Behavior-based Worm Detectors Compared*

Shad Stafford and Jun Li
{staffors, lijun}@cs.uoregon.edu

University of Oregon

Abstract. Many worm detectors have been proposed and are being de-
ployed, but the literature does not clearly indicate which one is the best.
New worms such as IKEE.B (also known as the iPhone worm) continue
to present new challenges to worm detection, further raising the ques-
tion of how effective our worm defenses are. In this paper, we identify six
behavior-based worm detection algorithms as being potentially capable
of detecting worms such as IKEE.B, and then measure their performance
across a variety of environments and worm scanning behaviors, using
common parameters and metrics. We show that the underlying network
trace used to evaluate worm detectors significantly impacts their mea-
sured performance. An environment containing substantial gaming and
file sharing traffic can cause the detectors to perform poorly. No single
detector stands out as suitable for all situations. For instance, connection
failure monitoring is the most effective algorithm in many environments,
but it fails badly at detecting topologically aware worms.

Key words: Internet worm, worm detector, behavior-based detection

1 Introduction

Network worms have long posed a threat to the functioning of the Internet. As
early as the outbreak of the Morris worm in 1988 [1], they have been capable of
disrupting traffic over large swathes of the Internet. Significant outbreaks such as
the CodeRed [2] and Slammer [3] worms in 2001 and 2003 brought the threat to
national prominence and spurred the development of a wide range of mechanisms
to detect the presence of worms and to harden operating systems against common
attacks. The emergence of the Conficker worm [4] in late 2008 showed that those
efforts had not eradicated worms completely. As the Internet continues to play
a more important role in everyday life for hundreds of millions of people and as
the very nature of the devices on the Internet is changing (e.g., consumer-level
mobile devices begin to make up a substantial portion of connected devices),
the Internet requires more protection than ever. The question remains—can we
protect our networks from worms?

* This material is based upon work supported by the United States National Science
Foundation under Grant No. CNS-0644434. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

The relevance of this question was further highlighted in late 2009 when a net-
work worm was found propagating exclusively on iPhones. The IKEE.B worm [5]
takes advantage of a default root password set in some jail-broken iPhones to
propagate. It brings to light some shortcomings in current worm detection and
prevention work. Specifically, because it propagates via an encrypted channel, it
bypasses worm detectors that rely on examining the content of network traffic;
and because it exploits a configuration error rather than a buffer overflow to
gain control of the target machine, it is undeterred by defensive techniques such
as address space randomization.

In this paper, we examine our ability to detect the presence of a worm in
a protected network. Existing detection schemes can be broadly classified into
host-based systems that monitor system call information or other host-level be-
havior for illegal operations, and network-based systems that monitor network
traffic. Network-based systems can be further broadly divided into content-based
systems that monitor the bytes transmitted across the network and behavior-
based systems that monitor the patterns of network traffic.

Unfortunately, it is unclear how these detection systems perform relative to
each other as there is very little work that directly compares them. Algorithms
are typically published with evaluations against a single network trace, which is
different for different algorithms and generally not available publicly. For exam-
ple, the MRW detector was evaluated against an unidentified week-long trace
of a university department with 1,133 identified hosts [6], whereas the TRW
algorithm was evaluated against two traces collected at the peering link of an
ISP containing 404 and 451 identified hosts [7]. Furthermore, worm detectors are
evaluated with different performance metrics, and tested worms do not always
follow the same set of parameters (such as scanning strategy and speed). For
example, the detection latency of the DSC detector is measured in the percent
of the network infected at detection time [8] while the MRW detector does not
provide detection latency results at all.

We seek to remedy this situation by performing a comprehensive analysis
of several worm detectors that are easily deployable and in principle capable of
detecting IKEE.B. We select six of the most prominent behavior-based worm
detection techniques and measure their detection performance against a variety
of worm propagation strategies over a common set of network traces. We evaluate
each detector using key performance metrics related to accuracy and latency.
The questions we seek to answer include: Is any one detection algorithm clearly
superior to the others, including cases when fast worms are the only concern
or a special network environment is protected (e.g., residential networks that
see game or peer-to-peer network usage)? If a worm adopts smart scanning
strategies such as slowing down or intelligently choosing victims, can it evade
these detectors? And, does the network trace selected for evaluation significantly
impact the detection performance?

Highlights of our findings include: (1) We find that the network trace im-
pacts the sensitivity of the detectors. They are less sensitive in environments
with more Internet gaming and file sharing activity, which appears more similar

to worm activity than other benign activities such as web browsing. (2) Our
results show that there is no clear winner and every detector has its limitations.
For example, connection-failure monitoring is the most consistently sensitive de-
tection technique for random scanning and local-preference worms, but it fails
drastically in the case of a topologically aware worm. (3) In all environments,
a stealthy worm scanning at one scan per minute and employing some form of
topologically aware scanning that avoids connection failures could evade all the
detectors evaluated in all environments.

The rest of this paper is organized as follows: We first discuss how we se-
lected detectors in Section 2, and then examine the selected detectors in some
detail in Section 3. We discuss our selected metrics in Section 4, followed by
the methodology by which we evaluate detectors in Section 5. We present the
results of our evaluations in Section 6. Section 7 reviews related work, with our
conclusions in Section 8.

2 Detector Selection

In this section we describe published worm detection algorithms and justify our
choice of six specific detectors for this comparison study. We performed an exten-
sive evaluation of proposed worm detectors, considering 36 different published
works. We grouped them into the following categories based on their detection
algorithm: host-based detectors, content-based detectors, and behavior-based
detectors. Each category has its own strengths and weaknesses.

Detectors that we classified as host-based included, among others: COV-
ERS [9], DACODA [10], TaintCheck [11], and Sweeper [12]. Several factors,
however, lead us to exclude host-based detectors from this study. Host-based
detectors require end-host deployment but a network operator may have no con-
trol over what software is installed on the end-hosts running in their network.
Furthermore, users may circumvent host-based software installs as illustrated
by IKEE.B, which targeted only those users who intentionally installed an un-
supported operating system. Finally, it is unclear whether host-based systems
are capable of detecting an attack like that used by IKEE.B. The systems listed
above all rely on observing malicious memory manipulations such as buffer over-
flows, but IKEE.B did not perform any illegal memory operations; it merely
exploited a configuration vulnerability.

Detectors that monitor the network instead of end-hosts seem much more
promising because they do not require deployment on each host to be protected.
We first look at detectors that examine the contents of network traffic, includ-
ing AutoGraph [13], EarlyBird [14], PAYL [15], Anagram [16], and LESG [17].
Each of these detection mechanisms share a similar limitation that leads us to
exclude them from our comparison: they are unable to monitor encrypted traffic.
Encrypted traffic is a special case of making a worm polymorphic. Content-based
systems designed to catch polymorphic worms (such as Polygraph [18]) depend
on attack-specific, invariant sections of content which may not be present for
an encrypted worm. Even when worms are transmitted using unencrypted con-

nections, advances in polymorphism research such as [19] have threatened the
promise of these detectors. Also, it is prohibitively difficult to acquire a variety
of network traces which contain full network content, making it infeasible to
evaluate these detectors.

The remaining and largest class of detectors is behavior-based (or payload
oblivious) detectors. These include TRW [7], RBS [20], PGD [21], and many oth-
ers. These systems also monitor network traffic, but they examine the behavior
of traffic from end hosts rather than the contents of their packets. This type
of system is easily deployed, requiring as little as a single monitor at the net-
work gateway. They are capable of detecting worms regardless of the scanning
mechanism or propagation type (including propagation via encrypted channels),
and many of them are capable of identifying the worm-infected hosts. However,
we do exclude some behavior-based systems that a network operator could not
easily deploy. For example, detectors using network telescopes (such as those by
Wu et al. [22] and Zou et al. [23]) require a large dark address space and cannot
be deployed by a network operator unless they control a large address space.

After our exhaustive evaluation of worm detectors, we are left with the fol-
lowing selections: TRW [7], RBS [20], TRWRBS [20], PGD [21], DSC 8], and
MRW [6]. We discuss these detectors in greater detail in the next section.

3 The Selected Worm Detectors

Having selected detectors for our comparison work, we now describe them each
in more detail in roughly chronological order of their publication. We present
only a brief a summary of each work, please refer to the original publications for
more detail. Note we used existing acronyms for each work where available.

The TRW detector was published by Schechter et al. in 2004 [7]. TRW
identifies a host as worm infected if connection attempts to new destinations
result in many connection failures. TRW is based on the idea that a worm-
infected host that is scanning the network randomly will have a higher connection
failure rate than a host engaged in legitimate operations. Even with the IPv4
address space getting closer to complete allocation, the majority of addresses
will not respond to a connection attempt on any given port. Randomly targeted
connections (as in worm scanning) will likely fail.

The destination-source correlation detector (DSC) was published in 2004 by
Gu et al. [8]. It detects a worm infection by correlating an incoming connection
on a given port with subsequent outgoing infections on that port. If the outgoing
connection rate exceeds a threshold established during training, the alarm is
raised. A different threshold is maintained for each destination port.

The MRW detector was first published in 2006 [6]. It is based on the obser-
vation that whereas worm scanning results in connections to many destinations,
during legitimate operations the growth curve of the number of distinct des-
tinations over time is concave. And as the time window increases, destination
growth slows. This can be leveraged by monitoring over multiple time windows

with different thresholds for each window. If the number of new destinations for
a host within a given window exceeds the threshold, the alarm is raised.

The RBS detector was first published in 2007 [20] by Jung et al. . Similar to
the MRW detector, RBS measures the rate of connections to new destinations.
The work is based on the hypothesis that a worm-infected host contacts new
destinations at a higher rate than a legitimate host does. RBS measures this rate
by fitting the inter-arrival time of new destinations to a exponential distribution.

The TRWRBS detector was published alongside the RBS detector [20]. It
combines the TRW and RBS detectors into a unified scheme, and observes both
the connection failure rate and the first contact rate. It performs a sequential
hypothesis testing on the combined likelihood ratio to detect worms.

The Protocol Graph detector (PGD) was introduced by Collins and Reiter
in 2007 [21]. Tt is targeted at detecting slowly propagating hit-list or topologi-
cally aware worms. PGD works by building protocol-specific graphs where each
node in the graph is a host, and each edge represents a connection between
two hosts over a specific protocol. Collins and Reiter made the observation that
during legitimate operations over short time periods, the number of hosts in
the graphs is normally distributed and the number of nodes in the largest con-
nected component of each graph is also normally distributed. During a worm
infection, however, both numbers will go beyond their normal range, indicating
the presence of the worm.

4 Performance Metrics

The goal of this study is to evaluate the selected detectors over a comprehen-
sive parameter space to identify their strengths and weaknesses. We must first,
however, determine which performance attributes we are most interested in cap-
turing, and what metrics would be suitable for assessing them.

The focus of this study is on the ability of the detectors to discover the
presence of a worm in the network. We thus want to measure their accuracy:
does a detector alert us when a worm is present—but not do so when there is
no worm? Furthermore, we want to measure its ability to detect a broad range
of worm scanning algorithms. Moreover, accurate detection is not helpful if it
happens too far after the fact. We must obtain some notion of the speed of the
detectors—does it find a worm quickly or does it allow the worm free action for
a long time before raising the alarm.

There are some attributes that we are not as interested in. At this time we
are ignoring runtime costs such as processing or memory requirements. These
are dependent on implementation and optimization details, and can vary widely
for a given detection algorithm (for example, see the hardware implementation
of TRW by Weaver et al. [24]). It is beyond the scope of this work to attempt
to determine how efficiently each of these algorithms could be implemented.
Similarly, we do not consider the complexity of installing or running the detec-
tor. This is not because installation complexity does not impact the potential
adoption rate of a detector, but because it is somewhat orthogonal to the accu-

racy of the detector itself and could be addressed separately from the detection
algorithm itself.

As shown in Table 1, we have identified four metrics as the most useful
measures of the performance of a worm detector. We explain them below:

F- Percentage of experiments where worm traffic is present
but not detected in time period 7

F+ by host The number of false alarms raised during a time period T,
limited to at most one false alarm per host

F+ by time Percentage of minutes during a time period 7 where a false
alarm is triggered for any host

Detection Latency The number of outbound worm connections from an in-
fected network prior to detecting the worm

Table 1. Metrics

Our false negative metric works as follows. For each experiment we introduce
a worm to the background legitimate traffic. The detector is limited to a time
period 7 (typically an hour) to detect the worm after it becomes active. If in that
time span an alarm is not raised, the experiment is scored as a false negative
for the detector. The false negative rate (F-) is the percentage of experiments
scored as false negatives. (We report F- for each different scanning rate of the
worm.)

The flip side of false negatives is false positives: reporting legitimate traffic
as a worm infection. This is a critical metric for worm detectors, because a
detector that repeatedly raises a false alarm (“cries wolf”) will quickly be ignored
by network administrators. We measure false positives by running the detector
against benign traffic with no injected worm activity. (Because we have inspected
the traces for known worm activity, we consider every alarm raised by a worm
detector a false alarm.) However, because worm detectors often repeat their
worm infection tests—on every connection in some cases, the same set suspicious
behavior may cause the alarm to be raised repeatedly, and these repetitive alarms
should be coalesced into a single notification to the network administrators. But
the exact mechanism and scope of alarm coalescing will be specific to the needs
and resources of the network administrators at each site. As a result, we present
two forms of false positive rate. We present the number of hosts identified as
infected (coalescing alarms by network address) as the false positive rate by host
(F+ by host). We also define false positive rate by time (F+ by time), which
is the fraction of minutes of the trace where an alarm is raised on at least one
host; note the alarm duration is only until the end of the current minute as we
coalesce alarms into 1 minute bins. The combination of these two metrics give a
better view of the overall false positive performance of the detector than either
does individually.

The next major performance attribute to consider is the speed with which
a worm is detected. The faster detection occurs, the less damage the worm can
do. We measure detection latency as the number of outbound worm connections
initiated by all infected hosts in the protected network prior to detection of any
internal infection. (Scans that do not leave the network do not inflict damage
on the Internet as a whole and are not included in this count.) Alternative
approaches such as using clock time or infected host count are less accurate and
less descriptive than our metric.

5 Experiment Design

We run the detectors against legitimate traffic to measure false positives, then
against legitimate traffic plus known worm traffic to measure false negatives
and detection latency. We developed a custom testing framework and imple-
mented each detector in our framework based on the detector’s published speci-
fications. Our framework can run against online, real-time traffic on the DETER
testbed [25], as well as run in an offline (not real-time) mode. We use legitimate
traffic from a variety of sources and generate known worm traffic by simulating a
worm with our GLOWS [26] simulator. We vary the following parameters as we
evaluate each worm detector: the environment it is run in (meaning the network
configuration and legitimate traffic), the worm scanning method, and the worm
scanning rate. We have also studied the effects of two additional parameters: the
target port attacked by the worm and the activity profile of the first host infected
by the worm, but omit those results from this paper due to space constraints.

5.1 Evaluation Environment and Background Traffic

Worm detectors must be evaluated in the context of a subnet to be protected
and against the legitimate background traffic that occurs in that subnet. For
our experiments, we define an environment as the network address space to be
monitored, the IP addresses of the active hosts inside that address space, and the
IP network traffic into and out of that address space during two time periods. We
use the first time period for training and the second to run experiments against.
To make the environments comparable to each other and to enable us to ensure
that they do not contain worm traffic, we select a /22 subnet from the original
recorded traces to use as the protected address space in our environment. Every
environment is thus a /22 network with between 100 and 200 active hosts. We
use four distinct environments in our evaluation.

The enterprise environment is built from a trace collected at LBNL [27] in
January of 2005. Heavy scanners were removed from the trace before it was
released. It has 139 active hosts and the training and experiment segments each
contain roughly 25,000 connections.

The campus environment is built from a trace that was collected in 2001
at the border of Auckland University [28]. The trace was anonymized using a
non-prefix preserving anonymization scheme, so we cannot entirely accurately

reconstruct the internal structure of their network. Instead, we randomly select
200 hosts and construct an environment using traffic to and from those hosts.
Each segment of the trace in our campus environment contains approximately
25,000 connections.

The wireless and department environments are built from traces collected at
the University of Massachusetts in 2006 [29]. The department environment is
built from a trace capturing all traffic to and from the wired computers in the
CS department. It has 92 active hosts and approximately 30,000 connections in
each segment. The wireless environment comes from a trace capturing all wireless
network traffic from the university. It has 313 active hosts and approximately
120,000 connections in each segment.

5.2 Worm Parameters

Several key parameters of a worm may impact the effectiveness of worm de-
tectors. We look at three scanning strategies worms can employ: random scan,
local-preference scan, and topologically aware (topo) scan, and evaluate them
at a variety of scanning rates. Our GLOWS simulator takes an environment
as input and simulates a worm as if it were attacking the network defined by
that environment. The simulation starts with a single inbound worm connection
that infects one host in the protected network. We run the simulator once for
each permutation of worm parameters. The scanning mechanisms are defined as
follows.

A random scanning worm simply chooses target addresses at random from
the entire IPv4 address space. This typically results in many connection at-
tempts to addresses with no host present or with a host that is not running
the requested service, resulting in many connection failures. Permutation and
sequential scanning worms should show very similar characteristics and are not
evaluated separately here.

A local-preference worm scans local addresses (in the same prefix) more fre-
quently than addresses in the full address space. This results in more scans that
do not cross the network border (and are therefore not visible to a border-located
detection mechanism). Existing local-preference scanning worms, such as Code-
Red 1T [2], target the local /16 prefix approximately 50% of the time, the local
/8 25% of the time, and the entire network the remaining time. As all our traces
are about a /22 network, such a worm would largely resemble a random scanning
worm. Instead, our local-preference worm scans the local /22 50% of the time,
the local /8 25% of the time, and the entire network the remaining time.

The topologically aware (topo) worm finds target information on the host
that it infects. This target information allows it to scan effectively because it
already knows about other hosts that are running the service it targets. The
number of new hosts (referred to as “neighbors”) the worm discovers is depen-
dent on its neighbor detection algorithm. We use three implementations of the
topo worm with differing neighbor counts. The topol00 worm starts with 100
neighbors, the topo1000 worm starts with 1000 neighbors, and the topoall worm

starts with an unlimited supply of neighbors. After scanning its known neigh-
bors, the topo worm must either stop scanning or switch algorithms. In our
implementation it reverts to random scanning after exhausting its neighbor list.
Note that the neighbors discovered by the topo worm are randomly located, so
could appear both inside and outside the protected network. Also, they will be
running the target service but are not guaranteed to be vulnerable.

In addition to scanning mechanism the worm uses, the rate at which it initi-
ates connections is important. The faster a worm scans, the more visible it is to
worm detectors. We run experiments for a variety of worm scanning rates ranging
from 10 connections per second down to one connection every 200 seconds.

5.3 Experiment Procedure

Measuring detector performance is a multi-step procedure. For each environ-
ment, every detector must (1) establish thresholds via training, (2) be evaluated
against the legitimate traffic in the environment to measure false positives, (3)
adjust their parameters to fix false positives at a specific level, and (4) be eval-
uated against legitimate traffic combined with worm traffic to measure false
negatives and detection latency. Let us now discuss each of these steps in more
detail.

These detectors are anomaly detectors, and they look for traffic that diverges
from normal. To do this, they must first measure what normal is. The TRW,
MRW, DSC, and PGD detectors are run against the training segment of the trace
using the training method outlined in their publication to perform this operation.
The RBS and TRWRBS detectors perform on-the-fly training as they are run
against the experiment segment of the trace.

After the thresholds are established from the training segment of the trace,
each detector is run against the experiment portion of the trace to measure false
positives. We measure F+ using the thresholds obtained from training and the
default detector parameters outlined in the original publication of each work,
presenting those results in Section 6.1.

Note that each detector can be tuned to favor producing either more F+ or
more F-. After reporting F+ using the default detector parameters as published,
in order to provide a fair comparison of the false negative rate of the detectors, we
modify each detector’s parameters such that they all produce the same number
of false positives in each environment. We chose to peg each detector at a rate
of two false positive alarms during the experiment period. Two false positives
is a high rate for the one-hour time period evaluated, but was chosen as an
achievable value for all detectors requiring the minimum amount of parameter
modifications.

After measuring F+ and adjusting the detectors to match their F+ levels,
we then measure the performance of the detectors against worm traffic. For each
detector in each environment, we run 16 experiments for every permutation of
the worm parameters. A single experiment consists of running the detector for
10 minutes of the experiment trace to warm up the connection histories, then
injecting the simulated worm traffic into the trace, and running until either an

enterprise enterprise
campus 2 campus
4 department —z1 80 department —zz1

wireless == @ wireless ===

False Alarms (limit 1 per host)
% of Minutes with False Alarm

2) 20 2 2 §
1 3 20)
0 7 0 g‘ - ml] EER em
trw rbs trwrbs mrw pgd dsc trw rbs trwrbs mrw pgd dsc
Detector Detector
(a) By Host (b) By Time

Fig. 1. False positives against legitimate traffic: when running with default pa-
rameters against the experiment segment of the traces with no worm traffic injected

hour has elapsed or the worm is detected. Each of the 16 experiments that we
run for a given set of worm parameters has a different host in the protected
network being infected first and uses a different random seed. The percentage of
experiments where the worm is not detected is the false negative rate, and the
mean number of worm connections that have left the network at detection time
is the detection latency.

6 Results

We now measure the performance of the worm detectors in a variety of worm
scenarios. We first look at the false positives, then introduce worm traffic to mea-
sure false negative rates and detection latency. We start with the simplest worm
strategy of randomly scanning addresses, then increase the worm sophistication
to local-preference and then topologically aware scanning strategies.

6.1 False Positives Against Legitimate Traffic

Figure 1(a) shows the results for each detector using default parameters from
its original publication. Raising an alarm for a host could either (a) indicate
that the host is considered permanently infected, or (b) indicate that the host is
behaving anomalously now (for some definition of now). Figure 1(a) shows F+
results using strategy (a) (with PGD limited to one alarm per 1-minute window
because it does not identify the infected host). Figure 1(b) shows F+ results
using strategy (b) and with an alarm duration of one minute. Strategy (a) is
probably more representative of how detectors would be deployed in practice,
but it is illustrative to show that without such a limitation, in some environments
RBS and TRWRBS would be in an alarm state more than 50% of the time and
TRW and MRW would be in an alarm state 100% of the time.

These results also demonstrate the impact that environment has on the de-
tector performance. TRWRBS has five F+ in the wireless environment but none
in the campus or department environments. MRW is in an alarm state 100%

100 e—e enterprise —— 100 . enterprise —— 100 = x = g
z campus — - - @ - a
2 8 department 2 8 . department 2 8 - N
) '\ wireless —e —) \ wireless —e- — 2 60 \\'
] k] . k] \
° o ° \
g 40 '\\ \ g 40 \ & 07 enterprise —— \ \
i 20 i 20 k i 20
uw \ w w de A
Sl . \ o[e A
000 900 or N Ok or N Uk 0090 900 or N Ok
Qo9 ok n © o ° Qog ok n ©
grS a gFrS a
Worm Scans per Second (log) Worm Scans per Second (log) Worm Scans per Second (log)
(a) TRW (b) TRWRBS (c) RBS
100 S E Al 100 TS enterprise —— 100 TR enterprise ——
7 7 campus — 8- - 7 campus — - -
g 80 N \ g 80 \‘ deuanrr‘ﬂem g 80 deDar\erenl s
Y \ T wireless —e- —) wireless —e- —
S \ \ 5 S
& 407 enterprise —— \ \ 8 40 \\ s 40 \
L 20 s T\ \ L 20 , S \
o L_vireless —o - \ L o \ 0
O00 ooo0 or N Ok 0o0oo0 ooo orN Uk 000 o900 or N Ok
Qog ok w © 209 ok O ° Qog ok n ©
gFrS a gr R a gFrS a
Worm Scans per Second (log) Worm Scans per Second (log) Worm Scans per Second (log)
(d) MRW (e) DSC (f) PGD

Fig. 2. F- against random worm: percent of experiments where the worm was
not detected (lower is better performance) with a random scanning worm infecting
randomly selected hosts. For each environment and scanning rate we conducted 16
individual experiments using different first infected hosts and different random seeds.
In each case the experiment was run until the worm was detected or one hour elapsed
without detection.

of the time in the department environment but not at all in the campus envi-
ronment. An evaluation using only a single environment could produce grossly
inaccurate results.

The wireless environment showed the most F+ activity with the default pa-
rameter choices. This appears to stem from several hosts playing network games
such as Counter-Strike (UDP connections on ports in the 27010-27050 range)
and NeverWinter Nights (TCP connections on port 5121) as well as from hosts
using BitTorrent (33 hosts active on ports in the 6881-6999 range). This environ-
ment represents the most residential /recreational usage patterns and indicates
that this sort of traffic is less amenable to behavior-based worm detection than
the less variable traffic of the enterprise environment. This represents the first
findings we are aware of that validate a common hypothesis: current behavior-
based anomaly detectors are not optimized for residential style network traffic
and may not show satisfactory performance in such an environment.

6.2 Detector Performance Against Random Worm

In this section we report false negative and latency results against random scan-
ning worms. Figure 2 shows that TRW is the most consistently effective detector
across the environments, discovering all instances of the worm down to 0.05 scans
per second and catching the majority of the slower scans in the enterprise and
campus environments. RBS is the least effective, only able to consistently detect
the worm scan rates greater than five scans per second. TRWRBS blends the

- enterprise —+— Y 450 enterprise —+— A}
campu

TN 300 campus — - - X pus — - -

50 [enterprise —— JP—, 0 |
g umE e gas0) semmel L0\ £ 50| cemmen \
g partment -+ - 8 200 s '
& 30 [“uireless —» £ 150 \ 2 230 b
5 20 k] R S

100 150
* 10 L —— #* 50 '\\\ \.* * 100
=~y 50
0 0 = 0 "
OO0 O0CO OrRN UR OO0 OO0 ORN UR OO0 000 ORrN UR
o9 okrN 0 ° 209 ok O oo ok G ©
SR RN G SRR G [l S
9 worm Scans per Second (log) 9 Worm Scans per Second (log) ' Worm Scans per Second (log)
a) TRW (b) TRWRBS (c) RBS

1400 | enterprise —+— 1 enterprise —— - & -a—a-a 1400 | enterprise —+— hi
1200 campus — & - » 20, —=- ,1200| ocampus — e -/

rtment t rtment
£ 1000 “iteless —o- — \ 2 15] “Nides e eeee-e 210000 “ien el o\
& "800 \ 3 10 & "800 / \
% 600 5 % 600
+* 400 * s 400

5 .
200 . ———— 200 %/\ b
0 S S 0 0 -

000 000 or N OH SO0 00O orN OB OO0 000 orN Ug

cog okRN U © cog okN 0 © oo okN 0

SRrRN O SRN & oORrR RN G

9 Worm Scans per Second (log) ' worm Scans per Second (log) 9 worm Scans per Second (log)
(d) MRW (e) DSC (f) PGD

Fig. 3. Latency against random worm: from worm infection time to detection time
for random scanning worm, measured as the number of worm connections leaving the
protected network prior to detection. We report results only for those environments
and scan rates where the worm was detected with 100% accuracy.

two detectors with results right in the middle. The DSC and PGD detectors are
an order of magnitude more effective in the enterprise environment than in the
other environments due to the lower activity levels (and hence lower thresholds)
in the enterprise environment. The MRW detector provides middle of the road
performance except against in the wireless environment where it is unable to
detect the worm at speeds slower than five scans per second.

Figure 3 shows the average number of connections each infected network
was able to make before detection. Note that the scale is not consistent across
the graphs. We only show the value for those scenarios where F- is zero in
order to eliminate selection bias in the results. DSC is consistently the fastest
detection mechanism, never allowing the worm to scan more than 23 times before
detection. TRW again highlights the variation between environments, allowing
roughly 50 worm scans in the wireless environment before detection, but only
five scans in the enterprise environment. MRW and RBS allowed several hundred
scans before detection in the wireless environment, but were much faster in the
other environments. PGD showed the most variation, allowing over 1000 scans
before detection in some scenarios in the wireless environment but detecting
the worm in 30-40 connections in the other environments. TRWRBS showed
increasing latency as the scan rate drops. This is due to the influence of the RBS
algorithm that increases the destination threshold as the time window increases.
The fast scanning worm is caught in a short window, but the slower scanning
worms take a substantially longer time to hit the critical number of destinations.

Across the board, TRW shows the best detection performance against ran-
dom scanning worms. This indicates that connection failures are a strong and
highly identifiable signal. TRW also had consistent and low latencies, limiting

H
8
3
.
4
.
8

enterprise —+—

8ot i\ deparment
\ . wireless —e —

@
S

: enterprise —+— 100 rge—e=g i
L eampus — = - -
Ny '\, department 80 \ ~

Wireless —e- — 60 \\
40 frprise —+— | \
N

-
S

—
=3
S

IS
S
IS
S

us —a—
fdepartment Vo

F- (% of runs)
F- (% of runs)
F- (% of runs)

N
S}

N
o B

o
P

N \, 0 + \ o L_vireless —o - T S
000 900 or N Ok o000 ooo orN Uk 0090 900 or N Ok
Qo9 ok n © Q09 ok O ° Qog ok n ©
grS a grR R @ gFrS a
Worm Scans per Second (log) Worm Scans per Second (log) Worm Scans per Second (log)
(a) TRW (b) TRWRBS (c) RBS
100 100 s e S e ——
z = =z campus — - -
2 8 2 2 8 * L\ depanment
N El 2 60 \ wireless —e- —
S S 5 u
& 407 enterprise —— \ | 8 s 40 \ i
20 | campus —a— \ - 20 LA
u lepartment - . U n N
o Lwieless —- |\ \ 0 .
O00 ooo0 or N Ok 000 o900 or N Ok
Qog ok w Qog ok n ©
gF® gFrS a
Worm Scans per Second (log) Worm Scans per Second (log) Worm Scans per Second (log)
(d) MRW (e) DSC (f) PGD

Fig. 4. F- against local-preference worm: percent of experiments where the worm
was not detected (lower is better performance) with a local-preference scanning worm.

the damage a worm could do. Destination pattern based detection such as MRW
and RBS typically requires greater numbers of connections for accurate identi-
fication. PGD performed adequately, but is designed to detect multiple infected
internal hosts which did not happen with the random-scanning worm.

6.3 Detector Performance Against Local-Preference Worms

Having examined the baseline case using the random scanning worm, we now
investigate performance against a more advanced foe: the local-preference scan-
ning worm. The local-preference worm directs half its connections at the local
network, meaning both that it is more likely to infect multiple hosts inside the
protected network and that fewer connections per time period are visible to a
gateway-based detector. However, the scan is still random in nature, so shares
the same general characteristics as the purely random scanning worm.

Figure 4 shows that for most scenarios, the detectors show a slight decrease
in sensitivity. This is visible as a shift to the right in the false negative curves.
The TRW detector was able to detect 100% of the random worms in the wireless
environment at 0.05 scans per second, but is only able to detect 100% of the local-
preference worms at 0.1 scans per second. TRWRBS, RBS, MRW, and DSC all
show similar decreases in performance in some environments. The reason for
this is simply the reduction of worm scans that are visible to the detector. The
limit of a detector’s ability to spot the worm—meaning the slowest worm that
it can detect reliably—is at the point where it can just barely observe enough
evidence to infer that a host is infected. If a worm scans more slowly or not all
its scans cross the gateway (as in local-preference worms), the evidence visible
to the detector may not be enough to make the determination that a worm is
present.

120 ~ 10000} emerprise —— s0000 | campus — = - hY

* 10000

100 ~ - campus — = - s department .
o o] e g oo s Ll gamo| “HEE o S
& 60| “Ranment L & 6000 \ & 30000 VAR
S 40 G 4000 -\ ‘S 20000 '\
* * *
20 e 2000 . 10000
0 0 = > | 0

00 000 orN UOB 00 000 orN Og OO0 000 OrN UL

Qo9 ok WU Qog ok w QoQ ok U ©

[l S SRR O oRrN O

O Worm Scans per Second (log) 9 Worm Scans per Second (log) 9 Worm Scans per Second (log)

(a) TRW (b) TRWRBS (c) RBS
500001 orerprise —+— * 251 enterprise —+— e 600 | enterprise ——\
campus — - - —e o campus — = -,
© 40000 | gepartment @ 20 gepanment =t © 500 | department \
30000 wireless —e- — 8 15 wireless —e- — § 400 wireless —e- — -
.
5 20000 2 10 2 300 ——
< . S 200
* 5 *
————s 100 A:ﬂ
0 0 0 ——

000 000 ORN Uk OO0 000 ORrN UR OO0 000 ORrN UR

Q09 ok w © cog okN 0 oo ok G ©

oRrN O SRN & [l S

9 Worm Scans per Second (log) ' worm Scans per Second (log) ' Worm Scans per Second (log)
(d) MRW (e) DSC (f) PGD

Fig. 5. Latency against local-preference worm: from worm infection time to de-
tection time for local-preference scanning worm, measured as the number of worm
connections leaving the protected network prior to detection.

The one detector that shows a significantly different response is the PGD
detector, showing better performance against the local-preference worm than it
did against the random worm. The PGD detector measures the protocol graph
of all hosts in the network, and the more infected hosts there are, the more
scanning there will be using the protocol the worm targets. This leads to either
more total nodes in the graph or a larger connected component, allowing the
PGD detector to spot the local-preference worm in situations where it would
not have detected a random scanning worm.

The latency results are also impacted by the local-preference scanning strat-
egy (Figure 5). The TRWRBS, RBS, DSC, and MRW detectors show worse
detection latency in all environments for the local-preference worm as compared
to the random worm. This is because the worm targets the local network so
aggressively that in many scenarios it infects multiple hosts inside the network
before it is detected. Recall that our latency metric measures the combined ex-
ternal scanning of all infected hosts in the network. The TRW detector, on the
other hand, shows identical latency performance for all environments when com-
paring random and local-preference worms because it detects the worm before
it infects multiple hosts (except in the wireless environment).

PGD behaves quite differently than the other detectors. It detects the local-
preference worm more quickly than the random worm in the enterprise and
campus environments, but slower in the department environment. And in the
wireless environment the local-preference worm is detected more quickly at scan-
ning rates of two scans per second or less, but the random worm is detected more
quickly at rates above two scans per second.

The DSC detector is the fastest, allowing fewer than 25 outgoing worm con-
nections in all scenarios where it was able to detect the worm 100% of the time.

enterprise —+— 100 #—s—s—s—s 1 enterprise —— 100
5 campus — - 7 campus — 8- - 7
z aeparment - g 8 coparmt g 80
5 e £ w0 |\ 5 o
<] 5 <]
& B \ & 0T emerprise ——
: ; ; campus — = -
h L 20 ‘\¥ L 20T geparment
. 0 0 wireless —e- —
000 900 or N Ok o000 ooo orN Uk 0090 900 or N Ok
Qo9 ok n Q09 ok O ° Qog ok n ©
grS a grR R @ gFrS a
Worm Scans per Second (log) Worm Scans per Second (log) Worm Scans per Second (log)
(a) TRW vs topol00 (b) TRW vs topo1000 (¢c) TRW vs topoall
100 100 — 100 -
7 80 \ 7 80 \ ? 80 1
2 60 \ 2 60 \ g 0 \
S . 5] .
& Of eprise |\ & 0T mepise —— | | R — \
7 20 campus —a— " 7 20 campus — 8- - \ 7 20 campus — - - .
o department \ i department \ w department \
0 wireless — - 0 wireless, —e- — |\ 0 wireless —e — | |
O00 ooo0 or N Ok 0o0oo0 ooo orN Uk 000 o900 or N Ok
ggg gr™d @ ggg grnd @ ° ggg gr™ @
@ @ @
Worm Scans per Second (log) Worm Scans per Second (log) Worm Scans per Second (log)

(d) TRWRBS vs topol00 (e) TRWRBS vs topol000 (f) TRWRBS vs topoall

Fig. 6. F- against topo worm: percent of experiments where the worm was not
detected (lower is better performance) by the TRW and TRWRBS detectors with a
topo scanning worm. The topo100 worm uses 100 neighbors before reverting to random
scanning, the topo1000 worm uses 1000 neighbors before reverting to random scanning,
and the topoall worm never uses random scanning.

TRW is also quite fast, allowing fewer than 27 connections in all environment
except for the wireless environment where it allows roughly 100. Note TRW
also is the most sensitive detector, successfully detecting the worm at the lowest
scanning rates in all environments.

6.4 Detector Performance Against Topo Worms

Topo scanning changes the observed behavior of an infected host by reducing
the number of connection failures that the detector can observe. The neighbors
discovered by the topo worm are vulnerable at the same level as other hosts in the
network but are guaranteed to be present, different from random scanning where
a large number of scans go to addresses with no host present. The only detectors
that are impacted by this strategy are those detectors that rely on observing
connection failures: TRW and TRWRBS. The RBS, MRW, DSC, and PGD
detectors show identical performance against the topo worm and the random
worm. The pattern of neighbors—whether they can be connected to or not—is
random in both the random and topo worms and thus triggers those algorithms
in the same way.

The TRW detector is unable to detect the topo worm during its topo scanning
phase because of the lack of connection failures. It only detects the worm after
it reverts to random scanning. In the topo100 scenario (Figure 6(a)), this occurs
relatively quickly as it does not take long for the worm to exhaust its list of
100 neighbors. TRW is able to detect the worm at speeds as low as 0.01 scans
per second in all environments. However, in the topol000 scenario, the list of

140 et —e e e 1000 | enterprise —+— $E-at=S t
=
00| g

120
@ — - @ o 05
=i el K EX 2
£ 100 & oo e e~ 2
3 3 3
s & ? a0 Not Detected
s enterprise —— S 400 s
40 campus — B- ® #* 05

20| department 00

0 wireless —e — 0 .

OO0 OO0 ORrN UR 000 00O OrN UR OO0 000 ORrN UR
o9 ok G Qo9 okbh w0 © oo ok G ©
SRR SRR G [l S

O Worm Scans per Second (log) O Worm Scans per Second (log) ' Worm Scans per Second (log)

(a) TRW vs topol00 (b) TRW vs topo1000 (¢c) TRW vs topoall

450 1400 — 700 —_

L8 \ ol TEmE—E N , oo0] e o 1
tment tment
£ 300 \ £ 1000 | “iiciess —o- — . £ 500 1 s e — \
& 250 N & 800 \ \ & 400 .
5 201 emrse —— N ~ 5 600 . 5 300 \
= 201 TEER ST W . % 400 \, < 200 by
department R 200 n . 100 \

58 wireless — - [S 0 - 0 [HR
00 000 orN gOB OO0 00O OrN Un 00 000 OorN UOB
o9 ok G © o9 okN w0 © oo ok G ©
SRR O SRR & [l S
O Worm Scans per Second (log) O Worm Scans per Second (log) ' Worm Scans per Second (log)

(d) TRWRBS vs topol00 (e) TRWRBS vs topol000 (f) TRWRBS vs topoall

Fig. 7. Latency against topo worm: from worm infection time to detection time
for topo scanning worm, measured as the number of worm connections leaving the
protected network prior to detection. The topol00 worm uses 100 neighbors before
reverting to random scanning, the topo1000 worm uses 1000 neighbors before reverting
to random scanning, and the topoall worm never uses random scanning.

neighbors is not exhausted during the one-hour experiment for speeds below 0.5
scans per second and the TRW detector is unable to detect topo worms with
slower scanning rates (Figure 6(a)). In the topoall scenario—where the topo
worm never exhausts its list of neighbors—the TRW detector is never successful
at detecting the worm (Figure 6(c)).

Not only is TRW’s ability to detect the worm compromised, but even in
scenarios where it does detect the worm it is much slower at it. Figures 7
show the latency results for TRW against the topo worm. Because during the
worm’s topo phase none of its scans were detected, the latency results against
the topol00 worm are approximately 100 scans worse than they were for TRW
against the random scanning worm. Similar results can be seen for the topo1000
scenario, where TRW’s detection latency is 1000 connections worse than it was
for the random scanning worm.

This shortcoming in TRW is one of the motivations for the TRWRBS detec-
tor. It uses connection failures in the detection algorithm, but it can also detect
a worm even with no connection failures by checking the rate of connections
to new destinations. The TRWRBS detector is able to detect the topol00 at
rates above 1 scan per second in the wireless environment and above 0.2 scans
per second in all other environments (Figure 6(d)). It does not perform quite
as well as TRW in this scenario because TRW is able to leverage the connec-
tion failures so effectively. In the topol000 scenario the detectors are effective
at approximately the same worm scanning rate (Figure 6(e)); but if one looks
at the latency, the TRWRBS detector is able to detect the worm more quickly
at most scanning rates (Figure 7(e)). At worm scanning rates of 2 scans per

second and higher, TRWRBS can detect the worm in under 30 connections in
all the environments except for the wireless environment. This compares well
against the TRW algorithm which requires over 1000 scans before detecting the
topol000 worm. The TRWRBS detector even detects the worm in the topoall
scenario where the TRW detector could not.

This reliance on connection failures highlights a potential weakness of the
TRW algorithm. If a worm can generate a big enough list of hosts running the
target service that are likely to exist, it can make enough successful connections
to completely evade the TRW algorithm. The detectors based on destination
distributions do not have this weakness.

6.5 Summary

We now recap our findings and answer the questions posed in the introduction.
We found that no detector was clearly superior to the others in the study. The
TRW detector can detect slower random and local-preference scanning worms
than any of the other detectors in all the environments we tested. However, it
performs poorly against topo worms. In fact, a topo worm with a large supply
of neighbors to scan is entirely undetectable by the TRW algorithm. The PGD
detector was capable of detecting all types of worms scanning at 0.5 scans per
second or faster in all environments, but was relatively slow, frequently allowing
several hundred scans prior to detection. The TRWRBS detector was similar
to the PGD detector, but showed decreased performance against topo worms.
The RBS detector was only capable of detecting fast scanning worms. The MRW
detector struggled to detect worms in the wireless environment and was incapable
of detecting the local-preference worm in that environment. Finally, the DSC
detector performed quite well in many respects, but is otherwise quite limited
due to the requirement that an inbound infecting connection be observed in
order for the detector to function. An initial infection that came via some other
vector (removable media, direct download, etc.) would be undetectable by DSC.
If we narrow our criteria, however, we may be able to identify some detectors
as being superior at specific tasks. For example, if we only consider fast scanning
worms—those that make 10 scans per second—the TRWRBS detector suddenly
stands out as being an excellent choice. It detects fast scanning worms in every
environment regardless of scanning type and is the fastest in most scenarios.
The wireless environment was the most difficult for detectors to operate suc-
cessfully in. In virtually all scenarios, detectors showed the worst sensitivity
in the wireless environment, and detection latencies were typically an order of
magnitude worse. The traffic in this environment is more focused around enter-
tainment type activities such as network gaming and peer-to-peer file sharing.
These activities are prone to resembling worm scanning activity, making it more
difficult for the detectors to differentiate between legitimate hosts and worm
infected ones. For example, a peer-to-peer network client may receive a list of
peers who were recently active and attempt to contact every host on the list. If
the peer-to-peer network has a high churn rate and hosts on the peer list have
left the network, this activity will result in many connection failures, just as if a

worm were scanning for potential targets. Even in the face of this type of activity,
however, the detectors were still typically able to detect true worm activity. As in
the other environments, the TRW detector was able to detect slower worms than
any other detectors. The PGD detector showed the next best performance and
had the advantage of also detecting the topo worm in the wireless environment.

Our results indicate that worms scanning at one connection per second or
better are relatively easily detected in most environments, but a worm that
utilizes some sort of topo scanning with a low connection failure rate could
evade worm detectors in all our tested environments—if it scanned at a rate no
greater than 1 scan per 10 seconds.

7 Related Work

The most directly related work to ours—aside from the original publication of
the detectors evaluated here—is a study by M. Patrick Collins and Michael K.
Reiter that evaluates behavior-based (or payload-oblivious as they term it) de-
tectors [30]. This work is closely tied to ours, but is complementary in nature.
Their work, like ours, evaluates the effectiveness of several behavior-based detec-
tors. The key distinction is that instead of monitoring an internal network for
infections, they considered the performance of these systems in detecting incom-
ing scanning from external networks. This is actually a substantially different
problem than detecting internally infected hosts. There is a considerable volume
of incoming scan traffic to most networks [31], and separating worm scanning
from other scanning traffic is a different problem than detecting outgoing scans
among legitimate outgoing traffic. They developed new metrics for their evalu-
ation, measuring an attacker’s payoff over an observable attack space. This new
metric does not apply well to the job of detecting internal scanners, however,
as the target address space of an internal scanner is potentially the entire IPv4
address space.

A work by Li, Salour, and Su surveys behavior and content-based worm de-
tectors [32] and covers many of the works referenced here. They do not measure
the performance of detectors, however, limiting their study to describing and
classifying them instead. Our work briefly addresses broad classifications of de-
tectors, but then focuses on their relative performance in real world situations.

8 Conclusions

The relative lack of worm attacks in recent years has caused network operators to
focus their attention on other threats. However, Conficker and IKEE.B illustrate
the continued threat that worms pose. Lapses in worm activity are not new—13
years separated the Morris worm from the series of large worm outbreaks in the
early 2000’s—and continued vigilance is required to protect our networks.
Despite the large number of worm detectors published, it is still unclear
whether state-of-the-art systems are capable of coping with modern worms suc-
cessfully. It is even unclear how these systems compare to each other. We have

not seen a systematic comparison study that evaluates worm detectors against
the same performance metrics across the same parameter values.

This paper addresses that issue. We focus on behavior-based worm detectors
under different real-world environments, studying their false positive, false neg-
ative, and latency in detecting worms at various scanning rates using random,
local-preference, or topological-aware scanning methods. We found that worms
that scan at a low rate are the hardest to detect; for example, a topologically
aware worm scanning one destination per minute can evade all tested detectors
in all environments. Also, among all the environments we studied, the wireless
environment poses the biggest challenge, where almost every detector incurs a
lower—sometimes unacceptable—accuracy and higher latency than in other en-
vironments. No detector is a clear winner; TRW performs the best against the
random and local-preference worms, for example, but it fails badly at detecting
a topologically aware worm.

References

1. Eisenberg, T., Gries, D., Hartmanis, J., Holcomb, D., Lynn, M.S., Santoro, T.:
The Cornell commission: on Morris and the worm. Communications of the ACM
32(6) (1989) 706-709

2. Moore, D., Shannon, C., Claffy, K.C.: Code-red: A case study on the spread and
victims of an Internet worm. In: Proceedings of the ACM Internet Measurement
Workshop. (2002) 273-284

3. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside
the slammer worm. IEEE Security and Privacy 1(4) (2003) 33-39

4. Symantec, I.: The downadup codex. Technical report, Symantec (March 2009)

5. Porras, P.A., Saidi, H., Yegneswaran, V.: An analysis of the ikee.b (duh) iPhone
botnet. Technical report, SRI International (December 2009)

6. Sekar, V., Xie, Y., Reiter, M.K., Zhang, H.: A multi-resolution approach for worm
detection and containment. In: Proceedings of the International Conference on
Dependable Systems and Networks. (2006)

7. Schechter, S.E., Jung, J., Berger, A.W.: Fast detection of scanning worm infections.
In: Proceedings of the Symposium on Recent Advances in Intrusion Detection.
(2004)

8. Gu, G., Sharif, M., Qin, X., Dagon, D., Lee, W., Riley, G.: Worm detection, early
warning and response based on local victim information. In: Proceedings of the
Annual Computer Security Applications Conference. (2004)

9. Liang, Z., Sekar, R.: Fast and automated generation of attack signatures: A basis
for building self-protecting servers. In: Proceedings of the Conference on Computer
and Communications Security. (2005)

10. Crandall, J.R., Su, Z., Wu, S.F., Chong, F.T.: On deriving unknown vulnerabilities
from zero-day polymorphic and metamorphic worm exploits. In: Proceedings of
the Conference on Computer and Communications Security. (2005)

11. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Proceedings of
the Network and Distributed System Security Symposium. (February 2005)

12. Tucek, J., Newsome, J., Lu, S., Huang, C., Xanthos, S., Brumley, D., Zhou, Y.,
Song, D.: Sweeper: A lightweight end-to-end system for defending against fast
worms. In: Proceedings of the EuroSys Conference. (2007)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Kim, H.A., Karp, B.: Autograph: Toward automated, distributed worm signature
detection. In: Proceedings of the USENIX Security Symposium. (August 2004)
271-286

Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In:
Proceedings of the Symposium on Operating System Design and Implementation.
(2004) 45-60

Wang, K., Cretu, G., Stolfo, S.J.: Anomalous payload-based worm detection and
signature generation. In: Proceedings of the Symposium on Recent Advances in
Intrusion Detection. (2005)

Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A content anomaly detector resis-
tant to mimicry attack. In: Proceedings of the Symposium on Recent Advances in
Intrusion Detection. (2006)

Li, Z., Wang, L., Chen, Y., Fu, Z.: Network-based and attack-resilient length
signature generation for zero-day polymorphic worms. In: Proceedings of the IEEE
International Conference on Network Protocols. (October 2007) 164-173
Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating signatures
for polymorphic worms. In: Proceedings of the IEEE Symposium on Security and
Privacy. (2005)

Mason, J., Small, S., Monrose, F., MacManus, G.: English shellcode. In: Pro-
ceedings of the Conference on Computer and Communications Security. (2009)
524-533

Jung, J., Milito, R., Paxson, V.. On the adaptive real-time detection of fast-
propagating network worms. In: Proceedings of the Conference on Detection of
Intrusions and Malware and Vulnerability Assessment. (July 2007) 175-192
Collins, M.P., Reiter, M.K.: Hit-list worm detection and bot identification in large
networks using protocol graphs. In: Proceedings of the Symposium on Recent
Advances in Intrusion Detection. (September 2007) 276-295

Wu, J., Vangala, S., Gao, L., Kwiat, K.: An effective architecture and algorithm
for detecting worms with various scan techniques. In: Proceedings of the Network
and Distributed System Security Symposium. (2004)

Zou, C.C., Gong, W., Towsley, D., Gao, L..: The monitoring and early detection of
Internet worms. ACM Transactions on Networking (2005)

Weaver, N., Staniford, S., Paxson, V.: Very fast containment of scanning worms.
In: Proceedings of the USENIX Security Symposium. (2004) 29-44

DETER: Cyber defense technology experiment research (DETER) network.
http://www.isi.edu/deter/

Stafford, S., Li, J., Ehrenkranz, T., Knickerbocker, P.. GLOWS: A high-fidelity
worm simulator. Technical Report CIS-TR-2006-11, University of Oregon (2006)

: LBNL/ICSI enterprise tracing project. http://www.icir.org/enterprise-tracing/
(2005)
Group, W.N.R.: WAND WITS: Auckland-IV ~ trace data.

http://wand.cs.waikato.ac.nz/wand/wits/auck/4/ (April 2001)

: Umass trace repository. http://traces.cs.umass.edu/

Collins, M.P., Reiter, M.K.: On the limits of payload-oblivious network attack
detection. In: Proceedings of the Symposium on Recent Advances in Intrusion
Detection. (September 2008) 251-270

Allman, M., Paxson, V., Terrell, J.: A brief history of scanning. In: Proceedings
of the ACM Internet Measurement Conference. (October 2007) 77-82

Li, P., Salour, M., Su, X.: A survey of internet worm detection and containment.
IEEE Communications Society Surveys and Tutorials 10(1) (2008) 20-35

