SIMULATION

http://sim.sagepub.com

Enhancing SWORD to Detect Zero-Day-Worm-Infected Hosts
Shad Stafford, Jun Li and Toby Ehrenkranz
SIMULATION 2007; 83; 199
DOI: 10.1177/0037549707080753

The online version of this article can be found at:
http://sim.sagepub.com/cgi/content/abstract/83/2/199

Published by:
®SAGE Publications

http://www.sagepublications.com

On behalf of:

lerel
iscs]

Society for Modeling and Simulation International (SCS)

Additional services and information for SIMULATION can be found at:

Email Alerts: http://sim.sagepub.com/cgi/alerts

Subscriptions: http://sim.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://www.scs.org/
http://sim.sagepub.com/cgi/alerts
http://sim.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://sim.sagepub.com

Enhancing SWORD to Detect
Zero-Day-Worm-Infected Hosts

Shad Stafford

Jun Li

Toby Ehrenkranz

Department of Computer Science
University of Oregon

Eugene

OR 97403-1202, USA

staffors @cs.uoregon.edu

Once a host is infected by an Internet worm, prompt action must be taken before that host does
more harm to its local network and the rest of the Internet. It is therefore critical to quickly detect
that a worm has infected a host. In this paper, we enhance our SWORD system to allow for the
detection of infected hosts and evaluate its performance. This enhanced version of SWORD inherits
the advantages of the original SWORD: it does not rely on inspecting traffic payloads to search for
worm byte patterns or setting up a honeypot to lure worm traffic. Furthermore, while acting as a
host-level detection system, it runs at a network’s gateway and stays transparent to individual hosts.
We show that our enhanced SWORD system is able to quickly and accurately detect if a host is
infected by a zero-day worm. Furthermore, the detection is shown to be effective against worms of
different types and speeds, including polymorphic worms

Keywords: Internet worms, worm detection, net-work security, host infection

1. Introduction

The launching of a worm can have disastrous effects on
millions of computers on the Internet in just a few short
minutes [2, 3], potentially disrupting the operation of crit-
ical services such as emergency call centers [4]. The cost
of disrupted service and repair from worms can also be ex-
tremely high; for example, it is estimated that the costs as-
sociated with the Code Red and Sapphire/Slammer worms
are over US$ 3 billion. Perhaps even more alarming, re-
searchers have found that none of the worm attacks so far
have come close to causing the amount of damage they are
capable of [5].

With worms and their destructiveness gaining wide-
spread recognition, it seems only a matter of time until
new worms are created with even higher rates of spread.
Worms that take advantage of a heretofore unknown vul-
nerability, so-called zero-day worms, are particularly dan-
gerous because many existing security techniques require

SIMULATION, Vol. 83, Issue 2, February 2007 199-212

© 2007 The Society for Modeling and Simulation International
DOI: 10.1177/0037549707080753

Figure 1 appear in color online: http://sim.sagepub.com

prior knowledge of the exploit in order to detect and de-
feat it. These worms could become even more dangerous
by creating their own coordinated networks from the in-
fected hosts [6]. In order to achieve effective containment,
as shown in [7], reaction times must be on the order of a
few minutes or less. Any worm defense mechanism which
requires human action, therefore, is just not feasible.

Our recent research has devised an approach, named
SWORD [8], to detect the occurrence of zero-day worms
at an administrative domain level. SWORD has a number
of desirable features in a worm-detection system: it re-
quires deployment at only one place on the network (the
gateway), it is capable of detecting many different types of
worms, it does not rely on payload inspection, and it has
a low false-positive rate. These features compare favor-
ably with existing systems such as [9—11]. Solutions that
depend on using worm signatures to identify the byte pat-
terns sent from worm infected hosts may have difficulty
in detecting polymorphic worms or worms which en-
crypt their payload during propagation, not to mention the
cost of inspecting the payload of every packet in transit.
Honeypot-based solutions typically capture connections
to unused network addresses so will not detect a worm
that only attempts to contact network addresses where a
valid host exists. They are also vulnerable to spoofing
attacks which deliberately send legitimate-looking traffic

Volume 83, Number 2 SIMULATION 199

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

Stafford, Li and Ehrenkranz

to honey-pots causing real traffic to be flagged as worm
traffic.

However, it is still unknown how fast and accurate we
can be in detecting the infection of individual hosts. While
SWORD provides an elegant solution for detecting the oc-
currence of zero-day worms, it is often necessary to know
which hosts are infected in order to take prompt, concrete
actions. In this paper, we enhance SWORD to further de-
tect worm infections at the host level without requiring
intrusive monitoring systems installed on end-hosts. Fur-
thermore, we will outline a new methodology for evalu-
ating the performance of a worm detection system using
our Gateway Level Oregon Worm Simulator (GLOWS),
and present a thorough evaluation of the speed and ac-
curacy of the enhanced SWORD. We evaluate the effec-
tiveness at identifying which hosts within a network are
infected against a wide variety of worm propagation mod-
els, including random scanning, local-preference random
scanning, and topological scanning. We also consider the
effects of polymorphism and encryption of the worm pay-
load.

The paper is organized as following. We begin by re-
viewing some previous work related to our research in
Section 2, followed by our design for enhancing SWORD
to detect worm-infected hosts in Section 3. In Section 4,
we then describe our methodology for evaluating the
speed and accuracy of the enhanced SWORD. Section 5
discusses our Worm simulator. Section 6 presents our re-
sults and the analysis of our experiments followed by Sec-
tion 7 which analyzes the robustness of the alert threshold.
More discussion is presented in Section 8, followed by our
conclusions in Section 9.

2. Related Work

Recently there have been studies on how worms may be-
have [2, 6, 12—-14] and the general requirements for con-
taining them [7]. However, worm defense still remains
largely an open topic. Research on worm defense typically
falls into three categories.

e Intrusion detection systems (IDS) that identify sus-
picious behavior as it happens [11, 15-17].

e Rate-limiting suspicious outbound connections [18,
19].

e Performing forensic analysis of worms [3, 20, 21].

Our approach is to study and evaluate the detection of
infected hosts in real time, so research from the first cat-
egory is closest to ours. Research from the second cate-
gory is not aimed at detecting which hosts are infected by
worms. Research from the third category is complemen-
tary to real-time worm detection approaches such as ours
but is generally done after the fact. In the following, we
focus on the first category.

200 SIMULATION Volume 83, Number 2

Real-time worm detection generally can be divided
into two different categories: host-based IDS and network-
based IDS. Whereas conventionally a host-based IDS de-
tects whether or not a host is under attack and a network-
based IDS detects whether or not a network is under attack
[22], our work studies how well a network-based approach
performs in detecting host-level worm infections.

Worm IDS can also be divided into misuse-based de-
tection or anomaly-based detection. In detecting host in-
fections of zero-day worms, one popular approach is to
quickly discover a byte pattern of a zero-day worm and
use that as the signature for detection [9, 10]; another is
to set up a honeypot (which should not receive any traffic
and thus any traffic it receives is probably malicious) and
send out worm alerts upon the receipt of unexpected traffic
[11, 23, 24]. The byte pattern approach can be used to de-
tect if an individual host is infected or not, but because
it needs to check the payload of the traffic, not only will
it have a high amount of overhead, but it will also have
difficulty in detecting polymorphic worms when the pay-
load changes. The honeypot approach cannot directly help
detect which local hosts are infected by worms, as a hon-
eypot can only tell for sure that itself is being attacked.
Additionally, honeypots suffer from the fact that they can
only detect a worm if it scans addresses that are not pop-
ulated by a regular host. That is, a honeypot will not ever
detect a worm that only scans addresses with valid hosts.

As our research is on evaluating the speed and accu-
racy of the enhanced SWORD in detecting worm-infected
hosts, we note that there are several other recent host in-
fection detection systems geared towards worm detection.

e EarlyBird [9] is a signature generation system
which has been shown to be effective in discover-
ing zero-day worms. However, the system suffers
from having to make a trade-off of false positives
for speed. Furthermore, the system is not able to de-
tect polymorphic worms.

e Moonwalk [25] is a system which determines the
host which originated a worm attack. It is more of a
forensic system, more useful after an infection has
been discovered than in detecting an attack. Further-
more, it requires complete connection information —
not just a trace at a network’s gateway — limiting its
overall utility.

e The early warning system from Zou et al. [26] is
also able to quickly detect Internet worms. The fo-
cus of their work, however, is to detect the presence
of worms in the Internet at large, not to detect which
hosts are infected.

e Snort [27] is probably the most widely used IDS,
and it is entirely signature based. In order for it to
be useful against zero-day worms, another system
must be used to supply Snort with the proper signa-
tures.

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

ENHANCING SWORD TO DETECT ZERO-DAY-WORM-INFECTED HOSTS

3. Enhancing SWORD

In order to evaluate the performance of detecting the worm
infection at host level we must enhance SWORD so that it
is able to detect whether or not a particular host is infected
with a zero-day worm. In this section, we first describe
how SWORD works, then describe our enhancements.

3.1 SWORD: Self-propagating Worm Observation
and Rapid Detection

The SWORD system detects worms by monitoring con-
nection activity and watching for patterns of traffic that
are expressions of some of the essential characteristics of
worm behavior. The monitor itself sits at a network’s gate-
way, a vantage point from which all traffic into and out of
the network is visible. This is a scheme that is minimally
intrusive from a deployment standpoint, requiring far less
administration than solutions that require installations on
each host of the network, but as we will show it is still an
extremely effective vantage for detecting worm infections.
It does not allow for the observation of internal network
traffic, meaning that a purely local worm would not be
detected; but in order to spread beyond the local network
a worm must make connections that cross the gateway, so
we do not view this as a significant limitation.

The basic unit that SWORD works with is a connec-
tion between two hosts. This connection can utilize either
of the standard Internet protocols: being a TCP (Trans-
mission Control Protocol) connection from set-up to tear-
down, or a series of UDP (User Datagram Protocol) pack-
ets between two hosts and sharing a common destination
port. We track information such as the source and desti-
nation ports, and the TCP flags sent, but SWORD does
not examine the connection payload, so the resources re-
quired for assembling and tracking connections are small.
After assembling the information about a particular con-
nection, it is run through a pair of heuristics to determine
the likelihood that this connection is a worm connection.
The heuristics look for individual characteristics of worm
behavior.

The Causal Similarity Heuristic leverages the fact that
attacks against a given vulnerability must share some sim-
ilarity in connection attributes. Connections are consid-
ered wormlike when a series of similar connections can
be found in a causal connection graph. We explicitly avoid
examining the payload itself for similarity since polymor-
phic or encrypted worms may vary their payload greatly.
Instead, the heuristic considers connection attributes such
as protocol, target port, and TCP flags that have been set.
Once payload similarity is removed from consideration,
however, the sensitivity of the similarity comparison is
limited. By reducing the scope of the connections we look
for similarity in to only those relevant to worm propaga-
tion (those connections that could have caused this con-
nection) we reduce the false positives to a manageable

level. SWORD maintains a Causal Connection Graph
where each node represents a connection and each edge
represents potential causation. With the limited informa-
tion available to the monitor, this graph is not expected to
show the entire infection path of the worm, but it does al-
low us to limit the connections we compare against when
looking for similarity.

The Destination Address Distribution Heuristic exam-
ines the pattern of destination addresses for a given host. A
normal host shows a distinctly Zipf-like pattern when the
destinations are ranked by popularity and the log of the
rank of each destination is plotted against the log of the
number of visits to that destination. When infected with a
worm however, the pattern changes. This heuristic works
by watching the trend in the shape of the destination ad-
dress distribution and considers a connection to be worm-
like after a sufficient number of connections have trended
the pattern away from Zipfness.

The individual heuristics suffer from false positive
rates that are too great to allow us to rely on their output di-
rectly. Instead, SWORD only considers a connection to be
wormlike when both heuristics agree, and then monitors
the level of wormlike connections over a sliding window.
When a threshold of allowable wormlike connections is
exceeded, SWORD raises the alert that a worm is active
within the network. SWORD establishes the thresholds
during a training period and maintains separate sliding
windows and thresholds for TCP- and UDP-based worms.

Further details regarding the inner-workings of
SWORD can be found in our technical report [8].

3.2 Enhancing SWORD to Detect Worm-Infected
Hosts

Whereas SWORD is able to detect whether a domain has
a zero-day worm, we enhance SWORD so that we can
also detect which individual hosts are infected. We do so
without requiring intrusive monitoring systems installed
on end-hosts, but instead follow the same spirit of the
original SWORD system. If the number of wormlike con-
nections emanating from a particular host during a given
window exceeds the host-level threshold, then we consider
that host to be infected.

The process of obtaining the host-level alert thresholds
is similar to the process employed by the original SWORD
for domain-level thresholds. By observing normal traffic
from individual hosts during a training period, one can ob-
tain the total number of connections that the two heuristics
would label as wormlike. The maximum observed worm-
like connections within a window for any host in the do-
main, or some multiple of it, can be used as the host-level
alert threshold for detecting a worm infection.

Such enhancement is straightforward, but it serves two
important purposes: (1) as in the original SWORD, it con-
tinues to be a gateway-based approach to detecting worms
and is transparent to individual hosts; and (2) the per-

Volume 83, Number 2 SIMULATION 201

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

Stafford, Li and Ehrenkranz

formance of host infection detection can then be evalu-
ated based on an approach that we believe is superior to
payload-inspection-based or honeypot-based worm detec-
tion approaches.

The knowledge of which hosts are infected can be used
to perform forensic analysis of a worm outbreak or to in-
telligently quarantine individual hosts, but evaluating such
countermeasures is beyond the scope of this work.

4. Methodology

We adopt a trace-based simulation approach to evaluat-
ing the enhanced SWORD in detecting host infection. In
the following, we first describe what metrics we use for
evaluation, and then describe the traffic we choose in the
evaluation.

4.1 Metrics

The metrics we use must be able to evaluate the follow-
ing: the latency, or the average speed with which that any
given host is detected to be infected with a worm, and the
accuracy with which any infected host is identified.

The latency is simply the time it takes to detect that an
infected host is infected, which we calculate by subtract-
ing a host’s time of infection from its time of detection. We
report the value averaged across all of the hosts infected
for a given run of the experiment

The accuracy is slightly more complex. At a basic
level we need to know false positives (how many non-
infected hosts were flagged as being infected by the sys-
tem) and false negatives (how many infected systems were
not flagged as being infected). Moreover, we will need to
know adjusted false negatives to find out how accurate
we are in detecting those hosts that initiate more worm
connections than the level defined by the threshold. This
measure is specific to our experimental setup and filters
out those false negatives occurring from a host being in-
fected immediately before the termination of the experi-
ment. We feel that this adjusted measure more accurately
represents the true performance of the enhanced SWORD
because it does not penalize SWORD for the limitations of
our experimental setup. We will use the false negative and
adjusted false negative statistics to present accuracy and
adjusted accuracy percentages which are, respectively, the
percentage of worm infected hosts correctly detected and
the percentage of worm infected hosts correctly detected
which sent more than the threshold amount of worm con-
nections (false positives are not addressed as they did not
occur in our results).

4.2 Background Traffic

We use a pre-recorded network trace from a real network
as the background traffic in our experiment. We did not

202 SIMULATION Volume 83, Number 2

Table 1. Auckland-1V trace details

Date Active hosts Out Conns. In Conns
2001/03/06 2344 2,459,281 979,366
2001/03/07 2270 2,352,294 929,511
2001/03/08 2296 2,263,636 1,074,695
2001/03/09 2283 2,328,105 864,532

use a live network feed because we need to run controlled
and repeatable experiments. Simulated traffic was not an
option because it there simply is no way to simulate traffic
with the realism that we require.

The real trace in our experiments is the Auckland-IV
trace [28]. It is a continuous 45 days GPS-synchronized
IP header trace recorded between February and April 2001
at the University of Auckland and Auckland University of
Technology. Traffic was tapped from an OC3 ATM link
that connects the universities to the service provider. The
inside networks contain two /16 and several /24 prefixes
and all IP addresses are anonymized in the trace. The trace
includes all the TCP and UDP header information nec-
essary for our experiments, but no payload information.
We redistributed the anonymized IP addresses from the
trace into a fictionalized IP range that properly reflects
the topology of the network inside the Auckland border
router. On any given day there were approximately 2250
hosts making roughly 2,300,000 total outbound connec-
tions and another 960,000 incoming connections (see Ta-
ble 1). The hosts which were active varied from day to
day, and roughly 5000 total internal hosts were active at
some point in the trace.

We do not know, of course, whether there are any
worms active in this trace, or which connections in the
trace represent those initiated by an infected host, so
there is no way to test the effectiveness of the enhanced
SWORD against this trace alone. Instead, we make the
assumption that this trace has no worm traffic in it what-
soever, and then we inject our own simulated worm traffic,
which we discuss in the following section.

4.3 Worm Traffic

We have created our own worm simulator, GLOWS (see
Section 5), to model the spread of the different types of
worms used in our experiments. It uses a network topol-
ogy that matches that of the Auckland trace — two inter-
nal/16 networks separated from the Internet by a border
router (see Table 2 for details.), and captures traffic that
crosses the border router to a trace file. We then use this
worm trace as an input to our evaluation of the enhanced
SWORD.

In order to test our detectors effectiveness across a
broad range of scenarios, we simulated the following
worm scanning models: random, permutation, partition,
sequential, local preference, and topological. Our initial

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

ENHANCING SWORD TO DETECT ZERO-DAY-WORM-INFECTED HOSTS

Table 2. Network topology details

External network details

Total addresses ~ 4 pillion (2*?)

Hosts ~ 300 million (from isc.com)
Service runners 3 million
Vulnerable hosts 300,000

Internal network details

Total addresses ~128,000 (2'7)

Hosts 5000 (from trace)
Service runners 500
Vulnerable hosts 500

analysis found that our detector performed nearly identi-
cally for the random, permutation, partition, and sequen-
tial scanning worms, so we omit results from all but the
random scanning worm. Additionally, GLOWS supports
polymorphic payloads for any of the propagation models,
but we do not include these simulations because SWORD
does not examine payload characteristics.

In addition to the scanning algorithm used, parameters
for the target port number, payload size, and network pro-
tocol must be selected. All our simulations use port 80 as
the target port. This is one of the most numerous ports
used in the Auckland trace (roughly 50% of connections
go to port 80) making detection as hard as possible as
the wormlike connections look more like legitimate traffic
than if they were on another port. The size of the packets
transmitted is not considered by the detection heuristics
and thus is irrelevant. Finally, all of our simulations are
run for both TCP and UDP traffic.

To create the worm traces used in our experiments, we
begin with 3000 hosts infected in the Internet and a worm
connection crossing the border router and infecting one of
our internal hosts. This is meant to replicate a reasonable
scenario for a zero-day worm in the early stage of its de-
velopment while also reducing the time required to run our
simulations. We run each simulation until 100,000 worm
connections have crossed the gateway, or 1 h has passed in
the simulation, whichever occurs first. This limits our sim-
ulation to the early phase of a worm’s propagation when
congestion and patching effects are likely to be minimal.
Every scenario is run 10 times to create 10 unique worm
traces for each speed and propagation combination.

4.4 Merged Traffic

To run experiments against the enhanced SWORD, we
create a merged trace to be the input. The merged trace
consists of a single day’s worth of connections just from
the Auckland trace to warm up the heuristics, followed by
connections interlaced from the desired worm trace and
the next day’s Auckland trace. These connections are in-
terleaved based on the connection start-time, resulting in a

single trace where we can identify which connections are
worm connections and which hosts are infected at what
time, allowing us to accurately measure the performance
of our detection system.

5. GLOWS: Gateway Level Oregon Worm
Simulator

Our worm simulator, GLOWS (Gateway Level Oregon
Worm Simulator), simulates the spread of a worm across
the Internet and its propagation into a single domain; with
the goal of capturing the worm traffic that crosses the gate-
way point separating the monitored domain from the In-
ternet.

5.1 How GLOWS Works

GLOWS uses a finite-state model to simulate the behav-
ior of each vulnerable host in both the Internet and the
internal network. This provides a greater degree of accu-
racy than probabilistic simulators, particularly for worms
such as the topological scanning worm which must know
of other hosts running the service. Modeling each vulner-
able host is feasible for a number of reasons including:
the number of such hosts is only a small fraction of the
total hosts in the Internet, we model host interactions at
the connection level rather than the packet level, and be-
cause we do not model congestion effects or background
traffic within the simulator. GLOWS loses a small level of
accuracy due to ignoring the effects of congestion, but if
experiments are focused at the beginning of the infection
cycle where relatively few hosts are infected, this impact
is minimal.

To support studying a broad variety of worm scenarios,
GLOWS supports the following parameters.

e Connection type. Connections can be either TCP-
based or UDP-based.

e Scan speed. The speed at which the worm scans can
be varied.

e Scan type. Using previously presented worm stud-
ies by Staniford et al. [2], we were able to model
the following scanning types: random-scanning,
sequential-scanning, permutation-scanning, parti-
tion-scanning, local-preference-scanning, and topo-
logical-scanning.

The various scanning techniques work as follows:
random-scanning worms are the simplest as they sim-
ply choose each new target address completely randomly.
Sequential-scanning worms choose a random address to
start from and scan sequentially from there. Permutation-
scanning worms permute the entire address space and se-
quentially scan that. Partition-scanning worms partition

Volume 83, Number 2 SIMULATION 203

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

Stafford, Li and Ehrenkranz

the address space and scan only their partition. Local-
preference worms choose target addresses randomly, but
with a preference towards choosing from the local subnet:
they choose an address from their host’s class B address
space with a 50% probability, from its class A address
space with a 25% probability, and from the Internet as
a whole with a 25% probability. Finally, the fopological-
scanning worm starts with a list of roughly 500 addresses
known to be running the target service, although not nec-
essarily vulnerable. Once these have been contacted, it re-
verts to a pure random-scanning worm.

GLOWS can model the network topology of the moni-
tored domain based on host information taken from a net-
work trace, allowing it to create realistic worm traffic for a
given monitored domain. Addresses where a host is active
in the internal network are derived from detected host ac-
tivity in the real trace, and external hosts are probabilisti-
cally allocated. Not all hosts run the service that the worm
is attacking; we assign service runners probabilistically in
both the internal and external network.

GLOWS accurately models the connection-level in-
teraction between two hosts during an infection attempt,
right down to setting appropriate TCP flags. Scanning at-
tempts to non-existent hosts result in SYN/RST exchanges
as one would expect to see in the real world, and the worm
client can disconnect at any point leaving the connection
in an arbitrary state. The payload and target port number
are also configurable.

5.2 Implementation Details

GLOWS is implemented as a Java program comprised of
20 classes and approximately 4000 lines of code. The in-
ternal network and the external network (i.e., the rest of
the Internet) are implemented in separate classes allow-
ing the internal network to be modeled more accurately
and the external network to use a less accurate but higher
speed implementation. There are four possible states for
every IP address: no host, host, host running service, and
host running vulnerable service.

For the addresses in the internal network, we load the
list of hosts from a configuration file produced by analy-
sis of the real network trace that the internal network is
modeled after. Service runners and vulnerable hosts are
chosen randomly from within this set. Every host in the
internal network is an instance of our ActiveHost class, al-
lowing each host to respond independently to connection
requests.

For the external network, the sets of vulnerable ad-
dresses and service runner addresses are generated by a
random number generator and are stored as simple lists
of 32-bit integers to conserve memory. A given address
in the Internet is determined to have a host or not by the
following procedure. First check the list of vulnerable ad-
dresses, then the list of service runner addresses; if it is
present in neither of these lists, it may still have an active

204 SIMULATION Volume 83, Number 2

host. Whether or not this address has a host is randomly
determined, but must be consistent throughout a given
simulation: a random number is generated after seeding
the random number generator with the address in ques-
tion plus a simulation specific salt value. If the random
number is below the configured value for the percentage
of hosts in the external network, then this address has an
active host. This process ensures that throughout a simu-
lation the set of addresses with hosts is consistent, but for
multiple simulations we will get different sets of addresses
with hosts. It can be performed efficiently through the use
of a Mersenne Twister [29] implementation as our ran-
dom number generator, which has excellent performance
and very low overhead for setting the seed.

Interactions with hosts in the external network are re-
solved by the state of the address except that when a vul-
nerable address is infected an ActiveHost instance is cre-
ated for that address to respond to future interactions.

At each time tick, the ActiveHost instances in both
the internal and external networks are polled for activity.
Those that are infected and actively sending worm scans
will generate their next scan based on the worm imple-
mentation currently active. Because each ActiveHost has
its own instance of the worm, individual hosts can have
unique neighbor lists, network partitions, or other host-
specific information. The worm implementation is plug-
gable, allowing us to simulate a number of different scan-
ning and propagation schemes.

At the end of the time tick all of the worm scans are
processed. There is a complex set of possible results for
each connection attempt, as the worm implementation can
specify all of the connection attributes and TCP flags for
each kind of connection: to a dark address, to a non-
service running host, to a service running host, to a vulner-
able service running host, and to an already infected host.
Connections from internal to internal hosts or external to
external hosts are first processed, and then those connec-
tions that cross the gateway are processed. The complete
set of attributes for connections that cross the gateway are
logged to a file for use as input in the worm simulator ex-
periments.

5.3 Simulator Performance

The speed with which a complete simulation can be
processed is, of course, directly correlated with the num-
ber of vulnerable hosts and the rate at which hosts make
connections. The following performance numbers are
measured when running simulations on a 1.73 GHz Pen-
tium M Laptop with 512 MB of RAM.

A basic scenario for our experiments is the high-speed
(100 connections per second) random scanning worm
with a vulnerable population of 300,000 hosts, of which
3000 start out as infected. We run this simulation un-
til 100,000 worm connections have crossed the gateway
(roughly 160 s of simulated time), and it takes approxi-
mately 24 min to complete.

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

ENHANCING SWORD TO DETECT ZERO-DAY-WORM-INFECTED HOSTS

Code Red Morm - infected hosts
489889 T T T T T T

3580800

380089 |-

258888 |-

2880800

infected hosts

15888 |-

188988 |

0608

2 A \ : . . .
a@: 88 24168 ag:08 12:08 16: 08 zo:o0 oE: a0 o4:08
ara1g +ime CUTCH arsea

(a) Measured (from [20])

Code Red Simulation - infected hosts
400000

350000~

J00000 -

280000 -

200000 -

infected hosts

180000 -

100000 -

0000 -

o n n . . .
0000 0d 100 05100 12:00 16:00 20100 00100 0g:00
Lime Cutc?

(b) Simulated

Figure 1. A comparison of the spread of the measured and simulated Code Red worms showing the cumulative count of IP infected

addresses

This contrasts with the same scenario but run for a low-
speed (1 connection/s) worm where our simulation termi-
nates after 3600 s of simulated time, and only 4500 con-
nections crossing the gateway, but which runs in just over
1 min.

Larger simulations take correspondingly longer to run.
Our simulation of the Code Red v2 worm on the same
hardware took 56 h when run until 99% of the vulnerable
population of 360,000 hosts were infected. This simula-
tion generated more than 12,901,600 connections which
crossed the gateway (and of course substantially more that
didn’t) over more than 24 h of simulated time.

5.4 Simulator Validation

Before we can analyze the success or failure of our system
in detecting worms, we first need to ensure that our exper-
iments are realistic. We know that the legitimate traffic is
realistic because it is real, captured traffic, but we must
validate that GLOWS produces a realistic looking infec-
tion trace. The easiest way to do that is to attempt to sim-
ulate an actual worm and compare simulation results with
the real world results.

In Figures 1a and b we compare the spread of a simu-
lated version of the Code Red worm with its spread dur-
ing the real world outbreak as measured by Moore et al. in
[20]. The simulation was run with propagation and vulner-
able population parameters similar to the real Code Red v2
Worm (see Table 3). In both curves we see a similar basic
shape with the inflection point occurring around 16 h after
the start of the outbreak. The curves begin to diverge after
hour 18, most likely due to the impacts of both patching
infected systems and network wide congestion. Our ex-
periments are focused around the very early outbreak of

Table 3. Code red simulation parameters

Parameter Values
Vulnerable hosts 360,000
Initial infected hosts 3
Connection rate 2 conns/s

Scanning strategy Random scan

the worm, however, where our simulation appears to be
quite accurate.

6. Results

In this section, we first present our results in selecting
thresholds for detecting host infection, then report the ac-
curacy and latency in detecting the host infection.

6.1 Window-size and Threshold Selection

The sliding window size and the threshold are two key fac-
tors in the success of the enhanced SWORD system. The
sliding window size determines the length of the period
over which the wormlike connections from a given host
are counted. The threshold differentiates the number of
wormlike connections from a host’s normal traffic — also
called background noise — and that from a worm-infected
host. The heuristics we utilize are expected to generate
low levels of false positives at the connection level, per-
haps labeling certain legitimate connections from a host as
wormlike. It is important that the threshold is set in such
a way that these false positives, or background noise, do
not trigger an alert that a host is infected.

Volume 83, Number 2 SIMULATION 205

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

Stafford, Li and Ehrenkranz

60

TCP Scores
50 + 1
40 + B
o
8 30+ 1
(%]
20 + 1
10 1
0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Window ID
(a) TCP

120 T -
UDP Scores

100 1

60 r 1

Score

40 |]

20 1

\ L

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Window ID

(b) UDP

Figure 2. Background trace scores vs. time. Each score is the number of wormlike connections from a single host during the sliding window

ending at this time

Table 4. Background trace score details

(a) Background trace TCP score details

Date Mean window score Max. window score
2001/03/06 2.88 +2.29 20
2001/03/07 2.94 +2.26 12
2001/03/08 3.27 £ 4.40 54
2001/03/09 2.66 £ 2.02 13

Window: 2 min, Threshold chosen: 55

Date Mean window score Max. window score
2001/03/06 22,23 +22.05 109
2001/03/07 24.66 + 24.78 95
2001/03/08 31.03 £+ 27.61 111
2001/03/09 28.23 £+ 27.54 99

Window: 4 min, Threshold chosen: 112

The selection of the sliding window size and the thresh-
old is a compromise between detection sensitivity and la-
tency. Our goal is to choose the smallest window size that
still yields enough sensitivity to detect even slow-moving
worms. Evaluation of the background (non-worm) traces
reveals that the connection-level false positives tend to be
quite bursty, as can be easily seen in Figure 2a and b and
Table 4a and b.

As we increase the size of the sliding window, it in-
creases the absolute value of the threshold, but reduces the
average number of connections per unit of time needed to
exceed the threshold. A larger window is therefore desir-
able as it allows us to detect worms with slower scanning
rates. The size of the window also impacts the speed with
which we can detect worms, however. We must identify

206 SIMULATION Volume 83, Number 2

enough worm connections from a given host to exceed our
chosen threshold, so as the threshold grows with the win-
dow size, the number of connections a worm must send to
exceed it also grows. A smaller window is therefore desir-
able to maintain low detection latencies.

We chose our TCP and UDP thresholds and window
sizes based on a training period for our experimental do-
main. For this evaluation we used the first 3 days of
the Auckland trace as our training period then performed
our experiments on the final day using the threshold es-
tablished. To obtain the threshold we ran the enhanced
SWORD against the (assumed to be non-worm) connec-
tions from the Auckland trace and measured the average
and maximum wormlike connection counts for various
window sizes. We selected a 2-minute window size for
TCP connections with a threshold of 55 wormlike con-
nections, and a 4-min window for UDP connections with
a threshold of 112 wormlike connections (Table 4a and b).
These thresholds are higher than any measured bursts of
false positives in the background traces, and substantially
higher than the average observed value.

In researching the source of the background noise in
the traces, we discovered that many of UDP false positives
were triggered by DNS activities. This is not surprising, as
DNS lookups may generate many similar connections to
many different hosts, matching the criteria of both of our
heuristics. This implies that white-listing the DNS con-
nections would improve our results by lowering our UDP
window size and threshold (see Table 7 below). However,
this would also create a hole in our coverage that could
be exploited by a worm targeting a DNS vulnerability. In
the remaining results sections, we will present our results
without DNS white-listing save for a brief discussion in
Section 6.4.

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

ENHANCING SWORD TO DETECT ZERO-DAY-WORM-INFECTED HOSTS

Table 5. Accuracy: high speed worms

Table 6. Accuracy: low speed worms

(a) Accuracy: high speed TCP worms

(a) Accuracy: low speed TCP worms

Type Accuracy Adjusted accuracy Type Accuracy Adjusted accuracy
Random 100 £ 0.0 100 £ 0.0 Random 100 £ 0.0 100 0.0
Topological 98.49 £ 2.30 100 £ 0.0 Topological 99.17 £ 2.50 100 + 0.0
Local preference 88.08 £+ 2.26 95.69 + 1.30 Local preference 80.56 + 1.84 87.54 + 1.89

(b) Accuracy: high speed UDP worms

(b) Accuracy: low speed UDP worms

Type Accuracy Adjusted accuracy Type Accuracy Adjusted accuracy

Random 100 £ 0.0 100 £ 0.0 Random 100 £ 0.0 100 0.0

Topological 97.22 +2.91 98.72 £ 2.65 Topological 96.81 + 4.97 100 0.0

Local preference 79.55 +2.42 96.92 £+ 0.75 Local preference 77.210 £ 2.00 95.01 + 1.34
6.2 Detection Accuracy 6.3 Detection Latency

Having established a suitable threshold, we can now ex-
amine the accuracy of the enhanced SWORD at identify-
ing worm infected hosts.

We begin by evaluating the enhanced SWORD’s per-
formance against high speed worms. The results for both
the TCP and UDP experiments are presented in Table 5a
and b and show the enhanced SWORD’s exceptional per-
formance.

The enhanced SWORD correctly identified 100% of
the infected hosts with zero false positives in all of our ex-
periments for the TCP-based random scanning and topo-
logical scanning worms (Table 5a). These worms are more
likely to initiate a worm connection to an address across
the gateway than the local preference worm is, so they are
easier for our system to detect. The local preference worm
sends fewer connections across the gateway, which allows
for normal traffic from the infected host to have a bet-
ter chance of interfering with our detection mechanisms.
Even so, we correctly identified more than 95% of the in-
fected hosts in the local preference experiments.

The performance against UDP worms is not quite as
good (Table 5b), due to the increased threshold and win-
dow size. Each infected host must produce more identified
worm connections to exceed the threshold, and the longer
window allows more time for normal traffic to interfere
with correct connection categorization. Even so, we cor-
rectly identify 100% of the infected hosts for the random
propagation model and more than 96% of the infected
hosts for the topological and local preference worms.

The enhanced SWORD’s performance against low-
speed worms is similar, but suffers somewhat at detecting
TCP local preference worms (Table 6a and b). One might
expect that detecting the UDP local preference worm
would be more difficult than the TCP-based version due
to the higher UDP threshold, but instead it seems to be the
shorter TCP window that limits detection efficacy.

We have seen that the enhanced SWORD can accu-
rately identify worm-infected hosts, but the question re-
mains: can this be done in a timely fashion? The Sap-
phire/Slammer worm was able to infect most of its vul-
nerable population in under 10 min [3], setting a bench-
mark we must be able to beat to field an effective worm
detector. In fact, our results show that we are able to de-
tect worm activity substantially faster than 10 min for both
high-speed and low-speed worms.

When run with our high-speed worm variants, the en-
hanced SWORD was able to detect infected hosts in under
3 s in all cases (see Figure 3a). This shows that the en-
hanced SWORD is indeed capable of countering a worm
such as Sapphire/Slammer. Note also that the connection
rate of this high-speed worm is reasonable in comparison
to the Sapphire/Slammer. The Sapphire/Slammer worm is
bandwidth limited, and a host on a 100 Mbit/s connection
would be capable of sending approximately 300 connec-
tions/s. This is greater than the 100 connections/s of our
experiment and would therefore be even easier for the en-
hanced SWORD to detect.

There is little variation in the high-speed results be-
tween the different worm types because these high-speed
worms produce enough wormlike connections to over-
whelm our thresholds.

There is substantially more variation between detec-
tion latencies of the various worm propagation models
in the low-speed experiments (Figure 3b). The enhanced
SWORD is substantially slower a detecting low speed
worms due to the lower volume of worm connections,
but even so it detects all worm varieties in under 5 min,
and all but the Local Preference worm in under 2.5 min.
These times are again faster than the benchmark set by the
Sapphire/Slammer worm, and in any case slow scanning
worms will be much slower at infecting the entire Internet.

The average latency for detecting slow speed worms
which use the local preference scanning method is sub-
stantially higher than that of worms which use other scan-
ning methods. This is a direct result of the fact that only

Volume 83, Number 2 SIMULATION 207

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

Stafford, Li and Ehrenkranz

5
4
2 3
>
o
c
[0
T 2
-
1
0 A A
T 5 9% % o %
Y~ N < N A« N o)
> o, ©® o o 2
508 4 5 9 ¢
S T T Y
o) %

Worm Type
(a) High Speed

Figure 3. Average detection latency for worms

Table 7. Background trace UDP score details with DNS white-list

250
1
200
@
Z 150
c T
5 1
S 100
50
0 A A
308 9 3 3 %9
S (o] S
% °\ ~ % ~
> Q /c\» > % %
2) £ < £ 2
) %

Worm Type
(b) Low Speed

Table 8. Accuracy: UDP worms with DNS white-list

(a) Background trace TCP score details

(a) Accuracy: high speed UDP worms with DNS white-list

Date Mean window score Max. window score Type Accuracy Adjusted accuracy
2001/03/06 4.38 £ 6.61 49 Random 100 £ 0.0 100 £ 0.0
2001/03/07 4.31 6.1 49 Topological 98.50 £+ 2.30 100 £ 0.0
2001/03/08 2.44 +1.87 16 Local preference 90.00 + 2.03 96.72 + 1.06
2001/03/09 3.53 &+ 3.51 36 (b) Accuracy: low speed UDP worms with DNS white-list
Window: 2 min, Threshold chosen: 50 Type Accuracy Adjusted accuracy
Random 100 £ 0.0 100 £ 0.0
Topological 99.17 £ 2.50 100 + 0.0
Local preference 89.900 + 1.52 96.69 + 1.16

50% of the connections from the local preference worm
pass through the gateway and the monitor. These slow
speed worms only make one connection per second, so
every connection that does not pass through the monitor
slows detection by roughly a second.

There is a clear difference in the TCP latencies ver-
sus UDP latencies because of the different windows and
thresholds used, as described in Section 6.1.

6.4 DNS White Listing

The high threshold and long window size used for UDP
worms negatively impacts the enhanced SWORD’s de-
tection latency. The threshold and window size choices
were influenced substantially by false positives stemming
from DNS traffic (as was mentioned in Section 6.1), but if
DNS traffic were exempted from consideration by the en-
hanced SWORD, we could reduce both the window size
and the threshold which would allow for superior perfor-
mance (Table 7).

The data in Table 8a show that our detection accuracy
actually increases marginally for high-speed worms when

208 SIMULATION Volume 83, Number 2

we employ the DNS white-list, with the topological worm
detection rate increasing from 98.72 to 100%. Low-speed
worms see a similar improvement (see Table 8b) although
in no case is there a dramatic improvement.

More substantial improvements can be seen in the la-
tency results, particularly for low-speed worms (see Fig-
ure 4b). The average detection latency for random and
topological scanning worms was reduced by half from
roughly 130 s to less than 70 s. The local preference worm
saw a similar improvement being reduced from 270 s to
less than 130 s.

The improvement for high-speed worms (Figure 4a) is
equally impressive, with the local preference results im-
proving from2.5 to 1.3 s and the random and topological
worms improving from 1.3 to 0.7 s.

Clearly, exempting DNS traffic from our monitor im-
proves performance. Reducing the detection latency of
slowly scanning worms reduces the damage done before
they are detected and could be extremely important in lim-

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

ENHANCING SWORD TO DETECT ZERO-DAY-WORM-INFECTED HOSTS

Latency (s)

Random UDP Topo UDP Local UDP

Worm Type
(a) High Speed

Figure 4. Average detection latency for worms with DNS white-list

iting the overall impact of a worm outbreak. On the other
hand, failing to monitor DNS traffic would leave the net-
work wide open to a worm exploiting a DNS vulnerability.

7. Threshold Robustness

For the main body of our results we chose an aggressive
threshold with no margin of safety above the maximum
background noise observed during training. This balances
the desire to limit the false positives with that of provid-
ing optimal detection. However, the threshold may be var-
ied substantially, while still providing effective detection.
One could lower the threshold below the maximum ob-
served noise, almost assuredly leading to false positives,
but also resulting in a very sensitive detector that would
detect worms quickly. On the other hand, one could in-
crease the threshold substantially above the maximum ob-
served noise to further reduce the chance of false posi-
tives. This decreases the sensitivity of the detector to slow-
moving worms and increases the detection latency, but the
trade-off against future false positives may be worth it.
Here we present our results when doubling both the TCP
and UDP thresholds, while maintaining the same window
size for each.

7.1 Detection Accuracy

For high-speed worms, the results in Table 9a and b show
that detection accuracy decreases marginally but with an
adjusted accuracy still above 95% for all worm types. This
represents a decrease in accuracy of less than 1% in almost
all cases. The high speed worms produce connections at a
sufficient rate that there is quite a bit of room for increas-
ing the threshold.

250

200

150

Latency (s)

100

HH
n

50

Random UDP Topo UDP Local UDP

Worm Type
(b) Low Speed

Table 9. Accuracy: high speed worms with 2 threshold

(a) Accuracy: high speed TCP worms with 2 threshold

Type Accuracy Adjusted accuracy
Random 100 £ 0.0 100 £ 0.0
Topological 97.22 +2.91 98.72 + 2.65
Local preference 78.91 £ 2.41 95.84 + 0.87

(b) Accuracy: high speed UDP worms with 2 threshold

Type Accuracy Adjusted accuracy
Random 99.38 £ 1.88 100 £ 0.0
Topological 94.88 + 4.76 98.99 + 2.03
Local preference 61.47 +2.86 96.08 £+ 2.03

The results for the low-speed worms presented in Ta-
ble 10a and b show a slightly different story. For these
worms the adjusted detection accuracy is actually still per-
fect for the Random and Topological worms, but none of
the Local Preference infected hosts were detected. The
reason for this is that the Local Preference worm sends
only roughly half of its connections outside the network
and only those connections going out of the network are
visible to the monitor. This lowers the connection-level
detection accuracy for Local Preference worms because
there are fewer connections to disrupt the destination ad-
dress distribution and fewer connections to match in the
similarity comparison. This means that for a given unit of
time, the monitor will observe fewer than half the number
of wormlike connections for a host infected with the Lo-
cal Preference worm than it will for a host infected with
another type of worm. In this case, the reduced number
of observed wormlike connections is less than the now in-
creased threshold, and no infected hosts are detected. See
Section 7.3 for further discussion of this point.

Volume 83, Number 2 SIMULATION 209

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

Stafford, Li and Ehrenkranz

5
4
s 3
>
[&]
c
[0
T 2
-
1
0 A A
T 5 9 8§ 5 %
N« N « N W« N @)
> o, & > o 2
508 4 5 9 ¢
S T T Y
o)

Worm Type
(a) High Speed

Figure 5. Average detection latency for worms with 2x threshold

Table 10. Accuracy: low speed worms with 2X threshold

(a) Accuracy: low speed TCP worms with 2% threshold

Type Accuracy Adjusted accuracy
Random 100 £ 0.0 100 £ 0.0
Topological 98.61 4 4.97 100 £ 0.0
Local preference 0.00 = 0.00 0.00 = 0.00

(b) Accuracy: low speed UDP worms with 2 threshold

Type Accuracy Adjusted accuracy
Random 97.50 £ 7.50 100 £ 0.0
Topological 95.69 + 5.36 100 £ 0.0
Local preference 0.00 £ 0.00 0.00 £ 0.00

7.2 Detection Latency

The detection latencies with the doubled thresholds shown
in Figure 5 are slightly less than double the detection la-
tency with the original threshold. They are not precisely
double because early worm connections are not recog-
nized as wormlike because it takes a series of worm con-
nections to disrupt the destination address distribution and
have a sufficient number to show similarity. Early worm
connections are often not recognized as wormlike, but
later worm connections are identified as wormlike with
high accuracy. For the high-speed random TCP worm, it
was identified with an average latency of 0.79 s with the
original threshold but only 1.35 s with the doubled thresh-
old.

210 SIMULATION Volume 83, Number 2

250 T I
200 X
w
3 150 | z z
5 : o o
S 100 & 3
Q Q
5] 5]
50 o [oX
0
308 9 %03 %
% B, % B B3
2 [*4 s
500 4 2 %4 ¢
A oY S C 2y 0,0
% %

Worm Type
(b) Low Speed

7.3 Threshold Analysis

We have seen that increasing the threshold may cause
some types of slow-scanning worms to not be detected.
We can derive the minimum rate at which a worm must
generate connections to be detected by a given threshold.
Worms that scan below such a rate would not be detected,
but if the rate is low enough, a worm scanning that slowly
would be limited in the damage it could cause and the rate
at which it could spread.

The minimum scanning rate the enhanced SWORD
will be able to detect for a given threshold 7 and window
size w can be derived as follows: assuming that we detect
worm connections with some accuracy a, the infected host
must generate worm scans with a rate r such that when
combined with the false positives for the current window
fw, the following is true:

(rxaxw)+ f, > 1. D

The connection-level false positives f,, are dependent
on the background traffic for a given window, but for eval-
uation we can consider the worst case where they are zero.

In our experiments with a random-scanning TCP
worm, we detected worm connections with an accuracy of
roughly 97% and used a threshold of 110 for a 120 s win-
dow. Plugging these numbers into the equation, we can
see that we would detect a worm-infected host within our
network as long as the worms scanning rate was greater
than 0.94 connections/s.

Note that our accuracy at detecting the connections of
a Local Preference scanning worm is substantially lower
as the monitor has the opportunity to observe only half of
the worms scans. Assuming that our accuracy at detecting
Local Preference worm scans is 97% of the 50% of the
connections the monitor sees we would be able to detect

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

ENHANCING SWORD TO DETECT ZERO-DAY-WORM-INFECTED HOSTS

an infected host if the worm scanned with a rate > 1.89
connections/s. This value is greater than the speed in our
experiment which is why we failed to detect the low-speed
worm.

During a window with higher connection-level false
positives for legitimate traffic (and we know that they
spiked as high as 111 within a single window for a UDP
worm during the training period), a worm with an even
slower speed would be detected. Perhaps had we run our
low-speed experiments for longer than 1 h and encoun-
tered a window with high background noise, we would
have detected the low-speed Local Preference worm.

8. Discussion

In addition to the above discussion regarding the results of
our evaluation, there are some other topics which deserve
attention.

8.1 Worm Speed

In our evaluation we considered worms which had both
high speed (100 connections/s) and low speed (1 con-
nection/s) propagation speeds. Of course there are other
speeds that worm authors could use, including connec-
tion rates of even less than 1 connection/s. If a worm is
slow enough that the traffic it generates is interspersed
throughout a large amount of normal traffic, it becomes
much more difficult to detect. It becomes more difficult
for the Causal Similarity Heuristic to find similar connec-
tions, and there are too few worm connections to mea-
surably affect the destination address distribution, thwart-
ing the Destination Distribution Heuristic as well. On the
bright side, if a worm propagates so slowly as to be unde-
tectable it is also likely to be too slow to be a real danger.

8.2 Modern Traffic Traces

For our background traffic, we would have preferred a
more modern trace including modern peer-to-peer (P2P)
traffic, but were unable to find any which met all of our
needs. Some readers may worry that P2P traffic would
alter the destination address distribution of legitimate
traffic, causing false positives or increasing the required
detection threshold. However, we are confident that P2P
traffic would not seriously affect our results. Consider, for
example, Gnutella. Leaf Gnutella nodes usually connect
to a small (around 3) number of peers directly and even
the core, or ultrapeer, nodes generally only connect to
around 30 peers. BitTorrent clients similarly receive only a
short list of peers to contact, and DHT (distributed hash ta-
ble) nodes generally contact only those few nodes in their
neighbor lists. These numbers are relatively small and so
should not noticeably affect the accuracy of the Destina-
tion Distribution Heuristic.

8.3 Possible Improvements

Since the enhanced SWORD detects worm connections
passing through a gateway, it can not detect worm con-
nections which are between internal hosts. Therefore, one
area of improvement could be related to the detection of
internal worm connections. One solution would be to es-
sentially leave the enhanced SWORD as it is and add on
a second system such as an ARP-based detection method
[30]. Another solution would be to have the system ob-
serve all of the internal traffic, in addition to the traffic
that crosses the gateway. By observing the internal traffic
of the network, we may be able to detect a worm- infected
host faster than if we only observe traffic going through
the gateway. Researching the advantages and trade-offs of
each solution is an area of our future work.

Performance also may be improved by using sliding
windows with a finer grain — for instance by having sepa-
rate windows for each port number. This may decrease the
threshold required to differentiate worm connections from
normal connections, in turn decreasing the time required
for detection.

9. Conclusions

Detecting whether or not an individual host is infected by
zero-day worms is critical and must be accurate and fast.
Our research shows how the SWORD system can be en-
hanced to successfully meet this goal.

SWORD is designed to detect zero-day worms at an ad-
ministrative domain. By enhancing SWORD to also oper-
ate at the host level, our research demonstrates that a host
infection detection solution does not have to be rooted at
individual hosts themselves, but can be cleanly and trans-
parently deployed at the gateway point of the network.

Our contribution in this work is predominantly in the
performance evaluation of the enhanced SWORD. By cre-
ating synergistic traffic traces through merging real traces
with simulated GLOWS worm traces, we are able to eval-
uate the efficacy and efficiency of the enhanced SWORD
in detecting whether individual hosts are infected by zero-
day worms. The enhanced SWORD can not only detect
hosts infected by different types of worms, but can also
detect both high-speed and low-speed worms, all success-
fully with high accuracy and low latency. Given that the
payload is not relevant in the detection process, the results
also apply to polymorphic worms that dynamically change
or encrypt their payload.

10. Acknowledgments
We thank Eric Anderson, Paul Knickerbocker, Eric Pur-

pus, and Zhen Wu for their earlier involvement in this
work.

Volume 83, Number 2 SIMULATION 211

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

Stafford, Li and Ehrenkranz

11. References

[1] Stafford, S., J. Li, and T. Ehrenkranz. 2006. On the performance of
SWORD in detecting zero-day-worm-infected hosts. In Proceed-
ing of the Symposium on Performance Evaluation of Computer
and Telecommunication Systems (SPECTS), vol. 38, no. 3, pp.
559-66, track 8 (Traffic Characterization).

[2] Staniford, S., V. Paxson, and N. Weaver. 2002. How to Own the In-
ternet in your spare time. In Proceedings of the USENIX Security
Symposium, USENIX, Berkeley, pp. 149-167.

[3] Moore, D., V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. 2003. The spread of the Sapphire/Slammer
SQL worm, http://www.caida.org/analysis/security/sapphire/,
CAIDA, La Jolla, CA, Techical Report. 2003.

[4] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., and
N. Weaver. 2003. Inside the Slammer worm. /EEE Security and
Privacy 4, 33-9.

[5] Weaver, N., and V. Paxson. 2004. A worst-case worm. In Workshop
on Economics and Information Security.

[6] Li, J., T. Ehrenkranz, G. Kuenning, and P. Reiher. 2005. Sim-
ulation and analysis on the resiliency and efficiency of mal-
nets. In Proceedings of the Symposium on Measurement, Mod-
eling, and Simulation of Malware, Monterey, CA, June, pp. 262—
9.

[7]1 Moore, D., C. Shannon, G. M. Voelker, and S. Savage. 2003. Internet
quarantine: Requirements for containing self-propagating code.
In Proceedings of the IEEE INFOCOM, IEEE Computer Society
Press, Washington, pp. 1901-1910.

[8] Li, J., S. Stafford, and T. Ehrenkranz. 2006. SWORD: Self-
propagating worm observation and rapid detection. University of
Oregon, Technical Report. CIS-TR-2006-03.

[9] Singh, S., C. Estan, G. Varghese, and S. Savage. 2004. Automated
worm fingerprinting. In Proceedings of the Symposium on Op-
erating System Design and Implementation (OSDI), USENIX,
Berkeley, pp. 45-60.

[10] Kim, H.-A., and B. Karp.2004. Autograph: Toward automated, dis-
tributed worm signature detection. In Proceedings of the USENIX
Security Symposium, USENIX, Berkeley, pp. 271-86.

[11] Kreibich, C., and J. Crowcroft. 2004. Honeycomb: Creating in-
trusion detection signatures using honeypots. ACM SIGCOMM
Computer Communication Review 34(1), 51-6.

[12] Nazario, J., J. Anderson, R. Wash, and C. Connelly. 2003. The Fu-
ture of Internet Worms. http://www.crimelabs.net/docs/worms/
worm.pdf.

[13] Chen, Z., L. Gao, and K. Kwiat. 2003. Modeling the spread of active
worms. In Proceedings of the IEEE INFOCOM, IEEE Computer
Society Press, Washington, pp. 1890-1900.

[14] Garetto, M., and W. Gong. 2003. Modeling malware spreading dy-
namics. In Proceedings of the IEEE INFOCOM, IEEE Computer
Society Press, Washington, pp. 1869-1879.

[15] Toth, T., and C. Kruegel. 2002. Connection-history based anomaly
detection. In Proceedings of the IEEE Workshop on Information
Assurance and Security, IEEE Computer Society Press, Wash-
ington, pp. 25-30.

[16] Kruegel, C., and T. Toth. 2002. Distributed pattern detection for in-
trusion detection. In Proceedings of the Network and Distributed
System Security Symposium. Internet Society, Internet Society,
Reston.

[17] Staniford-Chen, S., S. Cheung, R. Crawford, M. Dilger, J. Frank, J.
Hoagland, K. Levitt, C. Wee, R. Yip, and D. Zerkle. 1996. GrIDS:
A graph based intrusion detection system for large networks. In
Proceedings of the National Information Systems Security Con-
ference.

[18] Twycross, J., and M. M. Williamson. 2003. Implementing and test-
ing a virus throttle. In Proceedings of the USENIX Security Sym-
posium, USENIX, Berkeley, pp. 285-294.

[19] N. Weaver, S. Staniford, and V. Paxson, “Very fast containment
of scanning worms,” in USENIX Security Symposium. Berkeley,
CA: USENIX, 2004, pp. 29-44.

212 SIMULATION Volume 83, Number 2

[20] Moore, D., C. Shannon, and K. C. Claffy. 2002. Code-Red: A case
study on the spread and victims of an Internet worm. In Proceed-
ings of the ACM Internet Measurement Workshop, ACM Press,
New York, pp. 273-284.

[21] Chun, B. N., J. Lee, and H. Weatherspoon. 2003. Netbait: A Dis-
tributed Worm Detection Service. http://netbait.planetlab.org. In-
tel Research, Berkeley, Technical Report IRB-TR-03033.

[22] Mukherjee, B., L. Heberlein, and K. Levitt. 1994. Network intrusion
detection. Network 8(3), 26-41.

[23] Dagon, D., X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levin, and H.
Owen. 2004. HoneyStat: Local worm detection using honeypots.
In Proceedings of the Symposium on Recent Advances in Intru-
sion Detection, Sophia Antipolis, France, Springer, Heidelberg,
pp. 39-58.

[24] Kloet, J. 2005. A honeypot based worm alerting system.
http://www.sans.org/rr/whitepapers/detection/1563.php.

[25] Xie, Y., V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang. 2005.
Worm origin identification using random moonwalks. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, IEEE
Computer Society Press, Washington, DC, pp. 242-56.

[26] Zou, C. C., L. Gao, W. Gong, and D. Towsley. 2003. Monitoring and
early warning for Internet worms. In Proceedings of the Confer-
ence on Computer and Communications Security, ACM Press,
New York, pp. 190-9.

[27] Roesch, M. 1999. Snort — Lightweight intrusion detection for net-
works. In Proceedings of the 13th Systems Administration Con-
ference — LISA 99, USENIX, Berkeley, pp. 229-238.

[28] WAND Network Research Group. 2001. WAND WITS: Auckland-
IV trace data. http://wand.cs.waikato.ac.nz/wand/wits/auck/4/,
April 2001.

[29] Matsumoto, M., and T. Nishimura, 1998. Mersenne twister: A
623-dimensionally equidistributed uniform pseudorandom num-
ber generator. ACM Transactions on Modeling and Computer
Simulation 8(1), 3-30.

[30] Whyte, D., E. Kranakis, and P. C. van Oorschot. 2005. ARP-based
detection of scanning worms in an enterprise network. In Pro-
ceedings of the Annual Computer Security Applications Confer-
ence.

Shad Stafford is a graduate student at the University of Ore-
gon pursuing a PhD in Computer and Information Science. His
research interests include network security and peer-to-peer net-
working, and he is currently researching worm detection as part
of the Network Security Research Laboratory. He received his
MS in Computer Science from the University of Oregon in 2006
and his BA in Computer Science from Carleton College in 1996.

Jun Li is an assistant professor at the University of Oregon,
and directs the Network Security Research Laboratory there. He
received his PhD from UCLA in 2002 (with honors), ME from
Chinese Academy of Sciences in 1995 (with Presidential Schol-
arship), and BS from Peking University in 1992, all in computer
science. His current research includes Internet worm detection,
BGP routing, IP source address validity, and security for peer-
to-peer systems. He is a 2007 recipient of the prestigious NSF
CAREER award.

Toby Ehrenkranz An Oregon native, Toby Ehrenkranz received
his BS in Mathematics and Computer Science from the Univer-
sity of Oregon in 2002. After teaching preschool and kinder-
garten in Chengdu, China for 2 years, he returned to the Univer-
sity of Oregon where he is currently working towards his PhD in
Computer and Information Science. His research topics include
Internet worm behavior and IP source address validity.

Downloaded from http://sim.sagepub.com at UNIV OF OREGON on July 6, 2007
© 2007 Simulation Councils Inc.. All rights reserved. Not for commercial use or unauthorized distribution.

http://sim.sagepub.com

