
Online Resource Allocation for Arbitrary User

Mobility in Distributed Edge Clouds

Lin Wang

TU Darmstadt

wang@tk.tu-darmstadt.de

Lei Jiao

University of Oregon

jiao@cs.uoregon.edu

Jun Li

University of Oregon

lijun@cs.uoregon.edu

Max Mühlhäuser

TU Darmstadt

max@tk.tu-darmstadt.de

Abstract—As clouds move to the network edge to facilitate
mobile applications, edge cloud providers are facing new chal-
lenges on resource allocation. As users may move and resource
prices may vary arbitrarily, resources in edge clouds must be
allocated and adapted continuously in order to accommodate
such dynamics. In this paper, we first formulate this problem
with a comprehensive model that captures the key challenges,
then introduce a gap-preserving transformation of the problem,
and propose a novel online algorithm that optimally solves a
series of subproblems with a carefully designed logarithmic
objective, finally producing feasible solutions for edge cloud
resource allocation over time. We further prove via rigorous
analysis that our online algorithm can provide a parameterized
competitive ratio, without requiring any a priori knowledge on
either the resource price or the user mobility. Through extensive
experiments with both real-world and synthetic data, we further
confirm the effectiveness of the proposed algorithm. We show
that the proposed algorithm achieves near-optimal results with
an empirical competitive ratio of about 1.1, reduces the total cost
by up to 4× compared to static approaches, and outperforms the
online greedy one-shot optimizations by up to 70%.

I. INTRODUCTION

Pushing the cloud frontier to the Internet edge has attracted

tremendous interest not only from cloud operators of the IT

service/software industry but also from cellular carriers of

the telecom industry [1]. Connected by dedicated networks

or the Internet, edge clouds may not have a huge amount

of resources, but they are in close proximity to end users

at various locations such as metropolitan centers, residential

neighborhoods, cellular base stations, and WiFi access points

[2]–[6]. Serving end users from edge clouds has many advan-

tages such as lower or even bounded delay, reduced wide-area

traffic, dedicated security or reliability, etc.

A core problem in such an edge cloud computing paradigm

is the dynamic resource allocation for the services operated

in edge clouds for serving mobile users, which often involves

multiple challenges: First, resource allocation for individual

users may not be a single-location transaction in terms of both

cost and performance. When a user accesses the service in an

edge cloud, she may eventually have resources allocated for

her in multiple nearby and heterogeneous edge clouds as a

result of cost optimization or capacity constraints, as long as

her service quality can be guaranteed. The user’s perceived

service quality in terms of the total access delay may include

the network delay between the user and the edge cloud she

connects to and also between this edge cloud and all the other

related edge clouds that hold her workload.

Further, resource allocation is not a one-time operation

and needs to be continuously adapted to accommodate user

movements, incurring the “adaptation cost” over time. Every

user can move arbitrarily in the system, and, from a time-

slotted view, a user may connect to one edge cloud in one

time slot and switch to another in the next. Each time slot

may have its own optimal resource allocation, which may,

however, become suboptimal if the adaptation cost during

time-slot transition is considered. The adaptation cost refers

to hardware wear-and-tear (such as switching on/off a server)

or the resource leading time (such as booting up or shutting

down a virtual machine) [7], [8]; it can also account for the

bandwidth cost in the case of workload migration [9].

Finally, resource allocation needs to be performed on the

fly, without any knowledge about future resource price and

user location dynamics. It is usually hard or even impossible

to predict how the resource price at each edge cloud will

vary [8] and how each user will move over time [3]. Without

such prediction, it is difficult to make an informed and good

decision of resource allocation at each time slot; it is even

more difficult to make decisions that are competitive, with

guaranteed approximation towards the best decisions that can

ever be made when assuming perfect knowledge about the

future, which, however, is under our consideration.

Despite the extensive existing research on resource alloca-

tion in the cloud context in general [10], [11], only a few

have studied online resource allocation in edge clouds, falling

short in addressing the three aforementioned challenges. Most

of them often assume statistical knowledge about user mo-

bility [12]–[14], or rely on prediction of future costs [15].

In addition, the resource adaptation cost has not been well

considered until recently in the cloud in general [7] and in

edge clouds in particular [8], [16]; nevertheless, none of them

consider user mobility or its influence on resource allocation

and adaptation. To the best of our knowledge, we are the first

to study the online and user-mobility-driven optimization of

the costs of allocation, reconfiguration, service quality, and mi-

gration altogether in edge clouds, under unpredictable resource

prices and user movements. We make three contributions:

We build a comprehensive model to capture the optimization

problem of online resource allocation in edge clouds. Our

model focuses on four types of costs, but can capture a wide

range of different types of costs in general. The first two are

static costs associated with every independent time slot: the

allocation cost which captures the usage of cloud resources

such as severs, virtual machines, and energy, and the service

quality cost which captures the total access delay between

users and clouds and between clouds themselves. The other

two are dynamic costs related to every pair of consecutive

time slots: the reconfiguration cost which reflects the changes

of the amount of allocated resources, and the migration cost

which reflects the movements of users’ workloads. The static

costs adopt affine models; the reconfiguration cost accounts

for adding resources only, as removing resources is often fast

and incurs negligible cost; the migration cost accounts for both

incoming and outgoing migrations for each edge cloud due to

user mobility. We pursue the optimization of the total cost

over time while serving each user’s workload and respecting

the capacity limit of each edge cloud.

We transform our problem and propose an efficient online

algorithm, for which, via rigorous competitive analysis, we

prove a parameterized competitive ratio. We first apply a trans-

formation to the migration cost in our originally formulated

problem to make it easier to work with, while guaranteeing

that any online algorithm for the resulting problem with a

certain competitive ratio would provide the same competitive

ratio for the original problem. Then, our major contribution is

the design of an online algorithm based on the regularization

technique [17], which decouples our original problem into a

series of subproblems that are solvable in each independent

time slot, only using the solution obtained for the previous

time slot as input. The series of solutions generated in each

time slot thus constitute a feasible solution to our original

problem. Our online algorithm assumes no priori knowledge

on either the user mobility or the resource price, thus allowing

for arbitrary dynamics on them. By relaxation and primal-

dual properties, we are able to demonstrate that our algorithm

always outputs resource allocation decisions for each mobile

user in each time slot, with a provable competitive gunrantee

even for the worst-case inputs.

We carry out extensive experiments to validate the perfor-

mance of our proposed online algorithm. We first test it with

the real-world data, where we select 15 metro stations from

the Rome metro system as the locations of edge clouds and

we use the Rome taxi dataset [18] to emulate user mobility.

The results show that up to 4× reduction on the total cost

can be achieved compared to the static approaches which are

typically employed in edge clouds. Moreover, our algorithm

produces near-optimal results with an empirical competitive

ratio around 1.1 and outperforms the online greedy approach

by up to 60%. We also test the algorithm with synthetic data

and the results are consistent with that in the real-world data

case, proving the effectiveness and generality of our algorithm.

II. MODEL FORMULATION

We describe our model for each of the components in an

edge cloud system, based on which we formulate the resource

allocation problem in this section.

A. Edge Cloud System

We consider a time-slotted system over T time slots that

are denoted by the set T = {1, 2, ..., T}. We envisage I edge

clouds, denoted by the set I = {1, 2, ..., I}, in the system.

An edge cloud is defined as a pool of virtualized computing

resources, which is usually collocated with a cellular base

station or a WiFi access point. Each edge cloud is equipped

with a certain number of servers and the maximum capacity

of an edge cloud i is defined as Ci. All the edge clouds are

connected to one another via dedicated carrier networks and

the network delay between two edge clouds i and i0, i.e.,

the inter-cloud delay, is given by d(i, i0), where we define

d(i, i) = 0, ∀i ∈ I. Each edge cloud is supposed to cover

a small geographical area and any area will only receive

coverage from a single edge cloud.

B. Users and Workload

We assume a set J = {1, 2, ..., J} of J users with mobile

devices that are moving around in the system. In a certain

time slot t ∈ T , a user j ∈ J connects to an edge cloud

lj,t ∈ I that covers the vicinity of the user and accesses

the service or offloads computation tasks, incurring a total

amount λj of workload in the system. For the purpose of

cost reduction by taking advantage of the heterogeneity of

the edge clouds, the edge cloud operator may distribute the

workload from each user to any of the edge clouds given that

the service quality is guaranteed and workload redistribution

is carried out in the form of workload migration. We denote

by xi,j,t the amount of resources that will be allocated for user

j in edge cloud i at time t and we enforce
P

i2I xi,j,t ≥ λj

in order to successfully meet the demand from the user. The

delay between the user and the connected edge cloud, i.e., the

access delay, is denoted by d(j, lj,t). As users are moving, lj,t
and d(j, lj,t) can vary across time slots. To stay generic, we

make no assumption on the mobility pattern of the users, i.e.,

the movement of each user is arbitrary.

C. Costs

We consider four aspects of costs for the edge cloud system:

the operation cost, the service quality cost, the reconfiguration

cost, and the migration cost, where the former two fall into

the category of static cost that are independent in each time

slot while the latter two belong to the category of dynamic

cost that is accounted across time slots. These costs are able to

represent the most prominent expenditure from the perspective

of the cloud operator.

1) The operation cost: This cost refers to server or virtual

machine usage, regular hardware or service maintenance,

energy consumption, and even carbon emission, all of which

can be captured by the following function in general:

Costop =
X

t

X

i

X

j

ai,txi,j,t, (1)

where ai,t denotes the “operation price” (i.e., the unit cost)

in time slot t. Note that we allow arbitrary variations on the

operation price over time, and such variations can be hetero-

geneous for different edge clouds due to different hardware or

software specifications and energy prices.

2) The reconfiguration cost: This cost is charged in pro-

portion to the amount of workload that has been increased

across any two consecutive time slots in each edge cloud. As

users move, the operator may redistribute the workload from

each user, which results in adapting the amount of resources

allocated in each edge cloud. Such adaptation involves pow-

ering up a physical server or booting a virtual machine on

an active server, which would incur some inevitable delay for

preparing the resources and would also bring wear-and-tear to

the hardware. We assume that virtual machines are the smallest

resource segment in the edge clouds. The reconfiguration price

(i.e., the cost for increasing unit resource) is denoted by ci for

edge cloud i. By defining function (x)+ = max{x, 0} for all

x ∈ R, the total reconfiguration cost is calculated as

Costrc =
X

t

X

i

ci

0

@
X

j

xi,j,t −
X

j

xi,j,t−1

1

A

+

, (2)

where
⇣
P

j xi,j,t −
P

j xi,j,t−1

⌘+

captures the increase of the

workload at edge cloud i when transitioning from time slot (t−
1) to time slot t. The cost associated with reducing the amount

of resources is omitted as usually that can be completed very

fast and the cost is usually negligible.

3) The service quality cost: This cost is defined in pro-

portion to the network delay experienced by each user. From

the operator’s view, the workload from each user may be

distributed to any of the edge clouds in the system for

cost optimization. However, the quality of service has to

be guaranteed. For a given edge cloud i and a user j, the

service quality cost is calculated as the sum of the access

delay and the weighted inter-cloud delay, i.e., d(j, lj,t) +
P

i xi,j,td(lj,t, i)/λj . Straightforwardly, the total service qual-

ity cost is given by

Costsq =
X

t

X

j

d(j, lj,t) +
X

i

xi,j,t

λj

d(lj,t, i)

!

. (3)

4) The migration cost: This cost represents the “price”

being paid when we migrate some workload from one edge

cloud to another due to the bandwidth cost associated with

data movement. Such cost is dynamic and is usually counted

at both ends of a migration. We denote by bouti and bini the

unit migration cost associated with data moving out of and

into edge cloud i, respectively. Denoting by zouti,t and zini,t the

amount of workload being migrated out of and into edge cloud

i at time t, respectively, we have

zouti,t =
X

j

(xi,j,t−1 − xi,j,t)
+
, zini,t =

X

j

(xi,j,t − xi,j,t−1)
+
.

The total migration cost Costmg can be captured by

Costmg =
X

t

X

i

bouti zouti,t + bini zini,t. (5)

Note that the reconfiguration cost is dictated by the change

of the collective workload of all the users at the same edge

cloud, while the migration cost is only related to the workload

change of every individual user.

D. Problem Formulation

Our goal is to design an online optimizer which takes

the user’s workload and location as input and continuously

decides where to distribute the workload for each user and

allocate resources at each edge cloud accordingly such that

the total cost is minimized over time. The total cost is the

weighted sum of all the aforementioned costs, as given by

Costop + Costrc + Costsq + Costmg . For the simplicity

of expression, we omit the weights here but we will keep

them during our evaluation. In each time slot t ∈ T , the

resource allocation decision xi,j,t−1 for the previous time

slot (t − 1) might become suboptimal due to the variation

of ai,t and the change of lj,t as a result of user movement.

Therefore, the optimizer will need to redistribute the workload

among all the edge clouds in order to maintain optimal cost

efficiency. However, the redistribution of workload comes with

additional costs, i.e., Costrc for reconfiguring the edge clouds

and Costmg for migrating the workload. Ideally, the optimizer

would make the best tradeoff between the static and the

dynamic costs.

Having all the aforementioned notations, the resource allo-

cation problem can further be formalized into the following

linear program, denoted as P0.

min P0 =

static
z }| {

Costop + Costsq +

dynamic
z }| {

Costrc + Costmg

s.t.
X

i

xi,j,t ≥ λj , ∀j, ∀t, (6a)

X

j

xi,j,t ≤ Ci, ∀i, ∀t, (6b)

xi,j,t ≥ 0, ∀i, ∀j, ∀t. (6c)

Constraint (6a) ensures sufficient resources are allocated at

each edge cloud; constraint (6b) guarantees the capacity limit

of each edge cloud. Note that all the costs have time-varying

factors corresponding to the uncertainties or dependencies

across consecutive time slots. As a result, there is no once-for-

all solution for the problem in each separate time slot from an

online perspective.

E. Example

We observe that the problem can be easily solved by directly

applying a linear program solver (e.g., GLPK) if we are given

all the input data including the operation prices and the user

mobility patterns in all time slots. However, this is impossible

in the online setting, where the input data is revealed step

by step over time. Without any a priori knowledge, a nature

solution would be greedily adopting the best decision in each

independent time slot. However, we show by examples that

this online greedy approach is suboptimal in many cases.

We first consider the example in Figure 1(a), where we

have a system with two edge clouds and one user is moving

workload

migration price = 1 operation price

reconfiguration

price = 1A B

[1, 2.1, 1] [1, 1, 2.1]

A B

[1, 1.9, 1.9] [1, 1, 1]

(a) (b)

move B-A

move A-B

delay = 1

move A-B

delay = 1

User

Edge

Cloud

delay = 1.5

Fig. 1: Simple examples to illustrate the cost calculation and to show
the major drawbacks: (a) aggressiveness and (b) conservativeness, of
the nature online greedy solution to the problem.

around them. The four types of prices are given in the figure

and the user is assumed to have one unit of workload. We

consider three time slots where in the first time slot the user

is connected to edge cloud A and then, it moves to B in the

second time slot and moves back to A in the third time slot.

We now show that greedy can be too aggressive. Following the

greedy approach, the user workload would be migrated from A

to B in the second time slot (as 2.1+1+1.5 > 1+1+1+1.5)

and then will be migrated back to A in the third time slot (as

2.1+1+1.5 > 1+1+1+1.5). The total cost is then calculated

as (1+1.5)+(1+1+1+1.5)+(1+1+1+1.5) = 11.5, where

both migration and reconfiguration costs are incurred in the

last two time slots while the service quality cost is minimized

as the workload is following the user all the time. However,

with a holistic view on all the time slots, the optimal solution

would keep the user workload in A throughout the three time

slots, resulting in a total cost of (1+ 1.5)+ (2.1+ 1+ 1.5)+
(1+1.5) = 9.6. The second example in Figure 1(b) shows that

greedy can also be too conservative, where greedy would keep

the workload all the time at A (as 1.9+1+1.5 < 1+1+1+1.5)

with a total cost of 11.3, while the optimal solution would

migrate the workload to B in the second time slot and brings

a total cost of only 9.5.

III. ONLINE ALGORITHM DESIGN

We discuss the design of an online algorithm for resource

allocation in edge clouds in this section. Before presenting the

algorithm, we first carry out a gap-preserving transformation

to simplify the original problem. The proposed algorithm is

then based on solving in each time slot a subproblem with a

carefully designed logarithmic objective over time, and the

solutions for all the subprograms will finally constitute a

feasible solution for the original resource allocation problem.

A. Problem Transformation

We notice that the migration cost in P0 is counted bidirec-

tionally, which is too complicated to handle. To simplify this

expression, we first make a transformation on the migration

cost in the objective of P0, from which we generate the

following new program P1:

min P1 = Costop + Costrc + Costsq +
X

t

X

i

biz
in
i,t

s.t. (6a), (6b), (6c)

where we define bi , bouti + bini . The intuition behind this

transformation is to combine the migration costs counted in

both directions into a single direction. The transformation is

gap-preserving while improving the tractability of the problem.

More specifically, by following similar techniques used in [9],

we are able to show that

Lemma 1. Any r-competitive online algorithm that solves P1

also yields a r-competitive online algorithm for P0.

Proof. For each edge cloud i ∈ I, we have that the accu-

mulative workload xi during the whole time period [1, T] is

bounded by the capacity Ci of the edge cloud, i.e.,

xi = |
X

t

zini,t −
X

t

zouti,t | ≤ Ci.

Consequently, the following result can be derived.

P0 =
X

t

X

i

(bouti zouti,t + bini zini,t)

=
X

t

X

i

bouti

X

t

zini,t ± xi

!

+
X

i

bini zini,t

≥
X

t

X

i

(bouti + bini)zini,t −
X

i

bouti Ci

≥ P1 −
X

i

bouti Ci

Define σ =
P

i b
out
i Ci as a constant and we have P1 ≤ P0 +

σ, which indicates that P1 is upper bounded by P0 plus a

constant σ. This completes the proof as any online algorithm

that produces a solution with objective value bounded by r
times the optimal of P1 will also be a solution that is bounded

by r times the optimal of P0 within a constant rσ.

The above result provides us the convenience to consider

only the problem P1 hereafter. We also observe that the migra-

tion cost can be decomposed for individual users. By introduc-

ing auxiliary variables zi,j,t where zi,j,t = (xi,j,t −xi,j,t−1)
+

and zini,t =
P

j zi,j,t, we rewrite the objective function of P1

as follows:

P1 = Costop + Costrc + Costsq +
X

t

X

i

X

j

bizi,j,t. (9)

B. Online Algorithm

We now present the design of an online algorithm for

resource allocation. In the online setting, competitive ratio is

defined as the ratio of the objective of an online algorithm for a

given online optimization problem where the input is revealed

over time and the optimal objective obtained assuming all the

input for the problem is pre-given, i.e., offline optimal. The

competitive ratio is used to quantify the quality of the solutions

produced by an online algorithm. To simplify the presentation,

we denote by xi,t the total amount of resources allocated in

edge cloud i at time t, i.e., xi,t =
P

j xi,j,t.

Our online algorithm is based on regularization [17], i.e.,

solving a series of regularized versions of P1. At the beginning

of each time slot t ∈ T , observing lj,t and taking x⇤
i,j,t−1

(x⇤
i,j,0 , 0) which is the workload assignment decision made

in time slot (t− 1) as input, we solve the following problem

P2 and obtain the resource allocation decisions x⇤
i,j,t for the

current time slot.

min P2(t) =
X

i

X

j

ai,txi,j,t

+
X

j

d(j, lj,t) +
X

i

xi,j,t

λj

d(lj,t, i)

!

+
X

i

ci
ηi

(xi,t + ε1) ln
xi,t + ε1

x⇤
i,t−1 + ε1

− xi,t

!

+
X

i

X

j

bi
τi,j

(xi,j,t + ε2) ln
xi,j,t + ε2

x⇤
i,j,t−1 + ε2

− xi,j,t

!

s.t.
X

i

xi,j,t ≥ λj ∀j, (10a)

X

k2I\i

X

j

xk,j,t ≥
X

j

λj − Ci, ∀i, (10b)

xi,j,t ≥ 0, ∀i, ∀j, (10c)

where ηi = ln (1 + Ci/ε1), τi,j = ln(1+ λj/ε2), and ε1 > 0,

ε2 > 0 are parameters. Note that the objective function P2(t)
is convex and the constraints are all linear. As a result, P2 can

be optimally solved by any solver for convex programming.

Combining the optimal solution to P2 in every time slot,

denoted by x⇤
i,j,t, we construct an approximate solution to

the original problem P1 by simply following exactly the same

resource allocation decisions. We show in the following that

the produced solution is feasible to P1 inherently.

Theorem 1 (Feasibility). The optimal solution x⇤
i,j,t to P2 in

every time slot constitutes a feasible solution to P1 over time.

Proof. The proof is conducted by showing that the optimal

solution obtained for P2 also satisfies the constraints (6a), (6b),

and (6c) in P1. It can be easily checked that (6a) and (6c)

are satisfied by the fact that (10a) and (10c) are enforced in

the optimal solution to P2 over time. To prove the validity

of the constraint (6b), we first show that P2(t) increases

monotonically with xi,j,t in [x⇤
i,j,t−1,+∞) due to that

∂P2(t)

∂xi,j,t

=ai,t +
d(lj,t, i)

λj

+
ci
ηi

ln
xi,t + ε1

x⇤
i,t−1 + ε1

+
bi
τi,j

ln
xi,j,t + ε2

x⇤
i,j,t−1 + ε2

> 0,

where x⇤
i,j,t ≥ x⇤

i,j,t−1 for any i ∈ I, j ∈ J , and t ∈ T . Since

we have xi,j,0 = 0, as well as x⇤
i,0 =

P

j x
⇤
i,j,0 = 0, if we

assume the optimal solution satisfies x⇤
i,j,1 > Ci or x⇤

i,1 > Ci,

we can always find another solution where we let x⇤
i,j,1 = Ci

and x⇤
i,1 = Ci. The new solution provides a smaller value

for the objective P2(t) and consequently, a contradiction is

reached as there exists no solution that performs better than the

optimal solution. Similarly, the same result can be applies to

any 2 ≤ t ≤ T by induction, which completes the proof.

IV. COMPETITIVE ANALYSIS

In this section, we carry out rigorous analysis on the

performance of the proposed online resource allocation algo-

rithm. Particularly, we prove that our algorithm has guaranteed

performance by achieving a parameterized competitive ratio.

We first present a sketch for the proof, followed by the detailed

derivations step by step.

A. Sketch

The competitive analysis will follow three high-level steps:

i) We first relax the program P1 by linearizing the objective

function via introducing auxiliary variables ui,t and vi,j,t, from

which we obtain a linear program P3. ii) We then derive the

dual problem of P3 to obtain a program D. iii) We finally

construct a feasible solution for D from the optimal solution

x⇤
i,j,t generated by optimally solving P2. The rationale of

adopting the regularization-based approach is that the optimal

solution for P2 shares some common properties with the

solution we constructed for D, which can be exploited by

deriving the KKT conditions for P2 and compare them with the

constraints in D. Therefore, a connection between the optimal

solution to P2 and the constructed solution to D is established.

More formally, we aim to derive the following inequalities:

P1 ≥ P3 ≥ D ≥
1

r
P2, (12)

where the first inequality follows by the fact that P3 is relaxed

from P1, as a result of which it produces the optimal solution

no larger than that of P1. The second inequality is obtained by

applying the Weak Duality Theorem, and the third inequality

follows by comparing the solutions to D with that to P2. Those

inequalities directly lead to the result that the proposed online

algorithm is r-competitive, where r will be determined later.

B. Auxiliary Programs

Following the above sketch, we first provide the formu-

lation for the relaxed program P3. As already mentioned,

we introduce auxiliary variables ui,t and vi,j,t to reformulate

the nonlinear terms in the objective function of P2. We also

enforce lower bounds on the new variables in the constraints.

The formal formulation of P3 is given below.

min P3(t) =
X

t

X

i

X

j

ai,txi,j,t

+
X

t

X

j

d(j, lj,t) +
X

i

xi,j,t

λj

d(lj,t, i)

!

+
X

t

X

i

ciui,t +
X

t

X

i

X

j

bivi,j,t

s.t. ui,t ≥
X

j

xi,j,t −
X

j

xi,j,t−1, ∀i, ∀t, (13a)

vi,j,t ≥ xi,j,t − xi,j,t−1, ∀i, ∀j, ∀t, (13b)

X

k2I\i

X

j

xk,j,t ≥

0

@
X

j

λj − Ci

1

A

+

, ∀i, ∀t, (13c)

ui,t ≥ 0, ∀i, ∀t, (13d)

vi,j,t ≥ 0, ∀i, ∀j, ∀t, (13e)

(6a), (6c),

where function (x)+ can be applied to the right-hand term

of (13c) due to the fact that xi,j,t ≥ 0. We now derive the

Lagrange dual of P3 to generate program D. To this end, we

introduce dual variables for each of the constraints in P3: let

αi,t, βi,j,t, ρi,t, and θj,t be the dual variables associated with

(13a), (13b), (13c), and (6a), respectively. The dual program

D can be derived as follows.

max D =
X

t

X

j

λjθj,t +
X

t

X

i

0

@
X

j

λj − Ci

1

A

+

ρi,t

s.t. − ai,t −
d(lj,t, i)

λj

+ αi,t+1 − αi,t + βi,j,t+1

− βi,j,t +
X

k2I\i

ρk,t + θj,t ≤ 0, ∀i, ∀j, ∀t, (14a)

− ci + αi,t ≤ 0, ∀i, ∀t, (14b)

− bi + βi,j,t ≤ 0, ∀i, ∀j, ∀t (14c)

αi,t ≥ 0, ρi,t ≥ 0 ∀i, ∀t, (14d)

βi,j,t ≥ 0, θj,t ≥ 0, ∀i, ∀j, ∀t, (14e)

On the other hand, we derive the KKT conditions of the

program P2. We associate dual variables θ0j,t, ρ
0
i,t, and δ0i,j,t to

constraints (10a), (10b), and (10c), respectively. Consequently,

we have

ai,t +
d(lj,t, i)

λj

+
ci
ηi

ln
xi,t + ε1

x⇤
i,t−1 + ε1

+
bi
τi,j

ln
xi,j,t + ε2

x⇤
i,j,t−1 + ε2

− θ0j,t −
X

k2I\i

ρ0k,t − δ0i,j,t = 0, ∀i, ∀j, (15a)

θ0j,t(λj −
X

i

xi,j,t) = 0, ∀j, (15b)

ρ0i,t

0

@
X

j

λj − Ci −
X

k2I\i

X

j

xk,j,t

1

A = 0, ∀i (15c)

− xi,j,tδ
0
i,j,t = 0, ∀i, ∀j, (15d)

θ0j,t ≥ 0, ρ0i,t ≥ 0, ∀i, ∀j, (15e)

where equation (15a) is the optimality condition, while equa-

tion (15b), (15c), and (15d) are due to complementary slack-

ness. Using the optimal solutions obtained from solving P3(t)
in time slot t, i.e., x⇤

i,j,t and the dual variables θ0j,t and ρ0i,t,
we construct a solution SD for program D by following the

mappings shown below.

αi,t =
ci
ηi

ln
Ci + ε1

x⇤
i,t−1 + ε1

, βi,j,t =
bi
τi,j

ln
Ci + ε2

x⇤
i,j,t−1 + ε2

θj,t = θ0j,t, ρi,t = ρ0i,t.

We are able to show that

Lemma 2. The solution SD is feasible for program D.

Proof. The proof is conducted by showing that when substi-

tuted in D, SD satisfies all the constraints. To this end, we

first derive some preliminaries. For αi,t we have

αi,t+1 − αt =
ci
ηi

ln
Ci + ε1
x⇤
i,t + ε1

−
ci
ηi

ln
Ci + ε1

x⇤
i,t−1 + ε1

=
ci
ηi

ln
x⇤
i,t−1 + ε1

x⇤
i,t + ε1

.

Similarly, for βi,j,t we have

βi,j,t+1 − βi,j,t =
bi
τi,j

ln
x⇤
i,j,t−1 + ε2

x⇤
i,j,t + ε2

.

Based on the above equations, we have

− αi,t −
d(lj,t, i)

λj

+ αi,t+1 − αi,t

+ βi,j,t+1 − βi,j,t +
X

k2I\i

ρk,t + θj,t

=− αi,t −
d(lj,t, i)

λj

−
ci
ηi

ln
x⇤
i,t + ε1

x⇤
i,t−1 + ε1

−
bi
τi,j

ln
x⇤
i,j,t + ε2

x⇤
i,j,t−1 + ε2

+
X

k2I\i

ρk,t + θj,t ≤ 0,

where the inequality in the last line follows from equation

(15a). The above inequality indicates that the constraint (14a)

is satisfied by the solution SD. Constraint (14b) is satisfied by

the following inequality.

αi,t =
ci
ηi

ln
Ci + ε1

x⇤
i,t−1 + ε1

=
ci

ln(1 + Ci/ε1)

(
ln(1 + Ci/ε)− ln

(
1 + x⇤

i,t/ε1
))

= ci

✓

1−
ln(1 + x⇤

i,t/ε1)

ln(1 + Ci/ε1)

◆

≤ ci,

where the inequality in the last line follows by x⇤
i,t ≥ 0 as

x⇤
i,j,t ≥ 0 given in constraint (10c). Analogously, to prove

constraint (14c) we verify that βi,j,t ≤ bi. Combining with

the fact that constraints in (14d) and (14e) follow naturally by

definition, we complete the proof.

C. Competitive Ratio

We now focus on the last inequality in (12) and derive the

competitive ratio r. We first show the following preliminary

results that will be used later.

Lemma 3.
P

t x
⇤
i,t ln

x∗

i,t+ε1

x∗

i,t−1
+ε1

≥ 0 for all i ∈ I.

Proof. We separate x⇤
i,t ln(x

⇤
i,t + ε1)/(x

⇤
i,t−1 + ε1) into two

parts (x⇤
i,t + ε1) ln(x

⇤
i,t + ε1)(x

⇤
i,t−1 + ε1) and ε1 ln(x

⇤
i,t +

ε1)/(x
⇤
i,t−1 + ε1). Then, we show for each of them a lower

bound can be obtained, which together will form a lower

bound for the original expression. The detailed derivation is

as follows.

X

t

(x⇤
i,t + ε1) ln

x⇤
i,t + ε1

x⇤
i,t−1 + ε1

+
X

t

ε1 ln
x⇤
i,t + ε1

x⇤
i,t−1 + ε1

≥

X

t

(x⇤
i,t + ε1)

!

ln

P

t(x
⇤
i,t + ε1)

P

t(x
⇤
i,t−1 + ε1)

+
X

t

ε1 ln
x⇤
i,t + ε1

x⇤
i,t−1 + ε1

≥
X

t

(x⇤
i,t + ε1)−

X

t

(x⇤
i,t−1 + ε1) + (x⇤

i,0 + ε1) ln
x⇤
i,0 + ε1

x⇤
i,T + ε

≥x⇤
i,T − x⇤

i,0 + x⇤
i,0 − x⇤

i,T = 0,

where the first inequality follows from
P

i mi lnmi/ni ≥
(
P

i mi) ln
P

i mi/
P

i ni for any m,n > 0, while the second

and the last inequalities follow by applying m lnm/n ≥ m−n
for any m,n > 0.

Similarly, the same result can be obtained for x⇤
i,j,t and we

have the following lemma.

Lemma 4.
P

t x
⇤
i,j,t ln

x∗

i,j,t+ε1

x∗

i,j,t−1
+ε1

≥ 0 for all i ∈ I, j ∈ J .

Lemma 5. The total static cost, i.e., the sum of the operation

cost and the service quality cost in P1, is upper bounded by

D when evaluated at x⇤
i,j,t, i.e., Costop + Costsq ≤ D.

Proof. The proof is conducted by applying the equations

(15a)-(15d) obtained from the KKT conditions of P2. Note

that we omit the constant part of the service quality cost

that does not depend on the resource allocation decision, i.e.,
P

t

P

j d(j, lj,t), as it will appear identically in the original

objective function.

X

t

X

i

ai,tx
⇤
i,t +

X

t

X

i

X

j

d(lj,t, i)

λj

x⇤
i,j,t

=
X

t

X

i

x⇤
i,t(−

ci
ηi

ln
xi,t + ε1

x⇤
i,t−1 + ε1

−
bi
τi,j

ln
xi,j,t + ε2

x⇤
i,j,t−1 + ε2

+ θj,t +
X

k2I\i

ρk,t + δi,j,t)

≤
X

t

X

i

X

j

xi,j,t(θj,t +
X

k2I\i

ρk,t + δi,j,t)

=
X

t

X

j

λjθj,t +
X

t

X

i

0

@
X

j

λj − Ci

1

A ρi,t

≤
X

t

X

j

λjθj,t +
X

t

X

i

0

@
X

j

λj − Ci

1

A

+

ρi,t = D,

where the equation in the first line is obtained by applying

(15a), the inequality in the second line follows by Lemma 3

and Lemma 4, the equality in the third line is obtained by

applying equations (15b), (15c), and (15d), and the inequality

in the last line follows by (x)+ ≥ x according to the definition

of function (x)+.

Lemma 6. The total dynamic cost, i.e., the sum of the

reconfiguration cost and the migration cost in P1, is upper

bounded by constant times of D when evaluated at x⇤
i,j,t, i.e.,

Costrc + Costmg ≤ γ|I|D where

γ = max
i2I

⇢

(Ci + ε1) ln(1 +
Ci

ε1
), (Ci + ε2) ln(1 +

Ci

ε2
)

}

.

Proof. We first introduce the following set definitions.

I+
t = {i | i ∈ I ∧ x⇤

i,t > x⇤
i,t−1}, (23)

Y+
t = {(i, j) | i ∈ I ∧ j ∈ J ∧ x⇤

i,j,t > x⇤
i,j,t−1}. (24)

Then, we focus on the sum of the reconfiguration cost and the

migration cost, where we show
X

t

X

i

ci(x
⇤
i,t − x⇤

i,t−1)
+ +

X

t

X

i

X

j

(x⇤
i,j,t − x⇤

i,j,t−1)
+

=
X

t

X

i2I+

t

ci(x
⇤
i,t − x⇤

i,t−1) +
X

t

X

(i,j)2Y+

t

(x⇤
i,j,t − x⇤

i,j,t−1)

≤max
i

{(Ci + ε1)ηi}
X

t

X

i2I+

t

Ci

ηi
ln

x⇤
i,t + ε1

x⇤
i,t−1 + ε1

+max
i,j

{(Ci + ε2)τi,j}
X

t

X

(i,j)2Y+

t

bi
τi,j

ln
x⇤
i,j,t + ε2

x⇤
i,j,t−1 + ε2

≤γ
X

t

X

i

X

j

0

@θj,t +
X

k2I\i

ρk,t

1

A

≤γ
X

t

X

i

X

j

0

@θj,t +
X

k2I\i

ρk,t

1

Aλj

≤γ|I|
X

t

X

j

θj,tλj +
X

t

X

i

0

@
X

j

λj − Ci

1

A

+

ρi,t

=γ|I|D,

where the equality in the first line follows by the provided

set definitions (23) and (24), the inequality in the second line

follows by m−n ≤ m lnm/n for any m,n > 0, the inequality

in the third line follows by applying equation (15a) and δ0i,j,t =
0 due to equation (15d) and the fact that x⇤

i,j,t > xi,j,0 = 0

due to the definition of set Y+
t , the inequality in the forth line

follows due to λj > 1, given that λj ∈ Z
+ for all j ∈ J , and

the inequality in the fifth line follows due to equations (15b)

and (15c). Therefore, the proof is completed.

Combining the results in Theorem 1, Lemma 5, and

Lemma 6, the following theorem on the competitive ratio can

be directly obtained for the proposed online algorithm.

Theorem 2. The solution obtained by optimally solving P2 in

every time slot will constitute a feasible solution to P0 over

time, with a competitive ratio r = 1 + γ|I|.

Remark. We observe that r is monotonically decreasing with

the parameters ε1 and ε2 so the competitive ratio can be

improved by carefully tuning the values for the parameters.

We will further evaluate the empirical competitive ratios of

the algorithm with real case experiments in the next section.

The lower bounds on the competitive ratio will be explored as

a future work.

V. EVALUATION

We built a discrete-time simulator in Python to validate

the performance of the proposed online resource allocation

algorithm. We conducted experiments using both real-world

and synthetic data and we report the experimental results in

this section. All the measurements were performed on a Linux

server equipped with Intel Xeon CPU E5-2687W (3.0GHz)

and 512 GB of RAM. We modeled the linear and convex

programs by Pyomo and solved them by invoking IPOPT.

A. Experimental Settings

The major dataset we use for the real-world case is the

Roma taxi trajectory traces [18]. We envision an edge cloud

system deployed in the center area of Roma city with 15 edge

clouds deployed that are located at 15 selected metro stations.

The edge clouds in the system will be used by the customers

(termed as users hereafter) in the taxis, whose movement

records are provided by the traces. The number of users varies

from hour to hour but is generally around 300.

Operation price. We generate the operation price following

the process: For each edge cloud, we first determine its base

operation price reversely proportional to its capacity. This is

reasonable due to the economy-of-scale effect on both energy

and maintenance. The real-time operation price for each edge

cloud follows Gaussian distributions, where we set the the

mean value as the base price we just generated and the

standard deviation as half of the base price [8].

Network delay. The network delay is used to calculate the

service quality cost and for each user it can be partitioned into

two parts: the delay between the user and the access point and

the weighted average delay between the access point and the

recruited edge clouds by the user. The delay in our model

is measured by the geographical distance between any two

entities based on their GPS locations. The GPS location data

for the taxis are provided by the dataset and we collect the

GPS locations for the 15 edge clouds (i.e., metro stations)

manually on Google Maps. The service quality price is set to

be proportional to the measured delay.

Bandwidth price. The migration cost is associated with the

bandwidth price and the bandwidth usage during the migration.

In our model the bandwidth price is not assumed to be time-

varying. However, different edge clouds may connect to the

Internet via different Internet providers. We categorize all the

edge clouds in three clusters, each of which is subscribed to

one of the three Internet providers: Tiscali Italia, Vodafone

Italia, and Infostrada-Wind. The per-month flat rate prices

averaged for 1Mbps connection are 2.49 euro, 4.86 euro,

and 1.25 euro, respectively [19]. We will use this relative

ratios between them to set the bandwidth prices for the three

categories of edge clouds.

Reconfiguration price. The reconfiguration price is assumed

to be static over time and it varies among different edge

clouds. We generate the reconfiguration prices following a

Gauss distribution with the negative tail cutted.

User workload. To understand the impact of the distribution

of user workload on the effectiveness of our algorithm, we use

three different distributions: power, uniform, and normal. the

power distribution represents highly screwed workload, which

can be typically seen in online social network services, e.g., the

number of friends of each user on the social network satisfies

the power law.

Capacity. The total capacity of the edge clouds is assumed

to be slightly larger than the total workload in the system by

C1 C2 C3 C4 C5 C6

Test Case

0

1.0

2.0

3.0

4.0

5.0

6.0

E
m

p
ir
ic

a
l
C

o
m

p
et

it
iv

e
R

a
ti
o

Group Atomistic

oper-opt

perf-opt

stat-opt

C1 C2 C3 C4 C5 C6

Test Case

0

0.4

0.8

1.2

1.6

2

E
m

p
ir
ic

a
l
C

o
m

p
et

it
iv

e
R

a
ti
o

Group Holistic

offline-opt

online-approx

online-greedy : 60%

Fig. 2: Comparison on the empirical competitive ratio achieved by the
two groups of algorithms with user workloads generated following a
power distribution.

design. More specifically, we assume that the utilization of

the system keeps at the level of 80%. Consequently, the total

capacity is set to be 1.25 times the total workload. The capac-

ity will be distributed to all the edge clouds proportionally to

the frequency of users being attached to them, i.e., the total

number of direct user connection in all the relevant time slots.

B. Measuring the Competitive Ratio

The theoretical analysis has already provided an upper

bound on the competitive ratio for the online algorithm. We

now validate how the algorithm would perform in reality. We

carry out experiments using the above settings and we compare

the results of our algorithm with the two groups of algorithms:

atomistic and holistic. Atomistic algorithms only consider the

static part in the total cost and they include:

• The perf-opt algorithm aims at minimizing only the

service quality cost Costsq in every time slot.

• The oper-opt algorithm minimizes only the operation

cost Costop in each time slot.

• The stat-opt algorithm minimizes the total static cost

Costop + Costsq in each time slot and ignores the

dynamic costs for reconfiguration and migration.

While the algorithms in the holistic group include:

• The offline-opt algorithm minimizes P0 assuming a

global view over all the time slots in advance. This is

considered impractical and only serves as a baseline.

• The online-greedy algorithm directly takes the objec-

tive value of P0 and minimizes P0 in every time slot.

Decision making is based on the outcome of the previous

time slot, but considers no future possibilities.

The experimental results are shown in Figure 2. From the

Roma taxi traces, we select the data from date Feb 12, 2014

and we choose six hours from 3pm to 8pm as six independent

test cases. We set the length of a time slot as one minute and

thus each of the test cases consists of 60 time slots. All the

values are normalized by the offline optimal objective. The

C1 C2 C3 C4 C5 C6

Test Case

0

0.4

0.8

1.2

1.6

2

E
m

p
ir
ic

a
l
C

o
m

p
et

it
iv

e
R

a
ti
o

offline-opt

online-approx (uniform)

online-approx (normal)

online-greedy (uniform)

online-greedy (normal)

: 70%

Fig. 3: Comparison on the empirical competitive ratio under uni-
formly and normally distributed user workloads.

experiments are repeated independently for five times and the

plots show the mean values as well as the standard deviations.

As we can see from the figure that the algorithms from the

atomistic group perform poorly as expected. Among them, the

perf-opt performs the best, thanks to the reduced frequency

of workload migration because of the moderate mobility in

the Roma taxi dataset. The online-greedy algorithm in

the holistic group performs better than any of the atomistic

algorithms. However, we still notice a considerable gap to

the offline optimal, which is mainly due to the reasons we

already discussed at the end of Section II. In contrast, our

online algorithm (denoted as online-approx) can produce

near-optimal results, achieving an improvement of up to 60%
compared to the online greedy algorithm.

C. Identifying the Impact of Parameters

Figure 3 illustrates the performance of our algorithm under

different workload scenarios, where we generate the user

workload using uniform and normal distributions in addition to

the power distribution. As we can see that our algorithm pre-

serves similar properties, i.e., producing near-optimal solution

and up to 70% improvement compared to online-greedy,

under any of the workload distributions and our algorithm

performs even slightly better under uniform workloads.

Figure 4 shows the impact of the parameters ε1 and ε2 on

the performance of our algorithm, we set ε1 = ε2 = ε > 0 and

we vary ε from 10−3 to 103 in a logarithmic scale in all the

above test cases. It is interesting to notice that with the increase

of ε, the empirical competitive ratio of our algorithm declines

slightly at the beginning and then increases to a stable level.

We report also in Figure 4 the impact of the ratio between the

weight of the dynamic cost and the weight of the static cost

(denoted as µ) in the objective by varying its value from 10−3

to 103 in a logarithmic scale. We observe that when µ is small,

i.e., the static cost is negligible, our algorithm can roughly

achieve optimal results. When the dynamic cost is dominant,

our algorithm can still achieve a stable yet reasonably good

competitive ratio.

D. Testing with Synthetic Mobility Patterns

Figure 5 illustrates the experimental results with synthetic

mobility data under various numbers of users, which validates

the generality of our algorithm. The synthesis mobility data

is generated following a random walk process: We assume

each user starts from an arbitrary metro station equipped with

1e-3 1e-2 1e-1 1e0 1e+1 1e+2 1e+3

Parameter Value

1

1.1

1.2

1.3

1.4

E
m

p
ir
ic

a
l
C

o
m

p
et

it
iv

e
R

a
ti
o

Parameter "
Parameter 7

Fig. 4: The impact of the parameter ε and µ on the empirical
competitive ratio.

40 80 100 200 300 400 500 600 1000

Number of Users

1

1.2

1.4

1.6

1.8

2

E
m

p
ir
ic

a
l
C

o
m

p
et

it
iv

e
R

a
ti
o

o0ine-opt
online-approx
online-greedy

Fig. 5: Comparison on the empirical competitive ratio where user
mobility is generated following a random-walk process.

an edge cloud and is traveling with the metro. In each time

slot, each user determiners its location for the next time slot

by choosing randomly from the neighbor stations with an

edge cloud equipped or just staying at the same metro station.

Assume in a certain time slot the user is at a location with

three neighbors so the probably of moving to any of the

three neighbors, as well as of staying at the same location,

in the next time slot, would be 25%. Following the above

process we generate the movement traces of the users. We

vary the number of users from 40 to 1000 and we compare

our algorithm with the offline-opt and online-greedy.

We observe that our algorithm performs in a similar way as in

the real-world mobility scenario, i.e., the empirical competitive

ratio is around 1.1, which is very close to the optimal, while

the online-greedy has empirical competitive ratios up to

1.8. In addition, our algorithm performs stably regardless of

the number of users.

VI. RELATED WORK

The concept of edge computing was initially inspired by

the idea of deploying computing facilities at the network edge

to enhance the performance of mobile devices [1], [2]. While

numerous novel architectures for edge computing [6], [20]–

[23] have been proposed, the resource allocation problem in

such systems remains as a critical challenge.

A bundle of existing research in this area are on allocating

edge cloud resources to computational tasks offloaded from

mobile devices. COSMOS [24] is a system that efficiently

manages cloud resources for offloading requests to both

improve the mobile performance and reduce the provider’s

monetary cost. Deng et al. [25] study online scheduling

policies to maximize data offloading under unpredictable user

mobility patterns. Chen et al. [26] focus on game-theoretical

mechanisms for offloading decision making in the presence

of multiple users, taking into account the energy consumption

and the delay. Hou et al. [16] study the reconfiguration in

edge clouds and propose an efficient online algorithm for

configuration updating. However, all of them are focused on

resource allocation in a single edge cloud environment.

On the other hand, attentions have been paid very recently

on resource management in an edge cloud computing system

with multiple edge clouds [3], [4], [13], [27]–[29]. Jia et

al. [4] study the optimal placement of cloudlets in wireless

Metropolitan Area Networks and design an algorithm for

user to cloudlet allocation. In a follow-up work, they further

propose an efficient algorithm for load balancing among

multiple edge clouds [28]. Mukherjee et al. [29] proposed

an optimal cloudlet selection strategy to reduce power and

latency in multi-cloudlet environments. Tong et al. advocate a

hierarchical architecture for edge clouds and develop workload

placement algorithms for minimized delay. The most relevant

works to ours are from Wang et al. [13] and Urgaonkar et al.

[3], where they propose stochastic frameworks for dynamic

workload migration based on the Lyapunov optimization tech-

nique. However, all of them either require statistics informa-

tion on user mobility or assumes a Markov chain model for

user movement, which is not necessary in our model.

There are also research on workload distribution and re-

source allocation in geo-distributed data centers [8], [11].

While sharing some common objectives with our problem,

they are intrinsically different from edge cloud environments

as neither delay sensitivity nor user mobility is considered. In

contrast, our research addresses the challenge of the allocation

and the continuous adaptation of resources in edge clouds,

accommodating arbitrary resource price and user mobility

dynamics. Our model captures multiple types of important

costs, including static and dynamic ones; our online algorithm,

without any knowledge on the future, makes resource alloca-

tion decisions on the fly while guaranteeing a parameterized

competitive ratio for the worst-case inputs.

VII. CONCLUSION

In this paper, we studied the online resource allocation

problem in edge cloud systems. We identified the major

challenges in this problem. We further captured all of them

by a comprehensive model, where we incorporated as the

optimization objective the costs associated with edge cloud

operation, delay, server reconfiguration, as well as service mi-

gration. We proposed an online algorithm that could guarantee

a parameterized competitive ratio. The effectiveness of the

algorithm was also validated by extensive experiments using

both real-world and synthetic data.

ACKNOWLEDGEMENT

This work has been funded by the German Research Foun-

dation (DFG) Collaborative Research Center (CRC) 1053 –

MAKI, and partially by the National Science Foundation under

Grant No. 1564348.

REFERENCES

[1] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha,
W. Hu, and B. Amos, “Edge analytics in the internet of things,” IEEE

Pervasive Computing, vol. 14, no. 2, pp. 24–31, 2015.

[2] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[3] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. S. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-clouds,”
Perform. Eval., vol. 91, pp. 205–228, 2015.

[4] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,” IEEE

Transactions on Cloud Computing, vol. PP, no. 99, pp. 1–1, 2015.
[5] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for

mobile computing,” in INFOCOM, 2016.
[6] J. Cho, K. Sundaresen, R. Mahindra, J. V. der Merwe, and S. Rangarajan,

“ACACIA: context-aware edge computing for continuous interactive
applications over mobile networks,” in CoNEXT, 2016, pp. 1–15.

[7] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” IEEE/ACM Trans. Netw.,
vol. 21, no. 5, pp. 1378–1391, 2013.

[8] L. Jiao, A. Tulino, J. Llorca, Y. Jin, and A. Sala, “Smoothed online
resource allocation in multi-tier distributed cloud network,” in IPDPS,
2016.

[9] N. Buchbinder, N. Jain, and I. Menache, “Online job-migration for
reducing the electricity bill in the cloud,” in IFIP Networking, 2011.

[10] X. Qiu, H. Li, C. Wu, Z. Li, and F. C. Lau, “Cost-minimizing dynamic
migration of content distribution services into hybrid clouds,” IEEE

Trans. Para. and Dist. Comp., vol. 26, no. 12, pp. 3330–3345, 2015.
[11] S. Ren, Y. He, and F. Xu, “Provably-efficient job scheduling for energy

and fairness in geographically distributed data centers,” in ICDCS, 2012.
[12] A. Ksentini, T. Taleb, and M. Chen, “A markov decision process-based

service migration procedure for follow me cloud,” in ICC, 2014.
[13] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. S. Chan, and K. K.

Leung, “Dynamic service migration in mobile edge-clouds,” in IFIP

Networking, 2015.
[14] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,

“Dynamic service migration and workload scheduling in edge-clouds,”
Performance Evaluation, vol. 91, pp. 205–228, 2015.

[15] S. Wang, R. Urgaonkar, K. Chan, T. He, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future costs,” IEEE Trans. Para. and Dist. Comp., p. in press, 2016.

[16] I. Hou, T. Zhao, S. Wang, and K. Chan, “Asymptotically optimal
algorithm for online reconfiguration of edge-clouds,” in MobiHoc, 2016.

[17] N. Buchbinder, S. Chen, and J. Naor, “Competitive analysis via regu-
larization,” in SODA, 2014.

[18] Roma taxi dataset. http://crawdad.org/roma/taxi/20140717/.
[19] Roma network prices. http://www.tempobox.it/en/index.htm.
[20] M. Chen, Y. Hao, Y. Li, C. Lai, and D. Wu, “On the computation

offloading at ad hoc cloudlet: architecture and service modes,” IEEE

Communications Magazine, vol. 53, no. 6-Supplement, pp. 18–24, 2015.
[21] A. Bhattcharya and P. De, “Computation offloading from mobile devices:

Can edge devices perform better than the cloud?” in ARMS-CC, 2016.
[22] R. Stoenescu, V. A. Olteanu, M. Popovici, M. Ahmed, J. Martins,

R. Bifulco, F. Manco, F. Huici, G. Smaragdakis, M. Handley, and
C. Raiciu, “In-net: in-network processing for the masses,” in EuroSys,
2015.

[23] M. Jang, H. Lee, K. Schwan, and K. Bhardwaj, “SOUL: an edge-cloud
system for mobile applications in a sensor-rich world,” in IEEE/ACM

Symposium on Edge Computing, 2016.
[24] C. Shi, K. Habak, P. Pandurangan, M. H. Ammar, M. Naik, and E. W.

Zegura, “COSMOS: computation offloading as a service for mobile
devices,” in MobiHoc, 2014.

[25] H. Deng and I. Hou, “Online scheduling for delayed mobile offloading,”
in INFOCOM, 2015.

[26] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, 2016.

[27] L. Wang, L. Jiao, D. Kliazovich, and B. Pascal, “Reconciling task
assignment and scheduling in mobile edge clouds,” in ICNP, 2016.

[28] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in
wireless metropolitan area networks,” in INFOCOM, 2016.

[29] A. Mukherjee, D. De, and D. G. Roy, “A power and latency aware
cloudlet selection strategy for multi-cloudlet environment,” IEEE Trans-

actions on Cloud Computing, vol. PP, no. 99, pp. 1–1, 2016.

