
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 1

MOERA: Mobility-agnostic Online Resource
Allocation for Edge Computing
Lin Wang, Lei Jiao, Jun Li, Julien Gedeon, and Max Mühlhäuser

Abstract—To better support emerging interactive mobile applications such as those VR-/AR-based, cloud computing is quickly
evolving into a new computing paradigm called edge computing. Edge computing has the promise to bring cloud resources to the
network edge to augment the capability of mobile devices in close proximity to the user. One big challenge in edge computing is the
efficient allocation and adaptation of edge resources in the presence of high dynamics imposed by user mobility. This paper provides a
formal study of this problem. By characterizing a variety of static and dynamic performance measures with a comprehensive cost
model, we formulate the online edge resource allocation problem with a mixed nonlinear optimization problem. We propose MOERA, a
mobility-agnostic online algorithm based on the “regularization” technique, which can be used to decompose the problem into separate
subproblems with regularized objective functions and solve them using convex programming. Through rigorous analysis we are able to
prove that MOERA can guarantee a parameterized competitive ratio, without requiring any a priori knowledge on input. We carry out
extensive experiments with various real-world data and show that MOERA can achieve an empirical competitive ratio of less than 1.2,
reduces the total cost by 4× compared to static approaches, and outperforms the online greedy one-shot solution by 70%. Moreover,
we verify that even being future-agnostic, MOERA can achieve comparable performance to approaches with perfect partial future
knowledge. We also discuss practical issues with respect to the implementation of our algorithm in real edge computing systems.

Index Terms—Edge computing, resource allocation, online optimization, competitive analysis.

F

1 INTRODUCTION

MOBILE applications have been serving as fundamen-
tal elements in our daily life, providing functional-

ities such as social networking, online commerce, as well
as entertainments. However, a critical problem has been
observed where mobile devices are being overwhelmed by
sophisticated mobile applications. On the one hand, mod-
ern mobile applications, especially those VR-/AR-based, re-
quire tremendous data processing (e.g., for scene rendering,
object tracking and recognition). On the other hand, mobile
devices, due to the fact that they are designed mainly for
portability and energy efficiency, are capacity constrained in
terms of both computing and storage.

To mitigate this resource mismatch, researchers have
proposed various cloud-based solutions [1]. By leveraging
the abundant resources available in distant clouds, com-
putation intensive tasks from mobile applications can be
devolved. One of the key issues in cloud-based task of-
floading is the large latency (usually larger than 100ms
according to our statistics [2]) between the mobile device
and the distant cloud due to the multi-hop structure of the
Internet core. However, for interactive mobile applications
such as those VR-/AR-based, the ideal delay is usually less
than 10ms [3], meaning that the access delay for distant
clouds is usually one order of magnitude larger than the
requirement. Many other examples can be found in the
cyber physical systems context, where time-critical decisions

• L. Wang, J. Gedeon, and M. Mühlhäuser are with the Teleco-
operation Lab, Technische Universität Darmstadt, Germany (e-mail:
{wang,gedeon,max}@tk.tu-darmstadt.de).

• L. Jiao and J. Li are with the Department of Computer and Information
Science, University of Oregon, USA (e-mail: {jiao,lijun}@cs.uoregon.edu).

Manuscript received xxx xx, xxxx; revised xxx xx, xxxx. (Corresponding
author: Lei Jiao)

have to be made for applications including remote control
of robotics, industrial automation, and autonomous driving
[4]. This largely restricts the practicality of cloud-based solu-
tions when it comes to real-world deployment, despite that
many proof-of-concept prototypes have been developed. In
addition, cloud-based task offloading requires to stream all
the raw data to the distant cloud, resulting in substantial
unnecessary traffic in the network.

Recently, edge computing was proposed to address these
issues. Edge computing is a new paradigm that aims to
bring computing or storage resources to the edge of the
network. Connected by dedicated networks or the Internet,
edge clouds may not have huge amounts of resources, but
they are in close proximity to end users at various locations
such as metropolitan centers, residential neighborhoods,
cellular base stations, or even WiFi access points [5], [6], as
illustrated in Figure 1. Compared to distant clouds, serving
end users from edge clouds has many advantages, which
include lower or even bounded delay (∼1ms in 5G networks
[7]) that can satisfy the requirement of advanced interactive
mobile applications, reduced wide-area network traffic, and
dedicated security or reliability.

One open challenge in the emerging edge computing
paradigm is dynamic resource allocation for mobile ap-
plications that are running in edge clouds [8]. This task
is nontrivial due to the fact that unlike large-scale distant
clouds, edge clouds are more heterogeneous and dynamic.
Many challenges are imposed by these unique features.

First, resource allocation for individual users may not be
a single-cloud transaction in terms of both operation cost
and service quality. When a user accesses the service in
an edge cloud system, they may eventually have resources
allocated for them in multiple nearby edge clouds as a result

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 2

Fig. 1: An example scenario for edge computing. A set of Users
are moving and are connected to different access points to ac-
cess computing resources at the access points. While a user can
appear in different physical locations over time, their service
may not follow exactly the same trace due to the fact that
frequent service migration is costly. On the other hand, serving
a user from a different location will incur addition network
latency which translates into service quality degradation.

of performance optimization performed by the edge cloud
provider, as long as their service quality can be controlled.
The user’s perceived service quality in terms of the total
access delay may include the network delay between the
user and their access edge cloud they connect to and also
that between their access edge cloud and all the other
related edge clouds that hold their workload.

Further, resource allocation is not a one-shot task and
needs to be continuously adapted to accommodate user
movements, incurring the “adaptation cost” over time. Ev-
ery user can move arbitrarily in the system, and, from a
time-slotted view, a user may connect to the access point
at one edge cloud in one time slot and switch to another
in the next. In each time slot the system can have its own
optimal resource allocation, which may, however, become
suboptimal if the adaptation cost during time-slot transition
is considered. The adaptation cost refers to hardware wear-
and-tear (such as switching on/off a server) or the resource
leading time (such as booting up or shutting down a virtual
machine) [9], [10], [11]; it can also account for the bandwidth
cost in the case of workload migration [12].

Finally, resource allocation needs to be performed on the
fly, without any knowledge about future resource price and
user location dynamics. It is usually hard or even impossible
to predict how the resource price at each edge cloud will
vary [10], [11] and how each user will move over time
precisely [13]. Without such prediction, it is difficult to make
an informed and good decision of resource allocation in each
time slot; it is even more difficult to make decisions with
guaranteed approximation towards the best decisions that
can ever be made when assuming perfect knowledge about
the future, which, however, is under our consideration.

Despite extensive existing research on resource alloca-
tion in the cloud context in general [14], [15], only a few
have studied online resource allocation in edge clouds,
falling short of addressing the three aforementioned chal-
lenges simultaneously. Most of the works often assume
statistical knowledge about user mobility [16], [17], [18],
or rely on prediction of future costs [19]. In addition, the
resource adaptation cost has not been well considered until

recently in the cloud in general [9] and in edge clouds in
particular [10], [20]; nevertheless, none of them consider
user mobility or its influence on resource allocation and
adaptation.

1.1 Summary of Contributions

To the best of our knowledge, we are the first to present a
formal study for optimizing the online resource allocation of
edge clouds. We jointly consider the costs of allocation, re-
configuration, service quality, and migration in distributed
edge clouds, under unpredictable resource prices and user
movements. In particular, we make the following three
contributions.

We build a comprehensive model to capture the optimization
problem of online resource allocation in edge clouds. Our model
includes four types of costs, but can capture a wide range of
performance measures in general. We pursue the optimiza-
tion of the total cost over time while serving user’s work-
loads with the capacity limit of each edge cloud respected.

We transform our problem and propose an efficient online
algorithm, for which, via rigorous competitive analysis, we prove a
parameterized competitive ratio. Our major contribution is the
design of an online algorithm based on the regularization
technique [21], which decouples our original problem into a
series of subproblems that are solvable in each independent
time slot, only using the solution obtained for the previous
time slot as input. The series of solutions generated in each
time slot thus constitute a feasible solution to our original
problem. By relaxation and primal-dual properties, we are
able to demonstrate that our algorithm always outputs
resource allocation decisions for each mobile user in each
time slot, with a provable competitive guarantee even for
the worst-case inputs.

We carry out extensive experiments to validate the perfor-
mance of our proposed online algorithm. We use two real-
world datasets for the evaluation. The results show that our
algorithm produces near-optimal results regardless of the
mobility pattern, with an empirical competitive ratio at most
1.2 in both real-world scenarios and outperforms the online
greedy approach by up to 70%. We further test the algorithm
with synthetic data and the results are consistent with those
in the real-world cases, proving the effectiveness and gen-
erality of our algorithm. In addition, requiring zero future
knowledge, our algorithm performs only slightly worse
than approaches assuming perfect partial future knowledge.
Finally, the remarkable gain of our algorithm is achieved
only at the expense of moderate execution time, which still
remains at the same level as in the online greedy approach.

1.2 Paper Organization

The remainder of this paper is structured as follows. Section
II provides examples to motivate the work. Section III de-
scribes our models and formulates the problem. Section IV
focuses on the design details of the MOERA algorithm. Sec-
tion V presents the formal competitive analysis. Section VI
describes the evaluations and interprets the results. Section
VII summarizes the related work. Section VIII concludes the
paper and outlooks the future work.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 3

Fig. 2: Examples to show the complexity of decision making for
online resource allocation for edge computing: (a) shows that
the greedy strategy can be too aggressive in the sense that mi-
grating too often is harmful; (b) shows that the greedy strategy
can be too conservative where migrations and migrations can
be helpful if carefully done.

2 MOTIVATION

In this section, we motivate our work by explaining that
online resource allocation should be made by taking into ac-
count multiple factors. In particular, we show that two major
mobility-driven factors, namely system reconfiguration and
workload migration, complicate the decision making for on-
line resource allocation in such a dynamic edge computing
environment.

System reconfiguration. As no a priori information on
future workload is assumed available, the simplest way
would be to allocate the resource according to the current
workload, e.g., adding or removing resources continuously
to follow workload changes. However, this can lead to very
unexpected outcome where substantial cost has to be paid
for system reconfiguration. It is usually assumed that re-
moving resources from the system such as powering down
a server or switching off a virtual machine can be negligible,
but adding resources into the system can be costly. On the
other hand, keeping idle resources active all the time would
save this reconfiguration cost but will result in unnecessary
operation costs. Therefore, a good decision making solution
for resource allocation would be able to make intelligent
tradeoffs between the two types of cost in order to achieve
the optimal total cost and the real challenge consists in
making such decisions on the fly, without knowing future
workload.

Workload migration. We provide two intuitive examples to
show that workload migrations as a result of user mobility
cannot be efficiently handled. We use the online greedy
solution that achieves optimal resource allocation locally in
every independent time slot for reference. We first consider
the case in Figure 2(a), where we have a system with two
edge clouds and one user is moving around them. The four
types of prices, i.e., operation, service quality (measured by
network delay), reconfiguration, and migration, are given
in the figure and the user is assumed to have one unit of
workload. We consider three time slots where in the first
time slot the user is connected to edge cloud A and then,
it moves to B in the second time slot and moves back to
A in the third time slot. We now show that greedy can
be too aggressive. Following the greedy approach, the user
workload would be migrated from A to B in the second time
slot. This is due to the fact that if the user workload stays
at A, the incurred cost in the second time slot will be 4.6
(operation: 2.1, service-quality: 2.5, migration: 0, reconfig-
uration: 0), while the incurred total cost is 4.5 (operation:

TABLE 1: List of Main Notations

Symbol Meaning
T set of time slots, i.e., {t1, ..., th}
S set of edge clouds, i.e., {s1, ..., sn}
Cs capacity of edge cloud s

d(s, s′) delay between edge clouds s and s′
U set of users, i.e., {u1, ..., um}
λu workload of user u
lu,t location of user u in time slot t
s∗u,t access edge cloud for user u in time slot t

d(lu,t, s∗u,t) access delay for user u in time slot t
as,t operation price for edge cloud s in time slot t
cs reconfiguration price for edge cloud s
bouts outbound migration price of edge cloud s
bins inbound migration price of edge cloud s
wout

s,t amount of workload being migrated out of edge
cloud s in time slot t

win
s,t amount of workload being migrated into edge

cloud s in time slot t
xs,u,t amount of resources allocated to user u in edge

cloud s in time slot t

1, service-quality: 1.5, migration: 1, reconfiguration: 1) if
the user workload is migrated to B. The user workload
would be migrated back to A again due to the fact that
migrating to A would give a cost of 4.5 (operation: 1, service-
quality: 1.5, migration: 1, reconfiguration: 1) while staying
at B would give a cost of 4.6 (operation: 2.1, service-quality:
2.5, migration: 0, reconfiguration: 0) in the third time slot.
The total cost for the three time slots would be calculated
as 2.5 + 4.5 + 4.5 = 11.5 in the greedy strategy, where both
migration and reconfiguration costs are incurred in the last
two time slots while the service quality cost is minimized
as the workload is following the user all the time. However,
with a holistic view on all the time slots, the optimal solution
would keep the user workload at A throughout the three
time slots, resulting in a total cost 2.5 + 4.6 + 2.5 = 9.6
over the three time slots. The second example in Figure 2(b)
shows that the greedy solution can also be too conservative,
where the greedy strategy would keep the workload all the
time at A with a total cost of 11.3 (computed in the same
way as in the previous example), while the optimal solution
would migrate the workload to B in the second time slot
and bring a total cost of only 9.5.

Summary. The one-shot greedy solution is far from opti-
mal in many cases and a holistic view is necessary. The
situation becomes even worse when system reconfiguration
is intwined with workload migration, meaning that online
resource allocation decisions have to be made by jointly con-
sidering the two factors. Unfortunately, none of the existing
algorithms would fit in this highly dynamic environment
in a distributed edge computing system. Our motivation in
this paper is thus to design an effective resource allocation
algorithm that can simultaneously overcome all the above
issues residing in the exiting solutions.

3 PROBLEM FORMULATION

We present our models for the system, the user, and four
types of cost, based on which we formulate the edge re-
source allocation problem in this section. Table 1 lists the
main notations we will use throughout the paper.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 4

3.1 Edge Cloud System
We consider a time-slotted system over h time slots, denoted
by the set T = {t1, ..., th}, where we assume that system
settings will change across time slots and remain stable
inside every time slot. We envisage an edge computing
system with n edge clouds, denoted by S = {s1, ..., sn},
which are interconnected by a metropolitan area network
(MAN). An edge cloud is a micro data center which is
usually colocated with a cellular basestation or a WiFi access
point. The hardware resources in the edge cloud are virtu-
alized through some lightweight virtualization technology
and thus, resources can be flexibly shared for multiplexing.
Each edge cloud is equipped with a certain number of
servers and the maximum capacity of an edge cloud s ∈ S
is given by Cs. The network delay between two edge clouds
s1 and s2, i.e., the inter-cloud delay, is given by d(s1, s2),
where d(s, s) , 0,∀s ∈ S. An edge cloud is supposed to
cover a small geographical area and any user in the system
will only receive coverage from the closest edge cloud.

3.2 User and Workload
We consider an edge-compatible mobile service where a set
of m users, denoted by U = {u1, ..., um}, are distributed
in the considered metropolitan area and are moving around
over time. In a certain time slot t ∈ T , a user u ∈ U is
assumed to be connected to the access point at an edge
cloud s∗u,t that covers the vicinity of the user and offloads
computation tasks to the edge clouds, incurring a workload
of λu in total in the system. Taking augmented reality as an
example, the computation tasks of a user mainly include ob-
ject recognition and tracking as well as scene rendering. For
the sake of tractability we only consider additive resources
such as CPU and memory in our model.

Taking advantage of the heterogeneity of the edge
clouds, the edge cloud operator may distribute the user
workload to any of the edge clouds in order to achieve
system-wide cost optimization; user workload may also be
migrated across edge clouds over time in order to adapt
to system dynamics. We denote by xs,u,t the amount of
resources that are allocated for user u in edge cloud s at
time t. We assume that only a subset of the edge clouds such
as those with the closest proximity, denoted by Su ⊆ S, is
eligible for hosting the workload from user u. To accommo-
date the user workload from each user u successfully, we
enforce the constraint that

∑
s∈Su

xs,u,t ≥ λu, meaning that
the total amount of resources allocated for each user by the
system should be no less than the workload of the user. The
access delay for user u in time slot t, defined as the delay
between the location lu,t of the user and her access point
s∗u,t,

1 is denoted by d(lu,t, s∗u,t). Standing as a major novelty
of our model, no assumptions are made on user mobility
patterns, i.e., lu,t can change arbitrarily over time.

3.3 Costs
The performance of the system is characterized with four
general types of cost: the operation cost, the service quality
cost, the reconfiguration cost, and the migration cost. The

1. With a slight abuse of notation, we also use the edge cloud s∗u,t to
represent the access point that user u is connected to in time slot t.

former two costs fall into the category of static cost that
is independently incurred inside each time slot, while the
latter two costs belong to the category of dynamic cost that
is only charged for decision transitions across consecutive
time slots.
Operation cost. This cost refers to the usage of virtual
machines including hardware resources such as CPU and
memory, regular maintenance overhead on hardware or
software, energy consumption, or even carbon emission,
which is proportional to the total workload in each edge
cloud. Denote by as,t > 0 the “operation price”, i.e., the cost
for each unit of workload, of edge cloud s in time slot t. The
total operation cost in the edge computing system can be
generally captured by

EO =
∑
t∈T

∑
s∈S

as,t
∑
u∈U

xs,u,t, (1)

Note that we allow arbitrary variations on the operation
price over time, and such variations can be heterogeneous
for different edge clouds due to different hardware or soft-
ware specifications or energy prices.
Service quality cost. This cost aims to capture the user-
perceived quality of service, which is proportional to the
network delay between the user and her workload. While
the workload of a user may be distributed to multiple edge
clouds for the sake of cost optimization, the user-perceived
quality of service must be controlled. For a given edge cloud
s and a user u, the service quality cost is characterized by
the user’s access delay d(lu,t, s

∗
u,t) and the weighted sum

of the delay between the access edge cloud and each of the
edge clouds that host the workload of user u. As a result,
the total service quality cost in the system can be expressed
by

EQ =
∑
t∈T

∑
u∈U

d(lu,t, s∗u,t) + ∑
s∈Su

xs,u,t
λu

d(s∗u,t, s)

 . (2)

Reconfiguration cost. This cost is associated with the in-
crease of workload across time slots in each edge cloud. As
users move, the edge cloud provider may redistribute the
workload from each user to reduce the service quality cost,
which results in adapting the amount of resources being
allocated in each edge cloud. Such adaptation involves
powering up physical servers, which would incur some in-
evitable delay due to hardware or software preparation and
some implicit cost caused by frequent hardware wear-and-
tear. We assume the reconfiguration cost is proportional to
the amount of increased workload and the reconfiguration
price, i.e., the cost for increasing unit resource, is given
by cs > 0 for each cloud s ∈ S. By defining function
(x)+ = max{x, 0} for all x ∈ R, the total reconfiguration
cost is calculated as

ER =
∑
t∈T

∑
s∈S

cs

(∑
u∈U

xs,u,t −
∑
u∈U

xs,u,t−1

)+

, (3)

where
(∑

u∈U xs,u,t −
∑
u∈U xs,u,t−1

)+ captures the work-
load increase in edge cloud s when transitioning from time
slot (t− 1) to time slot t. The cost associated with removing
resources is omitted here as that can usually be completed
without bringing extra delay to the user and thus, the cost
is negligible.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 5

Fig. 3: The breakdown of the overall system cost: operation cost,
service quality cost, reconfiguration cost, and migration cost.

Migration cost. This cost characterizes the overhead in-
curred by migrating some workload from one edge cloud
to another. This overhead includes the bandwidth cost on
the network and the migration delay. We denote by bouts

and bins the migration price, i.e., the cost of migrating unit
workload, associated with data moving out of and into edge
cloud p, respectively and by wout

s,t and win
s,t the amount of

workload being migrated out of and into edge cloud s at
time t, respectively. We have the following equations.

wout
s,t =

∑
u∈U

(xs,u,t−1 − xs,u,t)+ ,

win
s,t =

∑
u∈U

(xs,u,t − xs,u,t−1)+ . (4)

The total migration cost EQ thus can be captured by

EM =
∑
t∈T

∑
s∈S

bouts wout
s,t + bins w

in
s,t. (5)

All the above cost models are illustrated in Figure 3. We
believe that these cost models are general enough and can
capture a wide range of practical performance measures in
an edge computing system from the perspective of edge
cloud provider. Note that there is a big difference between
the reconfiguration cost and the migration cost, i.e., the mi-
gration cost is calculated independently for each user, while
the reconfiguration cost is associated with the collaborative
workload changes on each edge cloud.

3.4 Problem Formulation
The overall performance measure, i.e., the total cost of the
system, is defined as the weighted sum of all the aforemen-
tioned costs, as given by

E = EO + ER + EQ + EM . (6)

For the simplicity of expression, we omit the tradeoff
weights in our models. Nevertheless, these weights can be
incorporated implicitly in the parameters in the cost models,
e.g., as,t for the operation cost and cs for the reconfiguration
cost. We will discuss the impact of the weights in our
evaluations. Our goal is to develop an online algorithm
which takes the user’s workload and location as input and
continuously decides how much resources to be allocated
in each edge cloud that belongs to subset Su, such that the
workload demands from every user can be satisfied while
the overall cost of the edge computing system is minimized
over time. In each time slot t ∈ T , the resource allocation
decision xs,u,t−1 for the previous time slot (t − 1) might

become suboptimal due to the variation of as,t as well as
the change of lu,t as a result of user movement. Therefore,
the optimizer will need to redistribute the workload among
all the edge clouds in order to maintain optimal cost effi-
ciency. However, the redistribution of workload comes with
additional (dynamic) costs, i.e., ER for reconfiguring the
edge clouds and EM for migrating the workload. Ideally,
the optimizer would make the best tradeoff between the
static and the dynamic costs.

Combining all the aforementioned models, the edge
resource allocation problem can further be formulated with
the following linear program, denoted as P0.

min P0 =

static︷ ︸︸ ︷
EO + EQ+

dynamic︷ ︸︸ ︷
ER + EM

s.t.
∑
s∈Su

xs,u,t ≥ λu, ∀u, ∀t, (7a)∑
u∈U xs,u,t ≤ Cs, ∀s, ∀t, (7b)

xs,u,t ≥ 0, ∀s, ∀u, ∀t. (7c)

Constraint (7a) ensures sufficient resources are allocated
for every user; constraint (7b) guarantees that the capacity
constraint for each edge cloud is not violated. Note that
all the costs have time-varying factors corresponding to the
uncertainties or dependencies across consecutive time slots.
As a result, there is no once-for-all solution for the problem
in each separate time slot from an online perspective.

We observe that the problem can be solved by directly
applying a linear program solver (e.g., GLPK) if we are
given in advance all the input data including the operation
prices and the user mobility patterns in all time slots.
However, this is impossible in the online setting, where
the input data are revealed step by step over time. With-
out any a priori knowledge, a natural solution would be
greedily adopting the best decision in each independent
time slot. However, we have already shown (see Section
II) by concrete examples that the online greedy approach
is suboptimal for multiple reasons. Thus, we aim to develop
an efficient online algorithm that can deal with arbitrary
system dynamics.

4 ONLINE ALGORITHM DESIGN

We present MOERA - Mobility-agnostic Online Edge Resource
Allocation for the formulated problem. At the beginning,
MOERA carries out a gap-preserving transformation to
simplify the original problem. MOERA is then based on
solving a subproblem with a carefully designed logarithmic
objective in each time slot, and the solutions for all the
subproblems will finally constitute a feasible solution for
the original resource allocation problem over time.

4.1 Problem Transformation
We notice that the migration cost in P0 is counted bidi-
rectionally, i.e., workload migration from edge cloud s1
to edge cloud s2 would incur both outbound migration
cost at s1 and inbound migration cost at s2, which is too
complicated to handle. To simplify this expression, we carry
out a transformation on the migration cost in the objective
of P0, from which we generate the following new linear
program P1:

min P1 = EO + ER + EQ +
∑
t∈T

∑
s∈S bsw

in
s,t

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 6

s.t. (7a), (7b), (7c)

where we define bs , bouts + bins . The intuition behind this
transformation is to combine the migration costs counted in
both directions into a combined cost that is counted on only
one direction. The transformation is gap-preserving while
improving the tractability of the problem. More specifically,
by following similar techniques used in [12], we are able to
show that

Lemma 1. Any r-competitive online algorithm that solves P1

also yields a r-competitive online algorithm for P0.

Proof. For each edge cloud s ∈ S, we have that the accumu-
lative workload xs during the whole time period [t1, th] is
bounded by the capacity Cs of the edge cloud, i.e.,

xs = |
∑
t∈T w

in
s,t −

∑
t∈T w

out
s,t | ≤ Cs. (9)

Consequently, the following result can be derived.

P0 =
∑
t∈T

∑
s∈S(b

out
s wout

s,t + bins w
in
s,t)

=
∑
t∈T

∑
s∈S

(
bouts

(
win
s,t ± xs

)
+
∑
s∈Sb

in
s w

in
s,t

)
≥
∑
t∈T

∑
s∈S
(
bouts + bins

)
win
s,t −

∑
t∈T

∑
s∈Sb

out
s Cs

≥ P1 −
∑
t∈T

∑
s∈Sb

out
s Cs (10)

As σ =
∑
t∈T

∑
s∈S b

out
s Cs is a constant and we have that

P1 ≤ P0 + σ, this indicates that P1 is upper bounded
by P0 plus a constant σ. This completes the proof as any
online algorithm that produces a solution with objective
value bounded by r times the optimal of P1 will also be a
solution that is bounded by r times the optimal of P0 within
a constant rσ.

The above result provides us the convenience to consider
only the problem P1 hereafter. We also observe that the
migration cost can be decomposed individually for each of
the users. By introducing auxiliary variables ws,u,t where
we define ws,u,t = (xs,u,t − xs,u,t−1)+ and combining with
win
s,t =

∑
u∈U ws,u,t, we rewrite the objective function of P1

as follows.

P1 = EO + ER + EQ +
∑
t∈T

∑
s∈S

∑
u∈U

bsws,u,t. (11)

4.2 Design of MOERA

We now present the design of the proposed algorithm
for the edge resource allocation problem. To measure the
quality of the solutions produced by an online algorithm,
we introduce competitive ratio, which is defined as the ratio
of the objective of an online algorithm for a given online
optimization problem where the input is revealed over time
and the optimal objective obtained assuming all the input
for the problem is pre-given, i.e., offline optimal. To simplify
the presentation, we denote by xs,t the total amount of
resources allocated in edge cloud s in time slot t, i.e.,
xs,t =

∑
u∈U xs,u,t.

The MOERA algorithm is based on the algorithmic tech-
nique called regularization [21], i.e., solving P1 with reg-
ularized objective functions. The pseudo code of MOERA
is listed in Algorithm 1. At the beginning of each time
slot t ∈ T , observing lu,t and taking x∗s,u,t−1 (x∗s,u,0 , 0)
which is the workload assignment decision made in time

Algorithm 1 MOERA

1: gap-preserving transformation P0 ⇒ P1;
2: regularize the objective P1 ⇒ P2(t) for t ∈ T ;
3: initialize xs,u,0 ← 0 for all s ∈ S, u ∈ U ;
4: for t ∈ T do . online resource allocation
5: update P2(t) using lu,t and x∗s,u,t−1;
6: solve P2(t) via convex programming;
7: t← t+ 1;
8: end for

slot (t− 1), as inputs, we solve the following problem P2(t)
and obtain the resource allocation decisions x∗s,u,t for the
current time slot t.

min P2(t) =
∑
s∈S

∑
u∈Uas,txs,u,t

+
∑
u∈U

(
d(lu,t, s

∗
u,t) +

∑
s∈Su

xs,u,t

λu
d(s∗u,t, s)

)
+
∑
s∈S

cs
ηs

(
(xs,t + ε1) ln

xs,t+ε1
x∗s,t−1+ε1

− xs,t
)

+
∑
s∈S

∑
u∈U

bs
τs,u

(
(xs,u,t + ε2) ln

xs,u,t+ε2
x∗s,u,t−1+ε2

− xs,u,t
)

s.t.
∑
s∈Su

xs,u,t ≥ λu ∀u, (12a)∑
k∈S\s

∑
u∈Uxk,u,t ≥

∑
u∈Uλu − Cs, ∀s, (12b)

xs,u,t ≥ 0, ∀s, ∀u, (12c)

where ηs = ln (1 + Cs/ε1), τs,u = ln(1+λu/ε2), and ε1 > 0,
ε2 > 0 are parameters. Note that the objective function P2(t)
is convex and the constraints are all linear. As a result, P2(t)
can be optimally solved by any solver for convex programs.
Combining the optimal solution to P2(t) in every time slot
t ∈ T , denoted by x∗s,u,t, we construct an approximate
solution to the original problem P1 by simply following
exactly the same resource allocation decisions. We show in
the following that the produced solution is feasible to P1

inherently.

Theorem 1 (Feasibility). The optimal solution x∗s,u,t to P2(t)
in every time slot t ∈ T constitutes a feasible solution to P1.

Proof sketch. The proof is conducted by showing that the op-
timal solution obtained for P2(t) also satisfies the constraints
(7a), (7b), and (7c) in P1. For more details please refer to
Appendix A.

4.3 Time Complexity

It is convenient to check that the MOERA algorithm can be
finished in polynomial time since it only relies on solving
a series of convex programs over time, which are known to
be polynomial time solvable [22]. There are many solution
approaches available for convex programming, from which
we choose the Interior Point method due to its practical per-
formance. In general, the Interior Point method converges in
time O((mn)3.5) where mn is the total number of variables
in the convex program instance P2(t) in each time slot t.

5 COMPETITIVE ANALYSIS

In this section, we carry out rigorous theoretical analysis
on the performance of MOERA following the definition
of competitive analysis. Competitive analysis is a standard

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 7

method for quantifying the performance of online algo-
rithms. The general idea is to compare the performance of
an online algorithm to that of the optimal offline algorithm
that can view the input sequence in advance. In particular,
we prove that our algorithm has guaranteed performance by
showing a parameterized competitive ratio. We first present
the rationale behind the proof, followed by the detailed
derivations step by step.

5.1 Rationale
The competitive analysis for MOERA will be conducted
following three high-level steps:
(1) relax the program P1 by linearizing the objective func-

tion via introducing auxiliary variables ys,t and zs,u,t,
from which we obtain a linear program P3;

(2) derive the dual problem of P3 to obtain a program D;
(3) construct a feasible solution for D from the optimal

solution x∗s,u,t generated by optimally solving P2(t).
The rationale of adopting the regularization-based approach
is that the optimal solution for P2(t) shares some common
properties with the solution we constructed for D, which can
be exploited by deriving the Karush-Kuhn-Tucker (KKT)
conditions, i.e., the first-order necessary conditions for a
solution to be optimal, for P2(t) and compare them with
the constraints in D. As a result, a connection between the
optimal solution to P2(t) and the constructed solution to
D can be established. More formally, we aim to derive the
following inequalities:

P1 ≥ P3 ≥ D ≥
1

r

∑
t∈T

P2(t), (13)

where the inequality P1 ≥ P3 follows by the fact that P3 is
relaxed from P1, as a result of which it produces the optimal
solution no larger than that of P1. The inequality P3 ≥ D is
obtained by applying the Weak Duality Theorem, and the
inequality rD ≥ P2 follows by comparing the solutions
to D with that to P2(t). These inequalities together lead to
the result that the proposed online algorithm MOERA, is
r-competitive, where the competitive ratio r will be deter-
mined later.

5.2 Auxiliary Programs
Following the above rationale, we first provide the formula-
tion for the relaxed program P3. As already mentioned, we
introduce auxiliary variables ys,t and zs,u,t to reformulate
the nonlinear terms in the objective function of P1. We
also enforce lower bounds on the new variables in the
constraints. The formal formulation of P3 is given below.

min P3 =
∑
t∈T

∑
s∈S

∑
u∈U as,txs,u,t

+
∑
t∈T

∑
u∈U

∑
s∈Su

xs,u,t

λu
d(s∗u,t, s)

+
∑
t∈T

∑
s∈S csys,t +

∑
t∈T

∑
s∈S

∑
u∈U bszs,u,t

s.t. ys,t ≥
∑
u∈U xs,u,t −

∑
u∈U xs,u,t−1, ∀s, ∀t, (14a)

zs,u,t ≥ xs,u,t − xs,u,t−1, ∀s, ∀u, ∀t, (14b)∑
k∈S\s

∑
u∈U xk,u,t ≥

(∑
u∈U λu − Cs

)+
, ∀s, ∀t,

(14c)
ys,t ≥ 0, ∀s, ∀t, (14d)

zs,u,t ≥ 0, ∀s, ∀u, ∀t, (14e)
(7a), (7c),

where function (x)+ can be applied to the right-hand term
of (14c) due to the fact that xs,u,t ≥ 0. Note that we
omit

∑
t∈T

∑
u∈U d(lu,t, s

∗
u,t) from the service quality cost

EQ because this component of cost is independent of the
resource allocation decision once the user is connected to
a base station. We now derive the Lagrangian dual of P3

to generate program D. To this end, we introduce dual
variables for each of the constraints in P3: Let αs,t, βs,u,t,
ρs,t, and θu,t be the dual variables associated with (14a),
(14b), (14c), and (7a), respectively. Denote by gs an indicator
where gs,u = 1 if s ∈ Su for u ∈ U and gs,u = 0 otherwise.
The dual program D can be derived as follows.

max D =
∑
t∈T

∑
u∈U λugs,uθu,t (15a)

+
∑
t∈T

∑
s∈S

(∑
u∈U λu − Cs

)+
ρs,t

s.t. −as,t − gs,u
d(s∗u,t,s)

λu
+ αs,t+1 − αs,t + βs,u,t+1

−βs,u,t +
∑
k∈S\s ρk,t + gs,uθu,t ≤ 0, ∀s, ∀u, ∀t,

(15b)
− cs + αs,t ≤ 0, ∀s, ∀t, (15c)
− bs + βs,u,t ≤ 0, ∀s, ∀u, ∀t (15d)
αs,t ≥ 0, ρs,t ≥ 0 ∀s, ∀t, (15e)
βs,u,t ≥ 0, θu,t ≥ 0, ∀s, ∀u, ∀t, (15f)

On the other hand, we derive the KKT conditions of the
program P2(t). We associate dual variables θ′u,t, ρ

′
s,t, and

δ′s,u,t to constraints (12a), (12b), and (12c), respectively.
Consequently, we have

as,t + gs,u
d(s∗u,t,s)

λu
+ cs

ηs
ln

xs,t+ε1
x∗s,t−1+ε1

+ bs
τs,u

ln
xs,u,t+ε2
x∗s,u,t−1+ε2

−gs,uθ′u,t −
∑
k∈S\s ρ

′
k,t − δ′s,u,t = 0, ∀s, ∀u, (16a)

θ′u,t(λu −
∑
s∈Su

xs,u,t) = 0, ∀u, (16b)

ρ′s,t

(∑
u∈U λu − Cs −

∑
k∈S\s

∑
u∈U xk,u,t

)
= 0, ∀s

(16c)
−xs,u,tδ′s,u,t = 0, ∀s, ∀u, (16d)

(12a), (12b), (12c), θ′u,t ≥ 0, ρ′s,t ≥ 0, ∀s, ∀u, (16e)

where equation (16a) is due to stationarity; equations (16b),
(16c), and (16d) are due to complementary slackness; in-
equalities in (16e) are due to primary or dual feasibility.
Using the optimal solutions obtained from solving P3 in
time slot t, i.e., x∗s,u,t and the dual variables θ′u,t and ρ′s,t,
we construct a solution SD for program D by following the
mappings below.

αs,t =
cs
ηs

ln
Cs + ε1

x∗s,t−1 + ε1
, βs,u,t =

bs
τs,u

ln
Cs + ε2

x∗s,u,t−1 + ε2

θu,t = θ′u,t, ρs,t = ρ′s,t.

We are able to show that

Lemma 2. The solution SD is feasible for program D.

Proof sketch. The proof is conducted by showing that when
substituted in D, SD satisfies all the constraints. For details
please refer to Appendix B.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 8

5.3 Competitive Ratio

We now focus on the last inequality rD ≥
∑
t∈T P2(t) in

(13) and derive the competitive ratio r. We first partition
the total cost into two parts and show that each part can be
bounded by a certain factor. Then, we combine the results
for both parts and derive the competitive ratio.

Lemma 3. The total static cost, i.e., the sum of the operation cost
and the service quality cost in P1, is upper bounded by D when
evaluated at x∗s,u,t, i.e., EO + EQ ≤ D.

Proof sketch. The proof is conducted by applying the equa-
tions (16a)-(16d) obtained from the KKT conditions of P2(t)
to the total static cost in the objective function P2(t). For
more details please refer to Appendix C.

Lemma 4. The total dynamic cost, i.e., the sum of the reconfigu-
ration cost and the migration cost in P1, is upper bounded by con-
stant times of D when evaluated at x∗s,u,t, i.e., ER+EM ≤ γnD
where

γ = max
s∈S

{
(Cs + ε1) ln(1 +

Cs
ε1

), (Cs + ε2) ln(1 +
Cs
ε2

)

}
.

Proof sketch. The proof is conducted by applying the equa-
tions (16a)-(16d) obtained from the KKT conditions of P2(t)
to the total dynamic cost in the objective function P2(t). For
more details please refer to Appendix D.

Combining all the results in Theorem 1, Lemma 3, and
Lemma 4, the following theorem on the competitive ratio
can be obtained for our proposed MOERA algorithm.

Theorem 2. MOERA produces feasible solutions to P0 with a
competitive ratio r = 1 + γn0.

Remark. The above result is reasonably good as it can
be observed that r is monotonically decreasing with the
parameters ε1 and ε2, and n0 can be small, meaning that
each user is limited to access a small subset of the edge
clouds due to hardware or software specifications or data
privacy concerns for example. We will further evaluate the
empirical competitive ratio of the algorithm with real-world
data in the next section.

6 EVALUATION

We built a discrete-time simulator in Python to validate
the performance of MOERA. We conducted experiments
using both real-world and synthetic data and we report the
experimental results in this section. All the measurements
were performed on a Linux server equipped with Intel Xeon
CPU E5-2687W (3.0GHz) and 512 GB of RAM. We modeled
the linear and convex programs by Pyomo and solved them
by invoking IPOPT.

6.1 Datasets and Experimental Settings

We use various datasets obtained from different real-world
application scenarios to validate the performance of MO-
ERA. In the following, we describe these datasets in detail
and provide the experimental settings that will be used
throughout our evaluations.

(a) Rome

(b) Darmstadt

Fig. 4: Distributions of edge clouds and users in the two
selected cities: Rome (Italy) and Darmstadt (Germany).

Rome Taxi dataset. The first real-world dataset we use is
the Roma taxi trajectory traces [23]. This dataset contains
the trajectory of taxis in the city of Rome over one month.
To represent an edge computing application scenario, we
envision that an edge cloud system would be deployed in
the center area of Rome city with 15 edge clouds that are
located at 15 selected metro stations, as shown in Figure 4(a).
The edge clouds in the system will be used by the customers
(termed as users hereafter) sitting in taxis, whose mobility
patterns are provided by the trajectories of the taxis. The
number of users varies from hour to hour but is generally
around 300 in the dataset. We collect the GPS locations for
the 15 edge clouds (i.e., metro stations) manually on Google
Maps. We average the locations of the users within each
minute to generate per-minute location data points for each
user.

Darmstadt Kraken dataset. The kraken.me project [24] aims
to analyze user behavior and enable personal assistance for
its users. Part of the project includes an Android application
to collect and track user trajectory and other behaviors.
Over the course of several weeks, we collected more than
26 million unique location data points from about 200 users.
In this application scenario, we consider using the location
of home routers for potential edge cloud locations. This is
due to the fact that home routers are ubiquitously available
in urban areas and the feasibility of using home routers as
cloudlets or edge cloud discovery brokers has already been
confirmed [2], [25].

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 9

We captured the location of WiFi access points in the
city of Darmstadt, Germany with the help of a mobile ap-
plication that senses WiFi signals as well as the information
about the network. Participants walked around the city and
collected a total of 23,744 access points. The exact location of
the access point is estimated from multiple measurements
of the same access point using trilateration. We eliminate
duplicate access points based on the BSSID/MAC address
of the devices. Then, by doing a vendor lookup for the ad-
dresses, we eliminate all manufacturers that do not produce
home routers. While this might still lead to some wrong data
(i.e., devices that are not home routers), we still argue that
overall, the data gives us a good indication of the number of
routers available in an urban area. From the remaining data,
we select 50 routers to act as edge clouds. The locations
of these edge clouds are publicly available [26]. We place
those manually as shown in Figure 4(b). The placement is
done such that we cover areas populated by the users of
kraken.me, for instance we place multiple routers close to
their homes and workplaces. Since most of the kraken.me
users were students, we know the locations of the university
and the student dorms. Other routers are placed in between
those areas to model transitions that will occur whenever
users are on the move.

We now generate the trajectory input data for the eval-
uation as follows: We choose the most active day (being
it with the most mobile users) and we consider the time
between 1pm to 8pm (7 hours). We divide the time period
into one-minute time slots and for each of those time slots
we obtain the edge cloud (i.e., the router) that is closest to
the reported position of this user at that particular time. If
there is no up-to-date location data in one particular time
slot, we assume the position stays the same. We do however
count the number of those “inaccurate” positions that occur
for each user within a day. If it is greater than 50% of all
time slots, we discard the user completely. In case there is
more than one position update in the time slot, we average
the positions.

User workload. To understand the impact of the distribu-
tion of user workload on the effectiveness of MOERA, we use
three different workload distributions: uniform, normal, and
power-law. The power-law distribution represents highly
skewed workload, which can be observed in typical online
social network services, where the number of friends of each
user on the social network satisfies the power law. For all
the distributions, we first fix a base workload as base. For
the uniform distribution, the workload is generated in the
range of [ω, 2×ω] uniformly at random. For the normal dis-
tribution, we set the average as ω and the variance as 0.5ω
with the negative tail cut. For the power-law distribution,
we draw samples in [0, 1] from a power distribution with
probability density function P (x, ω) = ωxω−1 with positive
exponent ω − 1. Note that the absolute value of ω does not
affect the performance of the algorithms as we will set the
capacity of the edge clouds according to the total generated
workload in the system.

The total capacity of the edge clouds is assumed to
be slightly larger than the total workload in the system
by design. More specifically, we assume that the overall
utilization of the system keeps at the level of 80%. As a

result, the total capacity is set to be 1.25 times the total work-
load. The capacity will be distributed to all the edge clouds
proportionally to the frequency of users being attached to
them, i.e., the total number of direct user connections in all
the relevant time slots.
Edge cloud prices. We generate the operation price as fol-
lows: For each edge cloud, we first determine its base
operation price reversely proportional to its capacity. This
is reasonable due to the economy-of-scale effect on both
energy and maintenance. The real-time operation price for
each edge cloud follows Gaussian distributions, where we
set the the mean value as the base price we just generated
and the standard deviation as half of the base price [10].
The network delay is used to calculate the service quality
cost and for each user the network delay can be partitioned
into two parts: the delay between the user and the access
point and the weighted average delay between the access
point and the recruited edge clouds by the user. The delay
in our model is measured by the geographical distance
between any two entities based on their GPS locations. The
service quality price is set to be proportional to the measured
delay. The migration cost is associated with the bandwidth
price and the bandwidth usage during the migration. In
our model the bandwidth price is not assumed to be time-
varying. However, different edge clouds may connect to the
Internet via different Internet providers. We categorize all
the edge clouds in three clusters, each of which is subscribed
to one of the three Internet providers: Tiscali Italia, Vodafone
Italia, and Infostrada-Wind. The per-month flat rate prices
averaged for 1Mbps connection are 2.49 Euro, 4.86 Euro,
and 1.25 Euro, respectively [27]. We will use the relative
ratios between these prices to set the bandwidth prices
for the three categories of edge clouds. We generate the
reconfiguration price following a Gauss distribution with a
cutoff of the negative tail .

6.2 Empirical Competitive Ratio
The theoretical analysis has already proven an upper bound
on the competitive ratio for the online algorithm. We now
validate how MOERA would perform in reality. We carry
out experiments using the above settings and we compare
the results of MOERA with two groups of algorithms:
atomistic and holistic. Atomistic algorithms only consider
the static part in the total cost and they include:

• The perf-opt algorithm aims at minimizing only the
service quality cost EQ in every time slot.

• The oper-opt algorithm minimizes only the opera-
tion cost EO in each time slot.

• The stat-opt algorithm minimizes the total static
cost EO + EQ in each time slot and ignores the
dynamic costs for reconfiguration and migration.

The algorithms in the holistic group include:

• The offline-opt algorithm minimizes P0 assuming
a global view on all the time slots in advance. This is
considered impractical and only serves as a baseline.

• The online-greedy algorithm directly minimizes
the objective value of P0 in every time slot. Decision
making is based on the outcome of the previous time
slot, but considers no future information.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 10

Fig. 5: Performance comparison among the two groups of
algorithms with user workloads generated following a power-
law distribution in the Rome Taxi scenario.

Fig. 6: The performance of MOERA compared with the optimal
offline and the greedy solutions under uniformly and normally
distributed user workloads in the Rome Taxi scenario.

Single-objective vs. multi-objective. The experimental re-
sults are shown in Figure 5. From the Roma taxi traces,
we select the data from date Feb 12, 2014 and we choose
six hours from 3PM through 9PM as six independent test
cases. We set the length of a time slot to one minute and
thus each of the test cases consists of 60 time slots. All
the values are normalized by the offline optimal objec-
tive. The experiments are repeated independently for five
times and the plots show the mean values as well as the
standard deviations. As we can see from the figure that
the algorithms from the atomistic group perform poorly as
expected. Among them, the perf-opt performs the best,
thanks to the reduced frequency of workload migration be-
cause of the moderate mobility in the Roma taxi dataset. The
online-greedy algorithm in the holistic group performs
better than any of the atomistic algorithms. However, we
still notice a considerable gap to the offline optimal, which
is mainly due to the reasons we already discussed at the end
of Section II. In contrast, our online algorithm (denoted as
online-moera) can produce near-optimal results, achieving

Fig. 7: Performance comparison with user workloads generated
following a power-law distribution in the Darmstadt Kraken
scenario.

Fig. 8: Mobility level during the selected period of time in the
Darmstadt Kraken scenario.

an improvement of up to 60% compared to the online
greedy algorithm.

Different workload distributions. Figure 6 illustrates the
performance of our algorithm under different workload
scenarios, where we generate the user workload using uni-
form and normal distributions in addition to the power-law
distribution. As we can see that MOERA preserves similar
properties, i.e., producing near-optimal solution and up to
70% improvement compared to online-greedy, under any
of the workload distributions and MOERA performs even
slightly better under uniform workloads.

Different mobility levels. Figure 7 shows the performance
of MOERA in the Darmstadt Kraken scenario. We plot the
results that are obtained with the trajectory data collected
from 1PM through 8PM (7 hours) on Feb 7, 2015. The total
number of users is 72 in the selected dataset. As we can
see that MOERA achieves an empirical competitive ratio
smaller than 1.2, while it is around 1.6 for online-greedy.
The reason that the improvement of MOERA is less sig-
nificant than that in the Rome Taxi scenario is that we
have significantly less users. To examine the correlation
between the empirical competitive ratio and the mobility
pattern, we plot the mobility level measured by the ratio
between the number of users that have moved and the total
number of users in Figure 8. It is easy to observe that the
performance of online-greedy shows a strong correlation
with the mobility pattern, while the performance of MOERA
remains relatively stable regardless of the level of mobility.

Synthetic mobility patterns. Figure 9 illustrates the exper-
imental results with synthetic mobility data under various
numbers of users in the Rome Taxi scenario, which is used
to validate the generality of our algorithm. The synthesis
mobility data is generated following a random walk pro-
cess: We assume each user starts from an arbitrary metro
station equipped with an edge cloud and is traveling with

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 11

Fig. 9: Performance comaprison with user mobility generated
following a random-walk process.

the metro. In each time slot, each user determiners their
location for the next time slot by choosing randomly from
the neighbor stations with an edge cloud equipped or just
staying at the same metro station. Assume in a certain time
slot the user is at a location with three neighbors so the
probably of moving to any of the three neighbors, as well
as of staying at the same location, in the next time slot,
would be 25%. Following the above process we generate the
movement traces of the users. We vary the number of users
from 40 to 1000 and we compare our algorithm with the
offline-opt and online-greedy algorithms. We observe
that our algorithm performs in a similar way as in the real-
world mobility scenario, i.e., the empirical competitive ratio
is around 1.1, which is very close to the optimal, while the
online-greedy has empirical competitive ratios up to 1.8.
In addition, our algorithm performs stably regardless of the
number of users.

6.3 Impact of Parameters
Algorithm parameters. Figure 10 shows the impact of the
parameters ε1 and ε2 on the performance of our algorithm in
the Rome Taxi scenario. We set ε1 = ε2 = ε > 0 and we vary
ε from 10−3 to 103 in a logarithmic scale in all the above
test cases. It is interesting to notice that with the increase of
ε, the empirical competitive ratio of our algorithm declines
slightly at the beginning and then increases to a stable level.
We report also in Figure 10 the impact of the ratio between
the weight of the dynamic cost and the weight of the static
cost (denoted as µ) in the objective by varying its value
from 10−3 to 103 in a logarithmic scale. We observe that
when µ is small, i.e., the dynamic cost is negligible, our
algorithm can roughly achieve optimal results. When the
dynamic cost dominates, our algorithm can still achieve a
stable yet reasonably good competitive ratio.

Proportion of edge clouds. Figure 11 depicts the per-
formance comparison when we restrict the access of each
user to different numbers of edge clouds in the Darmstadt
Kraken scneario. The x-axis represents the number of edge
clouds we allow for each user to access, varying from 20
through 50 with a step of 10. The subsets of the edge
clouds are selected uniformly at random. In general, we can
observe that the performance of MOERA is relatively stable,
with an empirical competitive ratio of around 1.18, confirm-
ing that MOERA scales well to large problem instances.

6.4 Comparison with Prediction-based Approaches
One of the main advantages of MOERA is that the algorithm
does not require any a priori information for decision mak-

Fig. 10: The impact of the parameter ε and µ on the empirical
competitive ratio.

Fig. 11: Performance of MOERA when restricting the access of
each user to different numbers of edge clouds.

Fig. 12: Comparison between MOERA and a prediction-based
approach.

ing. To validate the effectiveness, we also compare MOERA
against a prediction-based approach, described as follows:
In every time slot, we assume that the prices as well as
the user location for the time window with w future time
slots are available and we compute the optimal resource
allocation decision for the w + 1 time slots. Note that the
prediction method is out of the scope of this paper and thus,
we simply assume that perfect knowledge of the future can
be obtained. The resource allocation decision for the current
time slot is kept in the final solution, while the decision
for other time slots are directly abandoned. We then repeat
this process for all the considered time slots. We apply
this approach on the Rome Taxi dataset and use the same
parameters to generate the user workload using the power
distribution. The results with varying window sizes are
depicted in Figure 12. As we can see that with the increase
of the window size, the prediction-based approach achieves
better results due to the fact that more knowledge of the
future is available and thus, the decision is more accurate.
MOERA performs slightly worse than the prediction-based
approach as expected, but the difference is within 5% com-
pared with the prediction-based approach. This confirms
that MOERA can achieve a quite good performance even
without requiring a priori knowledge of the system, making
it more practical.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 12

40 60 80 100 200 300 400 500 600

�✁✂✄☎✆ ✝✞ ✟✠☎✆✠

0

200

400

600

800

1000

1200

1400

✡
☛
☞
☞
✌☞
✍
✎
✌✏
✑
✒✓
✑
✔
✕

✖✗✘✙✚✛✖✜✢

✖✙✣✘✙✚✛✤✜✜✥✖✦

✖✙✣✘✙✚✛✧✥✚✚★✩

Fig. 13: Running time comparison.

6.5 Running Time
We compare the running time of MOERA to the optimal
offline solution and to the online greedy solution using the
Rome Taxi dataset under different numbers of users. The
experimental results are show in Figure 13. Note that the
values in the figure are the combined running time for 60
independent time slots in one hour. It can be seen that
MOERA achieves a significant reduction (more than 2x) on
running time and keeps at a comparable level as the greedy
approach.

7 DISCUSSION

We now discuss some practical issues in implementing the
proposed algorithm in real systems. One important issue
is on scalability. As a limitation, the proposed algorithm is
centralized at this moment. This is due to the fact that future
edge computing systems are expected to be managed in a
logically centralized manner with a global system view so
that the desired flexibility and efficiency that we already
have in cloud computing can be preserved [28]. Neverthe-
less, we notice that several distributed approaches such as
decomposition techniques [29] can be applied to solve the
required convex programming in MOERA in a more dis-
tributed manner and thus, the scalability issue of MOERA
can be mitigated. Another important issue is how to obtain
the user workload information for decision making. As we
do not assume any knowledge of the future in terms of user
workload and other system parameters, the algorithm only
requires the user workload information for each time slot at
the beginning of the time slot. This workload information
can be generated through a daemon module running with
the mobile application that carries out analyses for the
computational requests of the mobile application and be
submitted to the edge computing platform through some
well-defined interfaces. The last issue is on the workload
distribution among the edge nodes. It is envisioned that
modern mobile applications that are compatible with edge
computing will be refactored based on the microservice
architecture paradigm [30]. With this microservice-based
architecture, application requests can be partitioned and
served by multiple instances of microservices on different
edge nodes. Each instance of a microservice can be scaled
separately by assigning an appropriate amount of resources
to it.

8 RELATED WORK

The concept of edge computing was initially inspired by
the idea of deploying computing servers at the network

edge to enhance the performance of mobile devices [5], [31].
While numerous novel architectures for edge computing [6],
[32], [33], [34], [35], [36] have been proposed, the resource
allocation problem in such systems remains as a critical
challenge.

Single-cloudlet task offloading. Much of the existing re-
search in this area is on allocating edge cloud resources to
computational tasks offloaded from mobile devices. COS-
MOS [37] is a system that efficiently manages cloud re-
sources for offloading requests to both improve the mobile
performance and reduce the provider’s monetary cost. Deng
et al. [38] study online scheduling policies to maximize data
offloading under unpredictable user mobility patterns. Chen
et al. [39] focus on game-theoretical mechanisms for offload-
ing decision making in the presence of multiple users, taking
into account the energy consumption and the delay. Hou et
al. [20] study the reconfiguration in edge clouds and propose
an efficient online algorithm for configuration updating.
However, all of them are focused on resource allocation in a
single edge cloud environment.

Multi-cloudlet resource management. On the other hand,
attentions have been paid very recently on resource man-
agement in an edge cloud computing system with mul-
tiple edge clouds. Jia et al. study the optimal placement
of cloudlets in wireless Metropolitan Area Networks and
design an algorithm for user to cloudlet allocation [40]. In
a follow-up work, they further propose an efficient algo-
rithm for load balancing among multiple edge clouds [41].
Mukherjee et al. proposed an optimal cloudlet selection
strategy to reduce power and latency in multi-cloudlet
environments [42]. Wang et al. study the problem of joint
task assignment and scheduling in mobile edge clouds by
considering both the data movement and processing [43].
Recently, Jiao et al. explore the online control of both the
cloudlets and the servers inside the cloudlets to operate
the distributed cloudlet system towards the optimal cost
[44]. Wang et al. study the service placement problem
for supporting social virtual reality applications in edge
computing [45]. The most relevant works to ours are from
Wang et al. [17] and Urgaonkar et al. [13], where they
propose stochastic frameworks for dynamic workload mi-
gration based on Markov Decision Processes (MDPs) and
the Lyapunov optimization technique. However, all of the
work does not include the reconfiguration of edge clouds in
the cost model and either requires statistic information on
the user mobility pattern or assumes a Markov chain model
for user movement, which is not necessary in our model.

Resource management in geo-distributed clouds. There is
also research on workload distribution and resource allo-
cation in geo-distributed data centers [10], [11], [15]. While
sharing some common objectives with our problem, they are
intrinsically different from edge computing environments as
neither delay sensitivity nor user mobility is considered in
their models.

Summary. In contrast to existing work, our study addresses
the challenge of allocation and continuous adaptation of
resources in edge clouds, accommodating arbitrary resource
price and user mobility dynamics. Our model captures mul-
tiple types of important costs, including static and dynamic

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 13

ones; our online algorithm, without any knowledge on
the future, makes resource allocation decisions on the fly
while guaranteeing a parameterized competitive ratio for
the worst-case inputs.

9 CONCLUSION

In this paper, we studied the online resource allocation
problem in edge cloud systems. We identified the major
challenges and further captured all of them by a compre-
hensive model, where we incorporated as the optimization
objective the costs associated with edge cloud operation,
delay, server reconfiguration, as well as service migration.
We proposed MOERA, a mobility-agnostic online algorithm
that can guarantee a parameterized competitive ratio. The
effectiveness of the algorithm was also validated by exten-
sive experiments using both real-world and synthetic data.
A research gap left in our paper is to incorporate dynamics
on user arrival and departure. However, due to the non-
deterministic number of variables to be decided for resource
allocation, the problem becomes very hard and it is still not
clear if it is possible to obtain an online algorithm with strict
theoretical guarantee. We leave this for future exploration.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments. This work was partially funded by the German
Research Foundation (DFG) under Grant No. 392046569,
the National Natural Science Foundation of China (NSFC)
under Grant No. 61761136014, and the DFG Collaborative
Research Center (CRC) 1053 – MAKI, and partially by the
National Science Foundation under Grant No. 1564348. Any
opinions, findings, and conclusions expressed in this mate-
rial are those of the authors and do not necessarily reflect
the views of the funding organizations.

REFERENCES

[1] N. Fernando, S. W. Loke, and J. W. Rahayu, “Mobile cloud com-
puting: A survey,” Future Generation Comp. Syst., vol. 29, no. 1, pp.
84–106, 2013.

[2] J. Gedeon, C. Meurisch, D. Bhat, M. Stein, L. Wang, and
M. Mühlhäuser, “Router-based brokering for surrogate discovery
in edge computing,” in ICDCSW, 2017, pp. 145–150.

[3] E. Cuervo, K. Chintalapudi, and M. Kotaru, “Creating the perfect
illusion: What will it take to create life-like virtual reality head-
sets?” in HotMobile, 2018, pp. 7–12.

[4] Accenture Consulting, “Multi-access edge computing for perva-
sive networks,” https://accntu.re/2tRAF0f, 2018, online; accessed
June 28, 2018.

[5] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The
case for vm-based cloudlets in mobile computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, 2009.

[6] J. Cho, K. Sundaresen, R. Mahindra, J. V. der Merwe, and S. Ran-
garajan, “ACACIA: context-aware edge computing for continuous
interactive applications over mobile networks,” in CoNEXT, 2016,
pp. 1–15.

[7] N. Panwar, S. Sharma, and A. K. Singh, “A survey on 5g: The next
generation of mobile communication,” Physical Communication,
vol. 18, pp. 64–84, 2016.

[8] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, “Online resource
allocation for arbitrary user mobility in distributed edge clouds,”
in ICDCS, 2017, pp. 1281–1290.

[9] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic
right-sizing for power-proportional data centers,” IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1378–1391, 2013.

[10] L. Jiao, A. M. Tulino, J. Llorca, Y. Jin, and A. Sala, “Smoothed on-
line resource allocation in multi-tier distributed cloud networks,”
IEEE/ACM Trans. Netw., vol. 25, no. 4, pp. 2556–2570, 2017.

[11] L. Jiao, A. M. Tulino, J. Llorca, Y. Jin, A. Sala, and J. Li, “Online
control of cloud and edge resources using inaccurate predictions,”
in IWQoS, 2018, pp. 1–6.

[12] N. Buchbinder, N. Jain, and I. Menache, “Online job-migration for
reducing the electricity bill in the cloud,” in IFIP Networking, 2011,
pp. 172–185.

[13] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. S. Chan, and K. K.
Leung, “Dynamic service migration and workload scheduling in
edge-clouds,” Perform. Eval., vol. 91, pp. 205–228, 2015.

[14] X. Qiu, H. Li, C. Wu, Z. Li, and F. C. Lau, “Cost-minimizing
dynamic migration of content distribution services into hybrid
clouds,” IEEE Trans. Para. and Dist. Comp., vol. 26, no. 12, pp. 3330–
3345, 2015.

[15] S. Ren, Y. He, and F. Xu, “Provably-efficient job scheduling for
energy and fairness in geographically distributed data centers,” in
ICDCS, 2012, pp. 22–31.

[16] A. Ksentini, T. Taleb, and M. Chen, “A markov decision process-
based service migration procedure for follow me cloud,” in ICC,
2014.

[17] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. S. Chan, and K. K.
Leung, “Dynamic service migration in mobile edge-clouds,” in
IFIP Networking, 2015, pp. 1–9.

[18] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-
clouds,” Performance Evaluation, vol. 91, pp. 205–228, 2015.

[19] S. Wang, R. Urgaonkar, K. Chan, T. He, M. Zafer, and K. K.
Leung, “Dynamic service placement for mobile micro-clouds with
predicted future costs,” IEEE Trans. Para. and Dist. Comp., p. in
press, 2016.

[20] I. Hou, T. Zhao, S. Wang, and K. Chan, “Asymptotically optimal
algorithm for online reconfiguration of edge-clouds,” in MobiHoc,
2016, pp. 291–300.

[21] N. Buchbinder, S. Chen, and J. Naor, “Competitive analysis via
regularization,” in SODA, 2014, pp. 436–444.

[22] S. Bubeck, “Convex optimization: Algorithms and complexity,”
Foundations and Trends in Machine Learning, vol. 8, no. 3-4, pp. 231–
357, 2015.

[23] Roma taxi dataset. http://crawdad.org/roma/taxi/20140717/.
[24] I. Schweizer and B. Schmidt, “Kraken.me: multi-device user track-

ing suite,” in UbiComp, 2014, pp. 853–862.
[25] C. Meurisch, A. Seeliger, B. Schmidt, I. Schweizer, F. Kaup, and

M. Mühlhäuser, “Upgrading wireless home routers for enabling
large-scale deployment of cloudlets,” in MobiCASE, 2015, pp. 12–
29.

[26] Darmstadt AP locations. https://fileserver.tk.informatik.tu-
darmstadt.de/SUN/darmstadt_ap.dat.

[27] Roma network prices. http://www.tempobox.it/en/index.htm.
[28] M. Satyanarayanan, “The emergence of edge computing,” IEEE

Computer, vol. 50, no. 1, pp. 30–39, 2017.
[29] D. P. Palomar and M. Chiang, “A tutorial on decomposition meth-

ods for network utility maximization,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[30] A. Reznik, R. Arora, M. Cannon, L. Cominardi, W. Featherstone,
R. Frazao, F. Giust, S. Kekki, A. Li, D. Sabella, C. Turyagyenda, and
Z. Zheng, “Developing software for multi-access edge comput-
ing,” http://www.etsi.org/images/files/ETSIWhitePapers/etsi_
wp20_MEC_SoftwareDevelopment_FINAL.pdf, 2017, online; ac-
cessed Mar 5, 2018.

[31] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,”
IEEE Pervasive Computing, vol. 14, no. 2, pp. 24–31, 2015.

[32] M. Chen, Y. Hao, Y. Li, C. Lai, and D. Wu, “On the computation
offloading at ad hoc cloudlet: architecture and service modes,”
IEEE Communications Magazine, vol. 53, no. 6-Supplement, pp. 18–
24, 2015.

[33] A. Bhattcharya and P. De, “Computation offloading from mobile
devices: Can edge devices perform better than the cloud?” in
ARMS-CC, 2016, pp. 1–6.

[34] R. Stoenescu, V. A. Olteanu, M. Popovici, M. Ahmed, J. Martins,
R. Bifulco, F. Manco, F. Huici, G. Smaragdakis, M. Handley,
and C. Raiciu, “In-net: in-network processing for the masses,” in
EuroSys, 2015, pp. 1–15.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXX XXXX 14

[35] M. Jang, H. Lee, K. Schwan, and K. Bhardwaj, “SOUL: an edge-
cloud system for mobile applications in a sensor-rich world,” in
IEEE/ACM Symposium on Edge Computing, 2016, pp. 1–9.

[36] I. Burago, M. Levorato, and A. Chowdhery, “Bandwidth-aware
data filtering in edge-assisted wireless sensor systems,” in SECON,
2017, pp. 1–9.

[37] C. Shi, K. Habak, P. Pandurangan, M. H. Ammar, M. Naik, and
E. W. Zegura, “COSMOS: computation offloading as a service for
mobile devices,” in MobiHoc, 2014, pp. 287–296.

[38] H. Deng and I. Hou, “Online scheduling for delayed mobile
offloading,” in INFOCOM, 2015, pp. 1867–1875.

[39] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, 2016.

[40] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,”
IEEE Transactions on Cloud Computing, vol. PP, no. 99, pp. 1–1, 2015.

[41] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing
in wireless metropolitan area networks,” in INFOCOM, 2016, pp.
1–9.

[42] A. Mukherjee, D. De, and D. G. Roy, “A power and latency aware
cloudlet selection strategy for multi-cloudlet environment,” IEEE
Transactions on Cloud Computing, vol. PP, no. 99, pp. 1–1, 2016.

[43] L. Wang, L. Jiao, D. Kliazovich, and P. Bouvry, “Reconciling task
assignment and scheduling in mobile edge clouds,” in ICNP, 2016,
pp. 1–6.

[44] L. Jiao, L. Pu, L. Wang, X. Lin, and J. Li, “Multiple granularity on-
line control of cloudlet networks for edge computing,” in SECON,
2018, pp. 1–9.

[45] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service entity
placement for social virtual reality applications in edge comput-
ing,” in INFOCOM, 2018, pp. 1–9.

Lin Wang received the Ph.D. degree in Com-
puter Science with distinction from the Institute
of Computing Technology, Chinese Academy of
Sciences in 2015. He was a visiting researcher
at IMDEA Networks Institute, Madrid, Spain from
2012 to 2014, and a Research Associate at SnT
Luxembourg from 2015 to 2016. Starting in July
2016, he has been head of the Smart Urban
Networks research group in the Telecooperation
Lab and has been an Athene Young Investiga-
tor since 2018, at TU Darmstadt, Germany. His

work has been published in IEEE INFOCOM, ICDCS, JSAC, TPDS
etc. and he has served as organizer or TPC member for various
conferences such as IEEE CloudCom, ICCCN, ICC, IEEE/ACM DS-
RT, and IEEE/IFIP NOMS. His current research interests include edge
computing, networked systems, and energy-efficient algorithms.

Lei Jiao received the Ph.D. degree in Com-
puter Science from University of Göttingen in
Germany in 2014. He was a researcher at IBM
Research in Beijing, China in 2010 prior to his
Ph.D. study. He was also a member of technical
staff at Bell Labs in Dublin, Ireland from 2014
to 2016. He is currently an assistant professor
at the Department of Computer and Informa-
tion Science, University of Oregon, USA. His
research interests are in the models, algorithms,
and analysis for the optimization and control of

distributed systems and networks. His research has been published in
journals such as IEEE/ACM ToN and IEEE JSAC, and in conferences
such as IEEE INFOCOM, ICNP, SECON, and IPDPS. He is on the
technical program committee of a number of conferences including IEEE
INFOCOM, IEEE/ACM IWQoS, IFIP Networking, and IEEE ICC.

Jun Li received the B.S. degree from Peking
University, Beijing, China, in 1992, the M.E. de-
gree from the Chinese Academy of Sciences,
Beijing, China, in 1995, and the Ph.D. degree
(with honors) from the University of California,
Los Angeles, CA, USA, in 2002, all in computer
science. He is an Associate Professor with the
Department of Computer and Information Sci-
ence, University of Oregon, Eugene, OR, USA,
and directs the Network & Security Research
Laboratory. Specializing in computer networks,

distributed systems, and their security, he is currently researching In-
ternet monitoring and forensics, Internet architecture, social networking,
cloud computing, and various network security topics. He is a Senior
Member of the Association for Computing Machinery (ACM). He is cur-
rently an Editor of Computer Networks and Chair of several workshops
and symposiums. He has also served on several US National Science
Foundation research panels and on more than 60 international technical
program committees. He received a Presidential Scholarship for the
M.E. degree and is a 2007 recipient of the NSF CAREER Award.

Julien Gedeon received his B.Sc. and M.Sc.
degrees from Technische Universität Darmstadt
in 2013 and 2015, respectively. He is currently
pursuing his Ph.D. degree at the Telecooperation
Lab of the same university, advised by Prof. Max
Mühlhäuser. His research interests include in-
network processing, edge computing and smart
cities.

Max Mühlhäuser received his Ph.D. degree in
Computer Science from Karlsruhe Institute of
Technology (KIT), Germany, in 1986. He is cur-
rently a Professor and the Dean of the Computer
Science Department and the head of the Teleco-
operation Lab, at TU Darmstadt, Germany. He
was appointed Adjunct Professor at QUT Bris-
bane in 2012 and has been is a member of acat-
ech, the German National Academy of Science
and Engineering, since 2015. Previously, he was
the founder and head of DEC Research Labs

Karlsruhe and he worked as either professor or visiting professor at
universities in Germany, the US, Canada, Australia, France, and Austria.
Now, he is the spokesperson of the Research Training Group (RTG) on
Privacy and Trust for Mobile Users and acts as a deputy spokesper-
son of the Collaborative Research Center (CRC) on Multi-Mechanisms
Adaptation for the Future Internet (MAKI). Further, he serves as a PI
in the Center for Research in Security and Privacy (CRISP) and in the
CRC on Cryptography-Based Security Solutions (CROSSING). He has
published more than 400 articles, books, and book chapters. His re-
search interests span widely across computer networks and distributed
systems, human computer interaction, and cybersecurity, reliability, and
trust.

APPENDIX A
PROOF TO THEOREM 1
The proof is conducted by showing that the optimal solution
obtained for P2(t) also satisfies the constraints (7a), (7b), and
(7c) in P1. It can be easily checked that (7a) and (7c) are
satisfied by the fact that (12a) and (12c) are enforced in the
optimal solution to P2(t) over time. To prove the validity
of the constraint (7b), we first show that P2(t) increases
monotonically with xs,u,t in [x∗s,u,t−1,+∞) due to that

∂P2(t)

∂xs,u,t
=as,t +

d(s∗u,t, s)

λu
+
cs
ηs

ln
xs,t + ε1
x∗s,t−1 + ε1

+
bs
τs,u

ln
xs,u,t + ε2
x∗s,u,t−1 + ε2

> 0,

where x∗s,u,t ≥ x∗s,u,t−1 for any s ∈ S, u ∈ U , and t ∈ T .
Since we have xs,u,0 = 0, as well as x∗s,0 =

∑
u∈U x

∗
s,u,0 = 0,

if we assume the optimal solution satisfies x∗s,u,1 > Cs or
x∗s,1 > Cs, we can always find another solution where we
let x∗s,u,1 = Cs and x∗s,1 = Cs. The new solution provides
a smaller value for the objective P2(t) and consequently,
a contradiction is reached as there exists no solution that
performs better than the optimal solution. Similarly, the
same result can be applies to any 2 ≤ t ≤ th by induction,
which completes the proof.

APPENDIX B
PROOF TO LEMMA 2
We first derive some preliminaries. For αi,t we have

−(αs,t+1 − αs,t) =
cs
ηs

ln
Cs + ε1

x∗s,t−1 + ε1
− cs
ηs

ln
Cs + ε1
x∗s,t + ε1

=
cs
ηs

ln
x∗s,t + ε1

x∗s,t−1 + ε1
.

Analogously, for βs,u,t we have

−(βs,u,t+1 − βs,u,t) =
bs
τs,u

ln
x∗s,u,t + ε2

x∗s,u,t−1 + ε2
.

Based on the above equations, we have

− αs,t − gs,u
d(s∗u,t, s)

λu
+ αs,t+1 − αs,t

+ βs,u,t+1 − βs,u,t +
∑
k∈S\s

ρk,t + gs,uθu,t

=− αs,t − gs,u
d(s∗u,t, s)

λu
− cs
ηs

ln
x∗s,t + ε1

x∗s,t−1 + ε1

− bs
τs,u

ln
x∗s,u,t + ε2

x∗s,u,t−1 + ε2
+
∑
k∈S\s

ρk,t + gs,uθu,t ≤ 0,

where the inequality in the last line follows from equation
(16a). The above inequality indicates that the constraint
(15b) is satisfied by the solution SD. Constraint (15c) is
satisfied by the following inequality.

αs,t =
cs
ηs

ln Cs+ε1
x∗s,t−1+ε1

= cs
ln(1+Cs/ε1)

(
ln(1 + Cs/ε)− ln

(
1 + x∗s,t/ε1

))
= cs

(
1− ln(1+x∗s,t/ε1)

ln(1+Cs/ε1)

)
≤ cs,

where the inequality in the last line follows by x∗s,t ≥ 0
as x∗s,u,t ≥ 0 given in constraint (12c). Analogously, to
prove constraint (15d) we verify that βs,u,t ≤ bs. Combining
with the fact that the constraints in (15e) and (15f) follow
naturally by definition, we complete the proof.

APPENDIX C
PROOF TO LEMMA 3
We first show the following preliminary results that will be
used in the proof.

Lemma 5.
∑
t∈T x

∗
s,t ln

x∗s,t+ε1
x∗s,t−1+ε1

≥ 0 for all s ∈ S.

Proof. We separate x∗s,t ln(x
∗
s,t + ε1)/(x

∗
s,t−1 + ε1) into two

parts (x∗s,t + ε1) ln(x
∗
s,t + ε1)(x

∗
s,t−1 + ε1) and ε1 ln(x

∗
s,t +

ε1)/(x
∗
s,t−1 + ε1). Then, we show that for each of them a

lower bound can be obtained, all of which together will
form a lower bound for the combined term. The detailed
derivation is as follows.∑

t∈T
(x∗s,t + ε1) ln

x∗s,t + ε1

x∗s,t−1 + ε1
+
∑
t

ε1 ln
x∗s,t + ε1

x∗s,t−1 + ε1

≥
(∑
t∈T

(x∗s,t + ε1)

)
ln

∑
t(x
∗
s,t + ε1)∑

t∈T (x
∗
s,t−1 + ε1)

+
∑
t∈T

ε1 ln
x∗s,t + ε1

x∗s,t−1 + ε1

≥
∑
t∈T

(x∗s,t + ε1)−
∑
t∈T

(x∗s,t−1 + ε1) + (x∗s,0 + ε1) ln
x∗s,0 + ε1

x∗s,th + ε

≥x∗s,th − x
∗
s,0 + x∗s,0 − x∗s,th = 0,

where the first inequality follows from
∑
i pi ln pi/qi ≥

(
∑
i pi) ln

∑
i pi/

∑
i qi for any p, q > 0, while the second

and the last inequalities follow by applying p ln p/q ≥ p− q
for any p, q > 0.

Similarly, the same result can be obtained for x∗s,u,t and
we have the following lemma.

Lemma 6.
∑
t∈T x

∗
s,u,t ln

x∗s,u,t+ε1
x∗s,u,t−1+ε1

≥ 0 for all s ∈ S, u ∈ U .

The proof is conducted by applying the equations (16a)-
(16d) obtained from the KKT conditions of P2(t). Note
that the constant part of the service quality cost, i.e.,∑
t∈T

∑
u∈U d(lu,t, s

∗
u,t), is omitted in the objective of P1 as

in P3.∑
t∈T

∑
s∈S

as,tx
∗
s,t +

∑
t∈T

∑
s∈Su

∑
u∈U

d(s∗u,t, s)

λu
x∗s,u,t

=
∑
t∈T

∑
s∈S

x∗s,t(−
cs
ηs

ln
xs,t + ε1
x∗s,t−1 + ε1

− bs
τs,u

ln
xs,u,t + ε2
x∗s,u,t−1 + ε2

+ gs,uθu,t +
∑
k∈S\s

ρk,t + δs,u,t)

≤
∑
t∈T

∑
s∈S

∑
u∈U

xs,u,t(gs,uθu,t +
∑
k∈S\s

ρk,t + δs,u,t)

=
∑
t∈T

∑
u∈U

λugs,uθu,t +
∑
t∈T

∑
s∈S

(∑
u∈U

λu − Cs

)
ρs,t

≤
∑
t∈T

∑
u∈U

λugs,uθu,t +
∑
t∈T

∑
s∈S

(∑
u∈U

λu − Cs

)+

ρs,t = D,

where the equation in the first line is obtained by applying
(16a), the inequality in the second line follows by Lemma 5
and Lemma 6, the equality in the third line is obtained by
applying equations (16b), (16c), and (16d), and the inequal-
ity in the last line follows by (x)+ ≥ x according to the
definition of function (x)+.

APPENDIX D
PROOF TO LEMMA 4
We first introduce the following set definitions.

S+
t = {s | s ∈ S ∧ x∗s,t > x∗s,t−1}, (25)

F+
t = {(s, u) | s ∈ S ∧ u ∈ U ∧ x∗s,u,t > x∗s,u,t−1}. (26)

Then, we focus on the sum of the reconfiguration cost and
the migration cost, where we show∑

t∈T

∑
s∈S

cs(x
∗
s,t − x∗s,t−1)+ +

∑
t∈T

∑
s∈S

∑
u∈U

(x∗s,u,t − x∗s,u,t−1)+

=
∑
t∈T

∑
s∈S+

t

cs(x
∗
s,t − x∗s,t−1) +

∑
t∈T

∑
(s,u)∈F+

t

(x∗s,u,t − x∗s,u,t−1)

≤max
s∈S
{(Cs + ε1)ηs}

∑
t∈T

∑
s∈S+

t

Cs
ηs

ln
x∗s,t + ε1

x∗s,t−1 + ε1

+max
(s,u)
{(Cs + ε2)τs,u}

∑
t∈T

∑
(s,u)∈F+

t

bs
τs,u

ln
x∗s,u,t + ε2

x∗s,u,t−1 + ε2

≤γ
∑
t∈T

∑
s∈S

∑
u∈U

gs,uθu,t + ∑
k∈S\s

ρk,t


≤γ

∑
t∈T

∑
s∈S

∑
u∈U

gs,uθu,t + ∑
k∈S\s

ρk,t

λu
≤γn0

∑
t∈T

∑
u∈U

θu,tλu +
∑
t∈T

∑
s∈S

(∑
u∈U

λu − Cs

)+

ρs,t

=γn0D,

where n0 = maxu∈U |Su|. The equation in the first line
follows by the set definitions (25) and (26), the inequality in
the second line follows by p− q ≤ p ln p/q for any p, q > 0,
the inequality in the third line follows by applying equation
(16a) and δ′i,j,t = 0 due to equation (16d) and the fact that
x∗i,j,t > xi,j,0 = 0 due to the definition of set Y+

t , the
inequality in the forth line follows due to λj > 1, given
that λj ∈ Z+ for all j ∈ J , and the inequality in the fifth
line follows due to equations (16b) and (16c). Therefore, the
proof is completed.

