit
and achieve a global stable state.

We also found that the number of competitors/customers has a strong impact
on how much they should charge for DDoS filtering to achieve maximum profit.
An AS can make more profit by charging more for DDoS filtering if it has weak
competitions, while an AS with strong competitions needs to charge less for
DDoS filtering in order to attract customers and make more profit.

6 Conclusion

In this study, we proposed a game-theoretic model that examines the incentives
of ASes to invest in DDoS defense. Based on the model, we built a large-scale
simulation system to examine the effects of a provider AS’s topological loca-
tion, level of competition, and the amount of DDoS traffic on its DDoS defense
decision. From the simulation results, we observe the following patterns. The ma-
jority of provider ASes on the Internet can benefit from providing DDoS defense
services to their customers if they can recover the cost of defense by charging
for filtering DDoS traffic. The severity of DDoS attacks affects the rate that a
provider can charge its potential customers; if a provider sees a higher volume
of DDoS traffic coming toward its potential customers, it would charge more to
achieve its peak profit. The level of competition also affects the rate: a provider
with little competition can charge a high rate and still be profitable; a provider
facing strong competition must charge less to attract customers and make a
profit. These observations provide confidence that if collaborative in-network
defense mechanisms mature enough, provider ASes on the Internet would have
an incentive to participate in DDoS defense. We believe that such observations
can further help researchers develop better strategies for designing and deploying
DDoS defense solutions.
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