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Abstract—Disruptive events such as large-scale power out-
ages, undersea cable cuts, or security attacks could have an
impact on the Internet and cause the Internet to deviate from its
normal state of operation, which we also refer to as an “Internet
earthquake.” As the Internet is a large, complex moving target,
unfortunately little research has been done to define, observe,
quantify and analyze such impact on the Internet, whether it
is during a past event period or in real time. In this paper, we
devise an Internet seismograph, or I-seismograph, to fill this
gap. Since routing is the most basic function of the Internet
and the Border Gateway Protocol (BGP) is the de facto standard
inter-domain routing protocol, we focus on BGP to observe,
measure, and analyze the Internet earthquakes. After defining
what an impact to BGP entails, we describe how I-seismograph
observes and measures the impact, exemplify its usage during
both old and recent disruptive events, and further validate its
accuracy and convergency. Finally, we show that I-seismograph
can further be used to help analyze what happened to BGP
while BGP experienced an impact, including which autonomous
systems (AS) were affected most or which AS paths or path
segments surged significantly in BGP updates during an Internet
earthquake.

Index Terms—Internet seismograph; Internet earthquake;
Border Gateway Protocol (BGP); Autonomous System (AS)

I. INTRODUCTION

The Internet has become a critical infrastructure of our

society, yet few studies have focused on not only how to

monitor the Internet as a whole, but also how to quantify

the impact that disruptive events (such as [1], [2], [3],

[4], [5], [6], [7]) may have on it. Although events such

as security attacks, large-scale power outages, hurricanes,

undersea cable cuts, and other types of natural disasters

may cause observable disturbances to the normal operation

of the Internet, we know little about the kind of impact each

event might cause and how big it might be. The lack of

such knowledge also makes it difficult to conduct effective

network diagnosis, recovery, or other operation tasks. In

fact, there is not even an established criterion for observing

different kinds of impacts or for quantifying what “big” or

“small” means.

This paper aims to fill this gap. We have designed an

Internet seismograph, or I-seismograph, to measure “In-

ternet earthquakes.” It not only reports the magnitude of

the impact (i.e., the Internet earthquake) during an event
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period, but also characterizes the nature of the impact.

During a period when everything is normal, I-seismograph

will simply report zero or close-to-zero impact; during a

security attack, a natural disaster, or some other large-scale

incident, if the regular operations of the Internet go awry,

it can then indicate how badly the Internet was impacted.

Not only can we use I-seismograph to measure the impact

over a period in the past when an event is suspected to

have affected the Internet, we also can use it to observe

and measure an Internet earthquake in real time.

The main design idea of I-seismograph hinges upon

discovering the “normal” state of the Internet, and then

monitoring a given period to measure how the Internet

activity deviates from it. Since routing is the most basic

function on the Internet and the Border Gateway Protocol

(BGP) is the de facto standard inter-domain routing pro-

tocol, our approach uses BGP data to discover the normal

and abnormal states. This presents a challenge since BGP is

very dynamic and BGP data are full of outliers. Furthermore,

BGP has evolved greatly over the years and the definition

of what is normal is ever-changing. To handle this dynamic

nature, we have designed a two-phase clustering method

that can discover what is normal and what is abnormal

over a wide time span.

In addition to measuring and reporting the impact on

BGP during an arbitrary monitoring period, I-seismograph

can further be used to help analyze and diagnose what

happened to BGP while BGP experiences an impact. Note

that while an impact received by BGP during an event is not

necessarily caused by the event, I-seismograph can still help

network diagnosis and answer questions related to BGP

itself. In particular, I-seismograph can help isolate abnor-

malities within BGP data, enabling the comparison between

abnormal and normal BGP data and answering network

diagnosis questions related to an Internet earthquake such

as which autonomous systems (ASes) on the Internet have

the largest number of affected IP prefixes, which ASes

initiated the largest increase in BGP updates, or which AS

paths or AS path segments surged most significantly in BGP

updates.

In this paper, we first present our definition of impact

on BGP (Sec. II) and describe how I-seismograph addresses

various challenges in order to measure the impact that

BGP receives during any period (Sec. III), followed by the

validation of I-seismograph to ensure it possesses some key

properties (Sec. IV). We then show the results when using I-



seismograph against a set of old and recent events (Sec. V).

Furthermore, we illustrate how I-seismograph can be used

to help analyze what happened to BGP during an Internet

earthquake (Sec. VI), and present I-seismograph running

in real time online (Sec. VII). We then show I-seismograph

is clearly different from the related work (Sec. VIII) and

conclude this work (Sec. IX).

II. DEFINING IMPACT

We define an impact on BGP as any deviation from BGP’s

normal profile. The deviation consists of a magnitude and a

direction. Assume we use a set of n distinct BGP attributes

to inspect BGP, A1, A2, · · · , An . Also assume we have defined

a normal profile of BGP by identifying the normal values

of those attributes. At any time t, if the values of these

attributes of BGP are a1(t ), a2(t ), · · · , an(t ), and they deviate

from the normal profile as δ1(t ), δ2(t ), · · · , δn(t ), the impact

that BGP receives at t is then a vector as follows: i (t ) =<

δ1(t ),δ2(t ), ...,δn(t ) >.

When looking at the impact on BGP over a time window,

such as during the period of an event, we can define the im-

pact during this window, say [t1, t2], as: I (t1, t2) =
∫t2

t1
i (t )d t

or
t2∑

t1

i (t ), depending on whether i (t ) is continuous or

discrete.

III. DESIGN OF I-SEISMOGRAPH

Having defined BGP impact as a deviation from the

normal profile of BGP, we now describe how we design I-

seismograph to measure it.

A. Requirements and Challenges

I-seismograph must be correct. Specifically, while it must

collect and process a very large amount of BGP data, it

must identify a collection of BGP data that can accurately

represent the normal profile of BGP, and for any mon-

itoring period, if any BGP data in that period deviates

from the normal profile of BGP, it must accurately derive

the deviation of the BGP data from the normal profile. In

doing so, it must consider both the spatial and temporal

aspects of BGP. Spatially, BGP is a complex routing protocol

concerning IP prefixes from the entire IP address space and

involving BGP routers from all over the Internet. Temporally,

the BGP protocol is constantly evolving to accommodate

the growth and changes of the Internet; accordingly, what

is considered normal at one time may be abnormal at

another time (and vice versa). For example, at one point

many pathological updates (such as duplicate withdrawals)

existed on the Internet, but they have become much fewer

over the years, while the forwarding dynamics have become

more dominant [8].

I-seismograph must not only be easy to use, but it should

also be flexible enough to allow for the impact calculation

for any given period. It should be able to calculate the

impact during a historical event, as well as the impact that

BGP is currently experiencing.

Further, I-seismograph must be stable and reliable. Once

it has sampled enough BGP data from different periods, the

definition of the normal profile of BGP should converge to

a stable state and I-seismograph should output the same

impact results for a given period.

Last, it is desirable for I-seismograph to be informative

toward understanding and handling Internet earthquakes.

For any monitoring period during which an impact is

observed, I-seismograph should be able to provide data that

reflect BGP’s deviation from normalcy and allow users and

network operators to inspect the technology and operation

details and effectively respond to the impact observed.

B. Methodology Overview

I-seismograph’s basic data processing unit is BGP

databin, which is simply a summary of the values of a set

of distinct BGP attributes over a period of one minute.

To measure the impact during a monitoring period, our

basic idea is to check every databin from that period,

and see whether it is associated with a normal cluster

composed of a set of normal databins, or an abnormal

cluster composed of a set of abnormal databins. At any

point there is only one normal cluster but there can be

multiple abnormal clusters. The normal cluster represents

the normalcy of BGP, and the abnormal clusters represent

different types of BGP abnormalities. Once we know the

associated cluster of every databin from a period, we then

can calculate the impact of the databin as well as the impact

during the entire period.

I-seismograph employs two different modes for measur-

ing BGP impact: the heavyweight mode and the lightweight

mode, which are depicted in Figs. 1(a) and 1(b), respectively.

The latter requires that the normal and abnormal clusters

be known a priori, while the former uses an unsupervised

method to discover them automatically.

Both modes include a Data Collection and Preprocessing

component to collect BGP data and pre-processes them into

distinct databins, and an Impact Calculation component

that uses the normal and abnormal clusters to calculate

the impact of every databin and therefore the impact curve

during monitoring periods. In addition, the heavyweight

mode also includes a Two-Phase Clustering Process that

discovers the databins which make up the normal cluster,

and discovers abnormal databins and groups them into one

or multiple abnormal clusters according to their similarity.

The lightweight mode is suitable for real-time Internet

earthquake monitoring, or quickly checking the impact on

BGP during a given period. The heavyweight mode is slower,

but can be used to generate the normal and abnormal

clusters needed by the lightweight mode.

C. Data Collection and Preprocessing

1) Data Collection and Cleaning: We collect BGP data

from two types of periods: monitoring periods and reference

periods. A monitoring period is a time window for which we

want to measure the impact on BGP. It can be an arbitrary

period, say [T1,T2], that we want to monitor; or, to monitor
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Fig. 1: Two modes of I-seismograph.

BGP during an event that occurred from time t1 to t2, the

monitoring period may be [T1,T2], where T1 ≤ t1 ≤ t2 ≤ T2

(as we often do not know the accurate values of t1 and

t2, the monitoring period can be noticeably larger than the

real duration of an event).

Every monitoring period is associated with a reference

period, which, as we will see later, provides reference data to

help normalize BGP data and run the two-phase clustering

process. Every reference period, when chosen, must have

two properties: (1) adjacency to its associated monitoring

period; and (2) sufficient length (such as four weeks).

Because of these two properties, the majority of data in the

reference period reflect what is normal for the particular

monitoring period in question, which we define as short-

Attribute Description

Announcement # of BGP announcements
Withdrawal # of BGP withdrawals
Update # of BGP updates
WADiff # of new-path announcements after withdrawing

an old path to the same IP prefix
AADiff # of new-path announcements to the same IP prefix

(thus implicit withdrawals)
WWDup # of duplicate withdrawals to the same IP prefix
AADupType1 # of duplicate announcements to the same IP prefix

where all fields of the announcements are unchanged
AADupType2 # of duplicate announcements to the same IP prefix

where only the AS-PATH and NEXT-HOP fields of
the announcements are the same

WADup # of re-announcements after withdrawing the same
path

AW # of withdrawals after announcing the same path

TABLE I: Names and descriptions of selected BGP attributes.

term normal later in Sec. III-E. Note that we do not require

a reference period to be free of anomalies, which is neither

necessary nor practical to achieve. The fact is, even if it

contains outliers and BGP data that are not (short-term)

normal, because the period is long, the portion of such

data should be small, and it will not affect the entire two-

phase clustering process (Sec. III-E) of I-seismograph that

eventually will only put normal data into the normal cluster.

The BGP data we collect are BGP updates, which are the

conversation records between BGP routers, and which serve

as firsthand data about BGP. We collect BGP updates from

RIPE [9] and RouteViews [10]. These two organizations each

maintain about 20 BGP collectors, and every collector peers

with a number of BGP routers, also called BGP peers, to

receive BGP updates; we use all available collectors and

their peers. We then clean the updates by applying the

algorithm described in [11] to remove those caused by

session resets between a BGP collector and its peers.

2) Data Organization: With the BGP updates from a

given period, we convert them minute by minute into BGP

databins (Appendix B). Because an impact on BGP is about

BGP deviating from its normalcy and thus will affect the

dynamics of BGP, we choose every databin’s attributes to be

those that reflect the dynamics of BGP. Based on previous

studies on BGP instability and dynamics, including those

from [8], [12], we have identified ten distinct BGP attributes

to summarize every minute of BGP activities (Table I).

3) Data Normalization: To discover the normal profile

and different abnormal profiles of BGP, the data collected

for this study will span a long period (the experiments that

we report in Sec. V involve BGP data over 16 years). On one

hand, we must ensure all BGP databins are comparable to

each other; on the other hand, BGP is known to be evolving

over time. Therefore, we must normalize the databins.

Our basic idea in normalizing any given databin is to find

the baseline value of every attribute of the databin, and then

use the ratio of the original value of the attribute versus its

baseline value as the normalized value of the attribute.

To find the baseline value for every attribute of a databin,

our first step is to find a set of reference databins for the

databin in question. These reference databins will always be

selected from a reference period, whether the databin being

normalized is from a monitoring period or its associated
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reference period. We run the K-Medoids (PAM) clustering

algorithm to partition all the databins from the reference

period into two clusters, and remove the databins from

the cluster that is smaller—i.e., outliers. Then with the

remaining databins—i.e., those belonging to the bigger

cluster, we choose those databins that are of the same

minute of the day as the databin in question to serve as the

reference databins. As the reference databins are from the

reference period and hence their values are comparable to

the databin to normalize, we simply calculate the median

of each attribute of all the reference databins, and use that

as the baseline value for the attribute of the databin to

normalize.

D. Impact Calculation

I-seismograph calculates impact from two levels: the

impact of a single databin, and the impact during a mon-

itoring period. Its input includes a normal cluster and

multiple abnormal clusters. (We describe how we obtain

these clusters in Sec. III-E.) The impact of an individual

databin is based on the databin’s relation with the normal

cluster. The impact during a monitoring period checks how

all the databins from the period deviate from the normal

cluster collectively.

Every databin from a monitoring period will be assigned

into either the normal cluster or one of the abnormal

clusters. In the lightweight mode, the procedure is straight-

forward: with the normal and abnormal clusters as input,

I-seismograph compares every databin’s distance to the

medoid of every cluster—i.e., the most centrally located

databin in that cluster—and assigns the databin to the

cluster with the nearest medoid. In the heavyweight mode,

this is achieved through the two-phase clustering which we

describe in Sec. III-E.

We introduce the following concepts to measure the

impact of a databin and the impact during a monitoring

period:

• Impact value (of a databin d =< d1,d2, · · · ,dn >). This

measures the distance of a databin from the normal. (We

define every databin in the normal cluster to have an

impact value of 0, and here we focus on those not in

the normal cluster.) Since every databin is a vector with

multiple basically orthogonal BGP attributes, we obtain its

deviation distance along each attribute, and use the sum

of all the deviation distances (i.e., the databin’s Manhattan

distance from the normal) as the value of the impact.

We take the following steps: (1) For every attribute Ai

(i = 1,2, ...,n) of d , we use all the databins from the normal

cluster to determine the mean µi and standard deviation

σi of Ai . (2) We then calculate the databin’s deviation

distance from the normal along each attribute, denoted as

δi (i = 1,2, ...,n). With the databins in the normal clusters

are mostly within [µi−σi ,µi+σi ] (for more information

see Appendix E), δi is di−(µi+σi ) if di>(µi+σi ), or

(µi−σi )−di if di<(µi−σi ), or 0 if (µi−σi )≤di≤(µi+σi ). (3)

We normalize δi to be in the range of [0, 1] by dividing it

by the maximum recorded value of δi . In the following, δi

always refers to a normalized value. (4) Finally, we use the

sum of the differences for all attributes, i.e.,
∑n

i=1
δi , as the

distance of d from the normal. Since our study currently

uses exactly 10 BGP attributes, every impact value will

thus be between 0 and 10.

• Impact direction (of a databin). Every databin is a vec-

tor with multiple BGP attributes and may deviate from the

normal along a specific direction. The impact direction of

a databin indicates in which direction the databin deviates

from the normal. Following the discussion of impact value

above and using the same notations, we define the impact

direction of a databin using the deviation vector < δ1, δ2,

· · · , δn >.

• Impact curve (of a monitoring period). This is the plot

of the impact values of all the databins from a monitoring

period over time.

• Dominant and peak impact directions (of a monitoring

period). The abnormal cluster that has more databins

from the monitoring period than any other abnormal

clusters is what we call the dominant abnormal cluster

for the period. We define the impact direction of this

cluster’s medoid (i.e., its most centrally located databin) as

the dominant impact direction for the monitoring period

in question. In addition, we define the impact directions

of those databins from a monitoring period that have a

peak impact value as the peak impact directions of the

period. Note that those databins may or may not belong

to the dominant abnormal cluster. The dominant direction

represents the overall trend during a monitoring period,

and the peak direction indicates the behavior during the

maximum impact.

E. Two-Phase Clustering Process

I-seismograph in heavyweight mode includes a two-

phase clustering process to discover a normal cluster of

normal databins and multiple abnormal clusters of abnor-

mal databins. As shown in Fig. 1(a), the input to this process

is composed of BGP databins from one or multiple moni-

toring periods and BGP databins from the reference period

associated with each monitoring period, as described in

Sec. III-C1.

The two-phase clustering is based on our concept of two-

level normality: short-term normal, or s-normal; and long-

term normal, or l-normal. S-normal refers to what is nor-

mal during a specific monitoring period and its associated

reference period. L-normal refers to what is normal during

a much longer period. Similarly, we use s-abnormal and

l-abnormal to mean short-term and long-term abnormal,

respectively. As such, the two-phase clustering process will

take databins as input from multiple monitoring periods

and their associated reference periods—which altogether

spread over a long period, and process them in two different

phases: short-term clustering and long-term clustering.

The short-term clustering serves as a filtering process;

by discarding certain databins, it will ensure that every

databin from a reference period is s-normal, whereas none

of the databins from a monitoring period are. The long-

term clustering then takes the result from the short-term
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clustering as its input, and clusters all the databins; it will

discover databins that are l-normal and those that are not,

and group them based on their similarity into the normal

cluster and multiple abnormal clusters, respectively. Below

we describe each phase in detail.

1) Short-Term Clustering Phase: We take two steps in

processing the databins from a monitoring period and its

associated reference period: first, we process databins from

the reference period; second, we use the result to help

process databins from the monitoring period.

Processing Databins from Reference Period: Assuming a

reference period spans over multiple days, for each day

of databins, we run a clustering algorithm, which we call

N-clustering, to see if it generates an s-normal cluster

that contains only s-normal databins. If it does, we retain

databins from the s-normal cluster and discard all other

databins; otherwise, we discard the entire day (for more

information see Appendix F).

N-clustering is a divisive hierarchical clustering algo-

rithm [13]. It relies on two rules: the majority rule and the

tightness rule. It assumes that the s-normal cluster—if it

ever exists—must consist of more than 50% of the databins

from the initial input, and these databins must be tightly

clustered.

As shown in Fig. 2(a), N-clustering works as follows: (1)

It begins with all the input databins as the root cluster,

and uses K-Medoids to recursively split a cluster into two

child clusters. K-Medoids is used because it creates non-

overlapping clusters and is more resilient to outliers than

other clustering algorithms such as K-Means. (2) Upon

every split, it discards the smaller child because it has less

than 50% of the databins and cannot be, or lead to, an

s-normal cluster. (3) If the bigger child meets both the

majority rule and the tightness rule, it is exactly the s-

normal cluster to generate! If it meets the majority rule

but not the tightness rule, it will be split again. If it does

not meet the majority rule, however, no s-normal cluster

will be found and N-clustering simply stops.

To determine whether a cluster is tight, we check its intra-

distance and inter-distance [14]. The intra-distance shows

how far apart databins within a cluster are, and the inter-

distance is the distance between a cluster and its sibling

cluster. When the intra- and inter-distance of a cluster

reaches a knee or inflection point, we determine that this

cluster is tight and does not need to be further split. (We

choose 20% as the knee since the knee typically occurs

when the intra-distance becomes no more than 20% of the

inter-distance (Appendix C).)

Processing Databins from Monitoring Period: Now that

databins from the reference period are all s-normal, we

further process the databins from the monitoring period to

only retain those that are s-abnormal. However, doing so

is more difficult than retaining s-normal databins from the

reference period. In the latter, every time we split a cluster

of databins into two child clusters, we can discard the

smaller child since this child is guaranteed not to contain

s-normal databins. Now, because the majority databins

from the monitoring period could be either s-normal or s-

(a) N-clustering for process-
ing databins from a reference
period

s-normal s-abnormal

(b) A-clustering for processing
databins from a monitoring pe-
riod

Fig. 2: Short-term clustering. (Each circle represents a clus-

ter, the dashed circle represents an inflated cluster, and a

cluster with darker shade contains a higher percentage of

s-abnormal databins.)

abnormal, if we run a clustering algorithm to split databins

from the monitoring period, we do not know between the

bigger and the smaller child clusters, which one to discard

and which to further inspect.

We overcome this difficulty by designing a new clustering

algorithm, which we call A-clustering, to discover a cluster

of s-abnormal databins (Fig 2(b)). Like N-clustering, it is

also a divisive hierarchical clustering algorithm. It begins

with one initial cluster with all the databins from the moni-

toring period, and also uses K-Medoids to split a cluster into

two new child clusters. But, every time we split a cluster we

inflate it with s-normal reference databins obtained earlier!

Specifically, every time we split a cluster with n databins,

including the very initial cluster, we randomly choose more

than n s-normal reference databins and inject them to the

cluster to create an inflated cluster. The inflated cluster will

thus have a key property: Its s-normal databins are the

majority, and the s-abnormal databins to discover are the

minority. The majority here includes not only the injected,

s-normal databins, but also those from the monitoring

period that are also s-normal. As a result, after a binary

split of the inflated cluster, we will be certain that the s-

abnormal databins will go to the smaller child. The bigger

child will not only include injected, s-normal databins, but

will also act like a sticking ball to pick up as many s-

normal databins as possible from the monitoring period.

If the bigger child cannot pick up any s-normal databins

from the monitoring period, the smaller child is already a

cluster with all the s-abnormal databins and we are done;

otherwise, we can continue to split the smaller child—again

with s-normal reference databins injected first—until we

finally find a child cluster with only s-abnormal databins.

2) Long-Term Clustering Phase: After we use short-term

clustering to filter the databins for every monitoring period

and its associated reference period, we can compare the

databins from a monitoring period and those from its asso-

ciated reference period, and see how abnormal the former

are compared to the latter. However, such abnormality is
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Fig. 3: Long-term clustering. (Its input is the output from

the short-term clustering, and its output are the normal

cluster and multiple abnormal clusters (5 in this figure)).

based on the short-term normality, and will not indicate the

impact during a monitoring period over a long term. It is

also hard to compare the impact from different monitoring

periods that may be far from each other.

To address this limitation, we introduce the long-term

clustering phase to derive the long-term normality, discover

how abnormal the databins from different monitoring pe-

riods are from a long-term perspective, and group databins

according to their long-term normality as well as long-

term abnormality. The long-term clustering enables us

to discover a common, long-term normality of BGP, and

compare the impact from all the monitoring periods in the

same context.

Like our two short-term clustering algorithms, the long-

term clustering algorithm is also a divisive hierarchical

clustering algorithm. As shown in Fig. 3, it will generate a

normal cluster of long-term normal databins and multiple

abnormal clusters of long-term abnormal databins. The

initial input is a root cluster of all the s-abnormal and

s-normal databins from multiple pairs of monitoring and

reference periods. Every time we process a cluster, including

the root cluster, we first check whether the cluster is tight by

calculating its intra-distance, and compare it with the intra-

distance of its parent cluster. If the two intra-distances differ

by less than 1%, i.e., clustering helps little in further packing

databins in this cluster, the cluster is tight (Appendix D),

and it is a leaf cluster and we do not split it. Otherwise, we

continue to use K-Medoids to split it into two child clusters.

We then begin processing every child cluster, following the

same procedure just mentioned. This recursive procedure

will eventually stop, creating a tree of clusters. The largest

leaf cluster is then the normal cluster; other leaf clusters

are various abnormal clusters.

IV. VALIDATING I-SEISMOGRAPH

In this section we validate I-seismograph. In particular,

we investigate its convergency with more data input and

its sensitivity to data sources, both along three key metrics.

We demonstrate I-seismograph converges when more BGP

data are used and it can derive similar results whether it

uses RouteViews collectors or RIPE collectors. We compare

its heavyweight mode against its lightweight mode in the

next section (Sec. V-D) to show that I-seismograph obtains

equivalent results no matter which mode it uses.

A. Metrics for Validating I-seismograph

In order to validate if I-seismograph produces similar

results when different amount of input data are used

or when different data sources are adopted. We use the

following three metrics to compare the results from two

different runs of I-seismograph:

• Normal cluster difference. Assuming the two normal

clusters derived from two different runs of I-seismograph

are N and N ′, their difference is the difference of the

medoid databin of N and that of N ′, which is the sum of

absolute differences along all BGP attributes.

• Impact curve difference. Assuming the impact curves

for a monitoring period [t1, t2] are i (t ) and i ′(t ) from

two different runs of I-seismograph, their difference is∫t2
t1

|i ′(t )− i (t )|.

• Dominant impact direction difference. Assuming the

dominant impact directions for a monitoring period [t1, t2]

are d and d ′ from two different runs of I-seismograph,

their difference is the sum of d and d ′’s absolute differ-

ences along all attributes.

B. Convergency

A key property that I-seismograph must possess is that

it must converge with more data input. Specifically, with

enough data input, I-seismograph should (1) produce a

normal cluster that defines a stable and reliable normalcy

of BGP; and (2) report consistent impact results for any

monitoring period. We design an iterative procedure to

evaluate I-seismograph’s convergency as follows.

1) We select 16 different monitoring periods and their

associated reference periods from 2001 to 2016 as input,

and a specific target period M that we run I-seismograph

as below to monitor. Pick n random permutations of all 16

monitoring periods and repeat Steps 2) and 3) below for

every permutation.

2) Denote the current permutation mx1,mx2, · · · ,mx16.

Run I-seismograph in the heavyweight mode 16 times, each

time independently measuring the impact over the target

period M . In the first time use BGP data from mx1 and its

associated reference period as the only input, then every

following time add the next monitoring period in sequence,

until the last time that includes all 16 monitoring periods.

3) Each time after adding a monitoring period, compare

the results from I-seismograph in terms of the three metrics

defined in Sec. IV-A, and record the difference.

4) Gather all the stepwise convergency check results

from 3) and conduct the statistical analysis to verify if I-

seismograph converges.

Fig 4 shows how I-seismograph converges along the

three metrics with n=40 (results are similar for all n>10).

Clearly, as more monitoring periods are added, i.e., as more

data are provided as input to I-seismograph, results of all

three metrics approach 0. Specifically, the definition of the

normalcy of BGP, as represented by the normal cluster, will

become fairly stable when enough input is used. In other

words, the normal cluster will be approximately the same

6



so long as BGP data from enough periods are fed to I-

seismograph. Similarly, both impact curves and dominant

impact directions also converge, reaching stable results as

enough data are used. (More information can be found in

Appendix G)

C. Sensitivity to Data Sources

I-seismograph currently relies on BGP collectors from

RouteViews and RIPE to gather BGP updates as its input

(Appendix A). These collectors are in different locations

on the Internet and peer with different BGP routers, i.e.,

BGP peers. However, as every BGP router on the Internet

strives to keep their routes to every IP address up-to-date,

we found that in most cases the BGP dynamics that can

be heard by RouteViews peers can also be heard by RIPE

peers, and vice versa. (In fact, all 16 events that we report

in Sec. V are heard by both RouteViews and RIPE.) In this

subsection we therefore investigate whether I-seismograph

will derive similar normal clusters and impact results, no

matter whether it uses RouteViews or RIPE collectors.

We compare I-seismograph using RouteViews with I-

seismograph using RIPE, again along the three metrics from

Sec. IV-A. We randomly pick from RouteViews and RIPE j

collectors each, with j =1, 2, ..., 11. For each value of j ,

we run I-seismograph with either j RouteViews collectors

or j RIPE collectors. In each run we choose 4 one-month

periods from each year from 2008 to 2017, i.e., totally 40

periods, in order to obtain the normal cluster and derive

the impact curve and dominant impact direction over a

target two-day monitoring period. Here, for every j , we will

use 10 different choices of j collectors in order to collect

statistically meaningful results. Also note RouteViews and

RIPE can both have at most 11 collectors that exist from

2008 to 2017.

We therefore can compare for each value of j ( j =1, 2,

..., 11) how I-seismograph performs when different data

sources are used. Fig. 4 shows the results with RouteViews

only differ very little from those with RIPE. In particular,

while the normal cluster difference can be as high as 10,

the median values are only 0.27 on average, with minimum

and maximum respectively 0.23 and 0.31. Compared with

the maximal possible difference of impact curves (28800),

the impact curve difference values are all fairly minimal

(Fig. 5(b)). The dominant impact direction difference is a

bit high when only one collector is used (a bit over 1 out

of the maximal value of 10), but they become quite low on

average when more collectors are used (Fig. 5(c)).

V. IMPACT RESULTS

In this section, we apply I-seismograph to measure the

impact on BGP, i.e., the Internet earthquake. We select

16 monitoring periods from 2001 to 2016 (Sec. V-A), use

the heavyweight mode with all 16 monitoring periods and

their associated reference periods to derive the normal

cluster, and measure the impact on BGP during each one

of the 16 monitoring periods. Note that the impact that I-

seismograph detects during each event is likely different,
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Fig. 5: I-seismograph sensi-

tivity to data sources (Route-

Views vs. RIPE).

and an event may not even cause BGP to deviate from its

normalcy (such as those that only affect a small region).

We report and analyze the impact curves in Sec. V-B and

impact directions in Sec. V-C, and verify in Sec. V-D that

I-seismograph in the lightweight mode will produce similar

impact results over all 16 monitoring periods.

A. Setup

We have identified a number of events to see if the

normal operation of BGP was disrupted during an event.

To demonstrate the efficacy of I-seismograph, we selected

16 events from a wide time span from 2001 to 2016. We

associated every event with a two-day monitoring period

during which the event occurred; a two-day time window

is long enough to span the entire duration of each event,

so when we monitor the impact during the two-day period,

we can guarantee we will monitor the impact during the

event. We further associated every event with a 4-week

reference period that immediately precedes the monitoring

period; doing so meets the two required properties for

selecting the reference period in question, as described

in Sec. III-C1. We thus used 2*24*60 databins from the

event period and 4*7*24*60 databins from the reference

period. Finally, we ran I-seismograph to report the impacts

for each monitoring period, which extracts a databin to

summarize the BGP data for every minute during the period

and produces the impact results for the entire period as

described in Sec. III-D.
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2003
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2006
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(k) Indosat route leak[6]: Apr. 2,
2014
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(m) CISCO 512K router failure[23]:
Aug. 13, 2014
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27, 2014
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(o) Malaysia route leak[2]: Jun. 12,
2015
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(p) SEA-ME-WE-4 cable cut[24]:
May. 17, 2016

Fig. 6: Impact curves during 16 different monitoring periods (with every period’s starting date).

B. Impact Curves and Their Patterns

Fig. 6 presents the impact curves produced by I-

seismograph over all 16 monitoring periods. These curves

have various patterns. An impact curve often consists of one

or multiple waves, where we define each wave to consist of

an ascent followed by a descent. An ascent is the portion

of the curve where the impact values climb to a peak value

from the baseline, and a descent is the portion where the

impact values decline to the baseline from the peak. We

use an empirical value of 0.1 for the baseline as the impact

values lower than 0.1 are negligible. We look at the impact

patterns from the following perspectives:

• Ascent of a wave. The ascent pattern of a wave reflects

how fast the impact on BGP reaches its height. The

impact can reach a peak value almost instantly or slowly.

Either way, it can reach the peak value with a monotonic

increase, or up and down instead while the overall trend

is still going up. The wave in the Slammer worm curve, for

example, has a quickly rising ascent (Fig. 6(c)), whereas

the wave in the Code Red worm curve has a slowly rising

ascent (Fig. 6(a)). We can see that most ascents in Fig. 6,

however, are fast-rising.

• Descent of a wave. Similarly, the impact can also de-

crease from a peak value to the baseline almost instantly

or gradually, reflecting how quickly BGP returns to its

normal status after an impact. It can subside from a peak

value gradually over time, as shown in the Slammer worm

curve (Fig. 6(c)), or quickly, as in the first wave of the

Taiwan cable cut curve and the Malaysia route leak curve

(Figs. 6(f) and 6(o), respectively). We can see in Fig. 6

that roughly half of the descents are fast, and half are

slow. Here, if both the ascent and descent of a wave are
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fast, the wave is then basically a spike.

• Wave duration. The impact on BGP during a wave can

last a long time, or can be simply short-lived. A long-lived

wave is often at least about half a day (e.g., Figs. 6(a), 6(c),

6(h), 6(l)), but could also last almost an entire monitoring

period (e.g., Fig. 6(g)). A short-lived wave is typically a

spike, whereas the spike may be of either a high value

or a low value. From Fig. 6 we can see that seven out of

16 (i.e., about half) curves only contain spike waves (i.e.,

Figs. 6(d), 6(e), 6(i), 6(j), 6(n), 6(o), 6(p)).

• Wave magnitude. While the maximal value of an impact

is 10 (Sec. III-D), out of 16 curves in Fig. 6 we see that

for most curves, no wave has a peak value higher than

1.0. The exceptions are the curves for Slammer worm, the

Taiwan cable cut, the Egypt blackout, the Canada route

leak, the Time Warner outage, and the Malaysia route leak,

where the impact value can be as high as 3.1, 1.9, 1.1, 1.5,

1.5, 1.5, respectively (Figs. 6(c), 6(f), 6(i), 6(j), 6(n), 6(o)).

• Number of waves. An impact curve during a monitoring

period could experience just one wave (e.g., Fig. 6(c)), or

multiple waves (e.g., Fig. 6(h)). As every wave contains

a departure and then a return to the baseline, a higher

number of waves can indicate a higher level of oscillation

due to the impact on BGP during a monitoring period.

• Interval between waves. An interval between waves is a

time window during which there is no noticeable impact

on BGP. There can be either short intervals or long

intervals between waves. If an interval is short, it means

after the impact on BGP declines to the baseline, the BGP

is going to experience yet another new wave of impact

soon. For example, the Mediterranean cable cut curve has

waves only minutes apart (Fig. 6(g)). On the contrary, a

long interval indicates a long quiescent period without

much impact on BGP. For instance, Fig. 6(m) has two

distinct waves, where the first wave corresponds to an

unreported event and the second wave coincides with

the occurrence of the CISCO 512K router failure event.

Because these two events are almost 26 hours apart and

nothing disruptive happened between them, we can see a

long interval of almost 26 hours between the two waves.

C. Impact Directions

Depending on which BGP attributes deviate from the

normal state, receiving an impact is not necessarily a bad

thing. For example, while a lot of WWDup is pathological,

a higher number of BGP updates could simply mean BGP

is doing its job. An impact direction can indicate which

attributes deviate from the normal state. Some attributes

(e.g., AADiff and WADiff) show forwarding dynamics of BGP

that reflect topological changes, some (e.g., WWDup and

AADupType1) show pathological behavior due to redundant

updates, and some (e.g., WADup) could mean both. Readers

can further refer to our earlier work [8] to see how we

can analyze different BGP attributes to understand BGP

dynamics (see Table I for attribute definitions).

The simplest method in understanding the impact di-

rections during a monitoring period is to look at the

Event type Common attributes in dominant impact directions

blackout Announcement, Update, Withdrawal, WADiff

cable cut Announcement, Update, AW

worm Announcement, Update, AADiff

route leak Announcement, Update, AADiff, WADup

TABLE II: Common BGP attributes in dominant impact

directions for the same type of events.

dominant impact directions during the period. For the

16 monitoring periods from Fig. 6, Table II shows the

common BGP attributes in dominant impact directions for

the same type of monitoring periods. While they all show

an increase in the amount of BGP announcements as well

as updates, all blackout events went high on the amount

of Withdrawal and WADiff, all cable cut events spiked on

the amount of AW dynamics, all worm events jumped on

AADiff dynamics, and all route leak events had outstanding

values on AADiff and WADup. During a blackout many

BGP routers will learn they no longer can reach prefixes

from the blackout regions, causing a hike of Withdrawals

to their neighbors; the neighbors may decide new paths

to those prefixes and then announce them, also causing

the hike of WADiff. During a cable cut, however, once a

path is withdrawn, it is very likely that there will not be an

alternate path, thus no announcement hikes, but simply

many withdrawals corresponding to early announcements

(thus AWs) that are sent to adjacent BGP routers regarding

IP prefixes on the other side of the undersea cable. During

a worm, when a link between two BGP routers is congested

by a worm, both routers will treat the link as unavailable

and directly send out announcements of new paths that

will not use the link, thus causing many AADiffs. During

a route leak, there will be many leaked announcements

with incorrect paths to affected prefixes, thus causing many

AADiffs; furthermore, the havoc can potentially cause many

BGP routers to withdraw the paths to such prefixes, followed

by the announcements from the origin ASes to re-establish

the correct paths to the affected prefixes, further causing

many WADups.

Also interesting is the peak impact directions over these

periods. These peak impact directions show the maximum

impact during a period, and do not necessarily agree with

the dominant impact direction. Some peaks simply show a

higher level of benign forwarding dynamics (e.g., the peaks

of the Code Red and Nimda worms, the Syria and East

Coast blackout, the Malaysia and Indosat route leaks, the

first peak of the Taiwan cable cut and the second peak of

the Mediterranean cable cut, and the CISCO 512K router

failure); some peaks show pathological behavior (e.g., the

first peak of the CISCO router failure and the second peak

of the Taiwan cable cut and the Indosat route leak); and

some peaks show both (e.g., the peaks of the Slammer and

Hurricane Katrina, the Canada and China route leak, and

TimeWarner outage).

D. Heavyweight Mode vs. Lightweight Mode

If I-seismograph works correctly, it should generate

equivalent impact results whether it is used in the heavy-
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weight mode or the lightweight mode. In Secs. V-B and V-C

we have shown impact results under the heavyweight mode

for the 16 different monitoring periods. In this section, we

verify I-seismograph in the lightweight mode will produce

similar impact results over the same 16 monitoring periods.

For each monitoring period we compare, we first use the

other 15 monitoring periods as the input to I-seismograph

and run I-seismograph in the heavyweight mode to gener-

ate the normal cluster and abnormal clusters. We then run

I-seismograph in the lightweight mode to obtain the impact

curves and dominant impact directions for each monitoring

period.

Monitoring Period

Impact Curve
Difference per Databin

Dominant
Impact Direction

Differenceaverage maximum

Code Red worm[15] 0.000360 0.099792 0.550326

Nimda worm[16] 0.000866 0.172153 0.171812

Slammer worm[17] 0.145369 2.871274 1.470100

East coast blackout[18] 0.001174 0.052728 0.185583

Hurricane Katrina[19] 0.000066 0.021473 0.820372

Taiwan cable cut[20] 0.001779 0.147421 0.253638

Mediterranean
cable cut[21]

0.000490 0.147288 0.374698

China route leak[7] 0.000243 0.075015 0.014345

Egypt blackout[22] 0.000667 0.317839 0.131542

Canada route leak[5] 0.000108 0.015956 0.031874

Indosat route leak[6] 0.000434 0.035109 0.382370

Syria blackout[4] 0.000304 0.081255 0.111283

CISCO 512K
router failure[23]

0.000132 0.019330 0.737440

Time Warner
blackout[3]

0.000629 0.152325 0.408921

Malaysia route leak[2] 0.008808 0.091440 0.041744

SEA-ME-WE-4
cable cut[24]

0.000156 0.032317 0.009128

average: 0.010099 0.270795 0.293449

TABLE III: Difference between running I-seismograph in

heavyweight and lightweight mode. The maximum value

for each difference value is 10.

Table III shows the impact curve difference per databin

and the dominant impact direction difference for each

monitoring period between the two modes. Clearly, while

the highest possible value is 10 for all differences, both the

average differences and the maximum differences of impact

per databin are insignificant (their averages over all the

monitoring periods are only 0.0101 and 0.271, respectively),

and dominant impact directions for each period between

two modes also only differ 0.293 on average.

From these results we can see that we can feed past

BGP data into the heavyweight mode to generate normal

and abnormal clusters, and then switch to the lightweight

mode to more easily and quickly measure impacts for

future monitoring periods, including real-time monitoring.

Of course we can also add new, more up-to-date BGP

data to the heavyweight mode at any time to update the

normal and abnormal clusters, making the future impact

measurement more accurate. Meanwhile, as the correctness

of the lightweight mode hinges upon the correctness of the

normal and abnormal clusters generated from the heavy-

weight mode, the result above also demonstrates that the

heavyweight mode is good at discovering and distinguishing

the normal and the abnormal.

VI. FURTHER ANALYSIS: WHAT HAPPENED TO BGP IN AN

INTERNET EARTHQUAKE?

In addition to measuring and reporting the impact on

BGP during a monitoring period, I-seismograph can further

be used to help analyze what happened to BGP during the

impact. Note that receiving an impact during an event does

not necessarily mean that the impact is caused by the event.

There could be other things happening simultaneously that

cause the impact (for example, an impact spike during a

regional blackout could actually be caused by an unknown

large-scale route leak).

In this section, we focus on analyzing the following two

questions that frequently arise in network diagnosis:

1) Origin AS analysis: During an Internet earthquake,

which ASes on the Internet are affected most in

terms of having the largest increase of BGP updates

originated from these ASes? A similar but different

question is, which ASes are affected most in terms of

having the largest number of IP prefixes affected? (A

prefix is “affected” if it is announced or updated more

frequently than usual.)

2) AS path analysis: During an Internet earthquake,

among all the AS paths or AS path segments that

appear in BGP updates, which AS paths or AS path

segments surged most significantly?

Given the scale, complexity, and very distributed na-

ture of Internet routing data, both questions above, in

general, are difficult to answer. However, the design of I-

seismograph provides an effective solution to both ques-

tions. Recall from Sec. III that I-seismograph can derive ab-

normal clusters which encompass abnormal databins and a

normal cluster which includes all the databins representing

what is “normal.” We can therefore compare the databins

from abnormal clusters against those from the normal

cluster, and compare the BGP updates corresponding to

these databins, in order to draw comparisons to answer

the two above questions. We describe the details for both

in the rest of this section.

A. Origin AS Analysis

Given that I-seismograph can separate databins into a

normal cluster and abnormal clusters, we can take advan-

tage of this separation to conduct the origin AS analysis, i.e.,

identify the top origin ASes that had the largest increase of

originated BGP updates or largest number of affected IP

prefixes. The procedure is as follows.

• 1) First, by running I-seismograph for a monitoring pe-

riod, we can generate one or multiple abnormal clusters.

Note that here we can run I-seismograph either in the

lightweight mode or in the heavyweight mode; if the

former we already have a normal cluster, and if the latter

we will generate a normal cluster as well.
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• 2) Second, we select databins of interest from the

abnormal clusters. For example, we can choose all the

databins from all the abnormal clusters to study the

overall anomaly; we can choose the databins from only

the dominant abnormal cluster in order to focus on the

dominant impact direction; or we can choose the databins

that represent the peak impact direction.

• 3) Third, we randomly select the same number of

databins from the normal cluster and use these databins

as our reference of usual behavior of BGP. Note that

every databin is a summary of BGP behavior for a one-

minute window, and the total length of time of abnormal

databins selected is thus equal to that of the normal

databins selected, thus ensuring we compare the normal

and abnormal BGP behavior over the same number of

minutes.

• 4) Fourth, we collect “abnormal” and “normal” BGP

updates corresponding to the abnormal databins and the

normal databins selected above, respectively, and identify

the origin AS of every BGP update. Here, to identify

the origin AS of a BGP update, one can look at the IP

prefix of the update (sometimes an update may have

more than one prefix) and determine the origin AS of

the prefix. We currently use RIPE’s whois database. We do

not choose to use the first AS from the AS-path in the

update as the originator of the prefix, mainly because the

first AS, and sometimes even the entire AS-path, is not

guaranteed to be authentic. This is particularly important

given that in some disruptive events, such as route leaks,

a misconfigured or malicious AS could be sending a very

large number of BGP updates with incorrect origins and

AS-paths. Also, if a BGP update is a withdrawal, it does

not contain AS-path information.

• 5) Finally, we can determine which ASes are affected

most, either in terms of having the largest increase of BGP

updates originated from these ASes, or in terms of having

the largest number of IP prefixes affected. If the former,

we can simply look at the total number of “abnormal” up-

dates vs. “normal” updates from each AS, and determine

which ASes have the largest increase of updates. If the

latter, for every prefix of each AS, we can see if the prefix is

affected with significantly more “abnormal” updates than

“normal” updates for the prefix, count how many prefixes

in each AS are affected, and determine which ASes have

the largest number of IP prefixes affected. One could even

combine traffic information regarding the affected ASes or

prefixes (if such information is available), such as their

inbound or outbound traffic volume, to further determine

which ASes are affected most also in terms of their traffic.

As an example, we can conduct an origin AS analysis to

investigate which ASes are affected the most during the

Taiwan cable cut event [20]. Table IV shows the top-10

ASes with the largest increase of updates. We can see that

corresponding to the databins from the abnormal clusters

(column “Abn.”), these ASes have 391 to 3304 updates, a

great contrast against only at most 11 BGP updates associ-

ated with the normal cluster (column “Nor.”). In fact, nine

out of ten ASes do not even initiate BGP updates after they

settled to normalcy. Also, from the table we can see that all

top 10 ASes are from China, India, Indonesia, Philippines,

and Singapore (column “Loc.”), which all heavily used the

Taiwan undersea cable to connect their prefixes to the

outside across the Pacific Ocean. Users can thus identify not

only the most affected ASes during a time window, but also

approximately the affected geographic region (i.e., Eastern

Asia in this case). Table V further shows the top-10 ASes

with the largest number of prefixes (174 to 1254) affected

during this event. It is worth noting that nine ASes appeared

on the top ten list of both tables, even though the order of

these ASes is not the same for the two tables. Furthermore,

as an ISP may contain one or more ASes, we could derive

the top ISPs with the largest increase of updates or largest

number of prefixes affected during the event, as shown in

the last column of Tables IV and V.

ASN Nor. Abn. Loc. ISP Top ISPs

AS4134 0 3304 CN China Telecom

China Telecom
China Unicom
TATA Comm.
Sify Limited
INDOSATM2
Smart Comm.
StarHub

AS4755 11 1071 IN TATA Comm.
AS9583 0 940 IN Sify Limited
AS4812 0 841 CN China Telecom
AS4837 0 792 CN China Unicom
AS4795 0 514 ID INDOSATM2
AS17816 0 433 CN China Unicom
AS10139 0 401 PH Smart Comm.
AS4808 0 394 CN China Unicom
AS10091 0 391 SG StarHub

TABLE IV: Top 10 ASes with the largest increase of origi-

nated BGP updates during the Taiwan cable cut event.

ASN Nor. Abn. Loc. ISP Top ISPs

AS4134 0 1254 CN China Telecom

China Telecom
China Unicom
TATA Comm.
Sify Limited
Smart Comm.
INDOSATM2
StarHub
Wharf T&T

AS4755 2 564 IN TATA Comm.
AS4812 0 313 CN China Telecom
AS4808 0 300 CN China Unicom
AS9583 0 288 IN Sify Limited
AS4837 0 265 CN China Unicom
AS10139 0 259 PH Smart Comm.
AS4795 0 187 ID INDOSATM2
AS10091 0 177 SG StarHub
AS9381 0 174 HK Wharf T&T

TABLE V: Top 10 ASes with the largest number of prefixes

affected during the Taiwan cable cut event.

Another example is the most affected ASes during the

CISCO 512K router failure [23]. Different from the most

affected ASes during the Taiwan undersea cable cut where

these ASes are geographically concentrated, ASes affected

by the CISCO 512K router failure are much more spread out

over the entire Internet. This pattern is expected given the

wide-spread nature of this event where the failure occurred

in many areas. In fact, more ASes are affected during the

CISCO 512K router failure than during the Taiwan cable

cut; Fig. 7 shows during the CISCO 512K router failure how

many more BGP updates are originated from top 100 most

affected ASes and how many prefixes are affected from top

100 most affected ASes.

B. AS Path Analysis

In parallel to analyzing the origin ASes, it is also impor-

tant to investigate the AS paths or AS path segments that
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Fig. 7: The increased number of originated updates and the

number of affected prefixes for ASes during CISCO 512K

router failure event.

appear in BGP updates more frequently during an Internet

earthquake, which we call AS path analysis. To conduct

this analysis, we apply a procedure similar to that used

in Sec. VI-A. The procedure is as follows.

• 1-3) Same as Steps (1)–(3) for origin AS analysis as

described in Sec. VI-A.

• 4) Fourth, we collect “abnormal” and “normal” BGP

updates corresponding to the abnormal databins and the

normal databins selected above, respectively, and retrieve

the AS path field of every BGP update. Here, every AS

path may contain multiple AS path segments where each

AS path segment can contain one AS, two ASes, or up to

all consecutive ASes on the AS path.

• 5) Fifth, we count and compare the total number of

appearances of every AS path segment in “abnormal”

updates and in “normal” updates. As a result, for each

length, we learn which AS path segments of that length

have the most increase of their number of appearances,

indicating which segments surged most significantly in an

Internet earthquake.

• 6) Finally, we compare the lists of top AS path segments

with different lengths to see which ASes or AS segments

appeared across most or all lists, thus further revealing

the ASes that are mostly likely related to an Internet

earthquake.

We demonstrate the AS path analysis by examining the

BGP dynamics resulting from the Canada route leak event

in 2012 [5]. In this event, AS 46618 (Dery Telecom) falsely

announced paths for 107,409 prefixes obtained from one of

its providers AS 5769 (VIDEOTRON) to its other provider

AS 577 (Bell); AS 577 then accepted all paths for the

leaked prefixes and further propagated those paths into

the Internet. By applying the aforementioned six-step AS

path analysis procedure to this event, as shown in Fig. 8,

we can derive three graphs comprising the 10 AS path

segments with lengths of 4 ASes, 5 ASes, and 6 ASes,

respectively, whose number of appearances surged most

dramatically. The highlighted sequence of nodes appears in

all three graphs, forming the path segment 3549–6453–577-

46618–5769, while AS 3549 and AS 6453 are I-seismograph’s

vantage point AS and its provider. Since AS 577, AS 6453,

and AS 5769 are directly involved in the route leak event,

and the AS path segment 577–46618–5769 appeared in all

of the leaked routes, the AS path analysis presented here

shows that I-seismograph can indeed effectively identify

which ASes and/or AS path segments are the source of an

anomaly.

VII. RUNNING I-SEISMOGRAPH

I-seismograph is easy to set up for real-time monitor-

ing of Internet earthquakes, and its service can be made

available through a website. We have implemented and de-

ployed a real-time version of I-seismograph online at http://

iseismograph.cs.uoregon.edu. It can run in the heavyweight

mode offline and use historical BGP data to derive and

update the long-term normalcy of BGP dynamics. Further,

it can run in the lightweight mode and apply the long-

term normalcy onto the BGP data to monitor the impact

on BGP in real time. We optimized the implementation in

order to achieve a near real-time data processing speed.

For example, I-seismograph has multiple threads running

in parallel, with one separate thread for each BGP peer that

provides BGP data.

Data Sources. I-seismograph currently utilizes the BGP

data collected from both RouteViews and RIPE. Note that

while the data collectors of RouteViews and RIPE obtain

new BGP data in real time, RouteViews’ collectors only

archive the data every 15 minutes and RIPE does so every

5 minutes, thus introducing a delay for 15 minutes and

5 minutes, respectively. We plan to incorporate more data

sources in the future, including true real-time BGP update

feeds such as those from BGPMon [25] and BGPStream [26].

Performance of I-seismograph. The performance of I-

seismograph depends entirely on the mode of operation.

When in lightweight mode, even on a laptop computer

(Intel Core i5 @ 1.87 GHz, 8GB RAM), it takes less than

a minute for I-seismograph to analyze the impact across a

two-day period. In fact, the lightweight mode is perfectly

suitable for running I-seismograph in real time. As soon as

new BGP data become available, it only takes I-seismograph

less than one second to parse a minute’s worth of BGP data

and produce monitoring results. I-seismograph in heavy-

weight mode would need much more time: approximately

25 minutes for each two-day period when processing a

total of sixteen such periods simultaneously. However, I-

seismograph in heavyweight mode can run offline, and

need not be invoked often.

VIII. RELATED WORK

Little research has been conducted to systematically de-

fine, detect and quantify how Internet routing may deviate

at a large scale from its normal state of operation, i.e.,

Internet earthquake as we have referred to in this paper.

Most closely related to our research are various studies that

monitor, detect and analyze the extensive Internet routing

dynamics and large-scale anomalies toward BGP, as well
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Fig. 8: Top-10 AS path segments of different lengths during the Canada route leak. Every path segment has a beginning

node, one or multiple middle nodes, and an ending node. Nodes highlighted are ASes (i.e., 3549, 6453, 577, 46618, 5769)

that appear in all three graphs.

as some case studies that investigate the effects of various

events on BGP. We discuss these related research efforts in

this section, with a summary how our work differs from

recent related studies.

Observing and assessing BGP dynamics at a large scale

have been well studied [27]. Early work by Labovitz et

al. [12] used archived BGP updates from route servers

at major US network exchange points and found several

unexpected trends in routing dynamics, with pathological

duplicate BGP updates contributing to the majority of

unstable dynamics. Li et al. [8] revisited BGP dynamics, a

decade after the study in [12], and found that BGP dynamics

became “busier” but “healthier” with much less patholog-

ical behavior. Elmokashfi et al. [28], [29] also studied the

evolution of BGP dynamics over ten years, and found that

the rate of BGP messages remained stable with respect

to the size of the Internet AS-level topology, in line with

the discoveries from Rexford et al. in 2002 [30]. There are

also tools such as BGPfuse [31], BGPlay [32], iBGPlay [33],

and Link-Rank [34] which visualize BGP dynamics. None of

these studies or tools, however, can help quantify the extent

to which the routing infrastructure, or BGP in particular,

deviates from its normal state when certain dynamics occur.

In fact, because most aforementioned BGP dynamics work

focuses on a specific period, they do not even offer what

the normal state might be in a long-term sense.

Aside from studies of the overall dynamics of BGP, there

are also studies that focus on detecting BGP instabilities and

anomalies [35]. Deshpande et al. [36] proposed an online

instability detection architecture for routers, which employs

statistical pattern recognition of BGP update volumes to

detect BGP instabilities caused by accidental and malicious

activities. Research in [37] applied wavelet analysis [38]

to find self-similarity, power-law and lognormal marginals

patterns in the number of BGP updates that a BGP router

receives per time bin, and then used such patterns to

detect different types of BGP anomalies. Al-Musawi et al.

[39] investigated the deterministic, recurrent and non-linear

properties of BGP updates from BGP routers, defined the

normality of BGP update volumes, and applied recurrence

quantification analysis to detect BGP instability. All these

works defined the normality of BGP behavior based only

on the volume of BGP updates (albeit in different ways)

and tried to use such normality to detect anomalies. I-

seismograph however uses all key BGP attributes known

to reflect BGP dynamics and considers the long-term evo-

lution of BGP in order to offer a more comprehensive

and long-standing view of BGP normality. Moreover, I-

seismograph can not only detect BGP anomalies, but can

also further quantify the deviation of various anomalies

from the normality.

A few research projects further studied how to classify

BGP anomalies. Research in [40] proposed an Internet

routing forensics (IRF) framework that uses supervised

machine learning to detect and classify the impact on

BGP from Internet-wide intrusions and pathological events.

Similarly, the work in [41] introduced a framework to

experiment with different machine learning algorithms for

training and detection of BGP anomalies. Additionally, the

work in [42] proposed a knowledge-based classification to

detect and distinguish different BGP anomalies. Dou et

al. [43] proposed an unsupervised machine learning via a

hierarchical clustering algorithm to detect and classify BGP

anomalies. Finally, researchers also studied BGP anomaly

classification based on support vector machine models

and hidden Markov models [44], as well as the efficacy

13



of Naïve Bayes and decision tree J48 classifiers [45]. The

key difference between these works and I-seismograph is

that while these works address the classification of BGP

anomalies, I-seismograph focuses on quantifying how far

different clusters/classes of anomalous BGP data deviate

from the normal state of BGP.

Researchers have also attempted to investigate the origin

or root causes of Internet routing behavior. Most analyses

focus on specific, individual routing changes (e.g., [46],

[47], [48], [49], [50], [51], [52], [53]), while some focus on the

root cause of a routing phenomenon that occurs at a large,

global scale (e.g., [54], [36], [55]). While it is not the focus

of I-seismograph to analyze the origin or root causes of any

Internet routing behavior, it can be effective in facilitating

the analysis of anomalous routing behavior, in that it can

identify abnormal BGP data to more easily capture what

happened to BGP during a period in question (see Sec. VI).

Also extensively investigated are the effects on BGP

of various events, such as router misconfigurations (e.g.,

[2], [56], [57]), security attacks([1], [5], [58], [59]), natural

disasters (e.g., [60], [61], [62], [20], [19]), electricity outage

(e.g., [18]), censorship (e.g., [55], [63]), or large-scale high-

impact events that affect many IP prefixes ([64]). These

works discovered that under severe conditions the Internet

routing could experience a much higher level of dynamics.

Although informative, however, these studies are about

individual cases and are not meant to provide an approach

to systematically observing, detecting, and quantifying the

anomalies that BGP may experience.

It is worth noting that even only considering the re-

lated studies published after the initial publication of I-

seismograph in [65] (these studies are included in the

discussions above), I-seismograph still makes unique con-

tributions. Compared to recent studies that mostly relate

to measuring BGP dynamics ([29], [31]) or detecting or

classifying BGP anomalies ([39], [35], [41], [44], [45]), I-

seismograph focuses on deriving the long-term normal state

of BGP and quantifying to what extent BGP dynamics or

various anomalies may deviate from the long-term normal

state. I-seismograph also differs from the work in [46], [55],

as it does not focus on investigating the origin or root

causes of Internet routing behaviors; however, it can effec-

tively facilitate the analysis of anomalous routing behavior

as demonstrated in Sec. VI.

IX. CONCLUSIONS

While the Internet is a critical infrastructure of our soci-

ety, little has been done to monitor it as a whole and report

the impact—which we also call an Internet earthquake—

that it may be experiencing at any time. The fact that the

Internet is a large, complex moving target makes this task

particularly challenging.

To address this problem, we devised a measurement

tool called I-seismograph. It focuses on the most essential

function of the Internet—routing, and the de facto inter-

domain routing protocol—BGP. Considering that BGP is a

complex routing protocol concerning IP prefixes from the

entire IP address space and involving BGP routers from

all over the Internet, plus BGP’s constant evolution over

many years, I-seismograph uses a two-phase clustering

method to discover the normal and abnormal states of the

Internet, measures how much the BGP dynamics deviate

from normalcy during any time, and reports both the

magnitude and the direction of the deviation.

I-seismograph is easy to use, and can measure an Inter-

net earthquake using a heavyweight mode or a lightweight

mode, either during an arbitrary period from the past or

in real time. We have demonstrated its usage and shown

the results from applying I-seismograph during different

monitoring periods over the last 16 years. We have also

validated it and found it is both accurate and consistent.

Finally, by identifying abnormal BGP data and enabling

the comparison of abnormal BGP data against the normal

data, I-seismograph can help analyze and diagnose what

happened to BGP during an Internet earthquake, such

as which ASes are affected the most or which AS path

segments surged most significantly in BGP updates.
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APPENDIX

A. Collectors

The current version of I-seismograph utilizes the publicly

available BGP data archive providers, including all the

collectors from RouteViews and RIPE. Table I lists all the

data collectors we use and their corresponding URLs.

Collector name URL

RouteViews CHICAGO ftp.routeviews.org/route-views.chicago/
RouteViews EQIX ftp.routeviews.org/route-views.eqix/
RouteViews ISC ftp.routeviews.org/route-views.isc/
RouteViews JINX ftp.routeviews.org/route-views.jinx/
RouteViews KIXP ftp.routeviews.org/route-views.kixp/
RouteViews LINX ftp.routeviews.org/route-views.linx/
RouteViews NWAX ftp.routeviews.org/route-views.nwax/
RouteViews PERTH ftp.routeviews.org/route-views.perth/
RouteViews SAOPAULO ftp.routeviews.org/route-views.saopaulo/
RouteViews SFMIX ftp.routeviews.org/route-views.sfmix/
RouteViews SG ftp.routeviews.org/route-views.sg/
RouteViews SOXRS ftp.routeviews.org/route-views.soxrs/
RouteViews SYDNEY ftp.routeviews.org/route-views.sydney/
RouteViews TELXATL ftp.routeviews.org/route-views.telxatl/
RouteViews WIDE ftp.routeviews.org/route-views.wide/
RouteViews 2 ftp.routeviews.org/
RouteViews 3 ftp.routeviews.org/route-views3/
RouteViews 4 ftp.routeviews.org/route-views4/
RouteViews 6 ftp.routeviews.org/route-views6/
RIPE RRC 00 data.ris.ripe.net/rrc00/
RIPE RRC 01 data.ris.ripe.net/rrc01/
RIPE RRC 02 data.ris.ripe.net/rrc02/
RIPE RRC 03 data.ris.ripe.net/rrc03/
RIPE RRC 04 data.ris.ripe.net/rrc04/
RIPE RRC 05 data.ris.ripe.net/rrc05/
RIPE RRC 06 data.ris.ripe.net/rrc06/
RIPE RRC 07 data.ris.ripe.net/rrc07/
RIPE RRC 08 data.ris.ripe.net/rrc08/
RIPE RRC 09 data.ris.ripe.net/rrc09/
RIPE RRC 10 data.ris.ripe.net/rrc10/
RIPE RRC 11 data.ris.ripe.net/rrc11/
RIPE RRC 12 data.ris.ripe.net/rrc12/
RIPE RRC 13 data.ris.ripe.net/rrc13/
RIPE RRC 14 data.ris.ripe.net/rrc14/
RIPE RRC 15 data.ris.ripe.net/rrc15/
RIPE RRC 16 data.ris.ripe.net/rrc16/
RIPE RRC 18 data.ris.ripe.net/rrc18/
RIPE RRC 19 data.ris.ripe.net/rrc19/
RIPE RRC 20 data.ris.ripe.net/rrc20/
RIPE RRC 21 data.ris.ripe.net/rrc21/

TABLE I: Complete list of all BGP data collectors used in

I-seismograph

Note that collector RRC02, RRC08, and RRC09 have

stopped updating their data archives and only provide

historical data. We use such collectors for the analysis of

historical events only.

B. BGP Databin Length Choice

I-seismograph’s basic data processing unit is BGP

databin, which is a summary of BGP activities over a

constant time period. Deciding the length of this period

is a tradeoff: It cannot be too short; otherwise, the BGP

activities within every databin will always be too sparse,

and it will be difficult to distinguish normal and abnormal

level of activities. It cannot be too long either; otherwise,

I-seismograph will suffer from a slow response time since

it will take I-seismograph at least the length of one databin

to process and report the impact on BGP.

We measured, for different lengths of BGP databin, how

many BGP announcements, withdrawals, and updates usu-

ally occur. Fig. 1 shows the results. Clearly, one minute

would be a reasonable choice.

C. Short-term Clustering Stopping Criterion

When conducting the short-term clustering for a ref-

erence period, we need to make sure the final s-normal

cluster will contain at least 50% data from the original

input, and the databins in the same cluster are much more

similar than those from different clusters. There are indeed

many different stop criteria for clustering, but in order to

meet the requirements above, we found that it works best

by checking if the intra-cluster distance is no more than

20% inter-cluster distance, as shown in Fig. 2.

D. Long-term Clustering Stopping Criterion

In the long-term clustering (Section III-E2), if the differ-

ence between the intra-distance of a cluster and that of

its parent cluster is no more than a threshold, we decide

the cluster is not “tighter” than its parent cluster, and we

will not further divide the cluster. We experimented with 16

different long-term clustering processes and tested how all

the processes may be affected by different threshold values

ranging from 0.1% to 99%. As shown in Fig. 3, we found

that every process generates basically the same number of

clusters when the threshold is 2% or less, but the number

decreases when it is more than 2%. Therefore, we choose 1%

as a safe threshold value to ensure the long-term clustering

obtains the largest number of clusters.

E. Impact Calculation Formula Basis

In calculating the deviation distance along each attribute,

say Ai , we found that along each attribute the databins

in the normal clusters (i.e., normal databins) are mostly

within [µi−σi ,µi+σi ] (as shown in Table II), where µi and

σi are respectively the mean and standard deviation of all

the databins from the normal cluster along attribute Ai . So

we use the databin’s absolute distance from [µi−σi ,µi+σi ]

as its deviation along attribute Ai .

mean±std_dev

WW 100.0

WADup 100.0

Withdraw 92.978

WADiff 90.247

AW 90.557

Announce 92.879

AADiff 96.439

Update 93.034

AADup2 91.950

AADup1 91.950

TABLE II: Percentage of attribute values that fall into

mean ± standard deviation.
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Fig. 1: Boxcharts of the # of three BGP dynamics attributes per databin with different lengths of databins, ranging from

1 second to 120 seconds.
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Fig. 2: Short-term clustering effect with different intra- vs.

inter-cluster distance percentage.
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Fig. 3: Long-term clustering effect with different child- vs.

parent-cluster intra-distance percentage.

F. Comparison of Short-term Normal Clusters from Different

Days and Periods

We conducted an experiment to study how short-normal

clusters from different days differ. We selected a four-week

reference period for each year from 2008 to 2016, conducted

short-term clustering over all these periods, and compared

the s-normal clusters from the same reference period as

well as short-term clusters from different reference periods.

As shown in Fig. 4, clearly, the s-normal clusters are slightly

different over different days from the same reference period,

but can be more significantly different over different days

from different reference periods.

G. Convergency Validation using Only Reference Periods

Data

We also used the data from reference periods to test the

convergency of I-seismograph. From Fig. 5, we can clearly

see that the convergency test results using data only from

reference periods are very close to the original results that

use both the reference and monitoring periods, as shown

in Section IV.B.
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