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Abstract
Once a host is infected by an Internet worm, prompt action

must be taken before that host does more harm to its local
network and the rest of the Internet. It is therefore critical to
quickly detect that a worm has infected a host. In this paper,
we enhance our SWORD system to allow for the detection of
infected hosts and evaluate its performance. This enhanced
version of SWORD inherits the advantages of the original
SWORD—it does not rely on inspecting traffic payloads to
search for worm byte patterns or setting up a honeypot to lure
worm traffic. Furthermore, while acting as a host-level detec-
tion system, it runs at a network’s gateway and stays transpar-
ent to individual hosts. We show that our enhanced SWORD
system is able to quickly and accurately detect if a host is
infected by a zero-day worm. Furthermore, the detection is
shown to be effective against worms of different types and
speeds, including polymorphic worms.

1 INTRODUCTION
The launching of a worm can have disastrous effects on

millions of computers on the Internet in just a few short
minutes [1, 2], potentially disrupting the operation of crit-
ical services such as emergency call centers [3]. The cost
of disrupted service and repair from worms can also be ex-
tremely high; for example, it is estimated that the costs as-
sociated with the CodeRed and Sapphire/Slammer worms are
over three billion dollars. Perhaps even more alarming, re-
searchers have found that none of the worm attacks so far
have come close to causing the amount of damage they are
capable of [4].

With worms and their destructiveness gaining wide-spread
recognition, it seems only a matter of time until new worms
are created with even higher rates of spread. Worms that take
advantage of a heretofore unknown vulnerability, so-called
zero-day worms, are particularly dangerous because many ex-
isting security techniques require prior knowledge of the ex-
ploit in order to detect and defeat it. These worms could be-
come even more dangerous by creating their own coordinated
networks from the infected hosts [5]. In order to achieve ef-
fective containment, as shown in [6], reaction times must be
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on the order of a few minutes or less. Any worm defense
mechanism which requires human action, therefore, is just
not feasible.

Our recent research has devised an approach, named
SWORD [7], to detect the occurrence of zero-day worms at
an administrative domain level. SWORD has a number of
desirable features in a worm-detection system: it requiresde-
ployment at only one place on the network (the gateway), it
is capable of detecting many different types of worms, it does
not rely on payload inspection, and it has a low false-positive
rate. These features compare favorably with existing systems
such as [8, 9, 10]. Solutions that depend on using worm sig-
natures to identify the byte patterns sent from worm infected
hosts may have difficulty detecting polymorphic worms or
worms which encrypt their payload during propagation, not
to mention the cost of inspecting the payload of every packet
in transit. Honeypot based solutions typically capture con-
nections to unused network addresses so will not detect a
worm that only attempts to contact network addresses where a
valid host exists. They are also vulnerable to spoofing attacks
which deliberately send legitimate looking traffic to honey-
pots causing real traffic to be flagged as worm traffic.

However, it is still unknown how fast and accurate we
can be in detecting the infection of individual hosts. While
SWORD provides an elegant solution for detecting the occur-
rence of zero-day worms, it is often necessary to know which
hosts are infected in order to take prompt, concrete actions. In
this paper, we enhance SWORD to further detect worm infec-
tions at the host level without requiring intrusive monitoring
systems installed on end-hosts. Furthermore, we will outline
a new methodology for evaluating the performance of a worm
detection system and then we will present a thorough evalua-
tion of the speed and accuracy of the enhanced SWORD. We
evaluate the effectiveness at identifying which hosts within a
network are infected against a wide variety of worm propa-
gation models, including random scanning, local-preference
random scanning, and topological scanning. We also consider
the effects of polymorphism and encryption of the worm pay-
load.

The paper is organized as following. We will begin by re-
viewing some previous work related to our research in Sec-
tion 2, followed by our design for enhancing SWORD to de-
tect worm-infected hosts in Section 3. In Section 4, we then
describe our methodology for evaluating the speed and accu-
racy of the enhanced SWORD. Section 5 presents our results
and analysis of our experiments. More discussion is in Sec-
tion 6, followed by our conclusion in Section 7.



2 RELATED WORK
Recently there have been studies on how worms may be-

have [11, 1, 12, 13, 5] and the general requirements for
containing them [6]. However, worm defense still remains
largely an open topic. Research on worm defense typically
falls into three categories:

• Intrusion detection systems (IDS) that identify suspi-
cious behavior as it happens [14, 15, 16, 10];

• Rate-limiting suspicious outbound connections [17, 18];

• Performing forensic analysis of worms [19, 2, 20].
Our approach is to study and evaluate the detection of in-

fected hosts in real time, so research from the first category
is closest to ours. Research from the second category is not
aimed at detecting which hosts are infected by worms. Re-
search from the third category is complementary to real-time
worm detection approaches such as ours but is generally done
after the fact. In the following, we focus on the first category.

Real-time worm detection generally can be divided into
two different categories: host-based IDS and network-based
IDS. While conventionally a host-based IDS detects whether
or not a host is under attack and a network-based IDS detects
whether or not a network is under attack [21], our work stud-
ies how well anetwork-based approach performs in detecting
host-level worm infection events.

Worm IDS can also be divided into misuse-based detec-
tion or anomaly-based detection. In detecting host infections
of zero-day worms, one popular approach is to quickly dis-
cover a byte pattern of a zero-day worm and use that as the
signature for detection [9, 8], another is to set up a honey-
pot (which should not receive any traffic and thus any traffic
it receives is probably malicious) and send out worm alerts
upon the receipt of unexpected traffic [10, 22, 23]. The byte
pattern approach can be used to detect if an individual host is
infected or not, but because it needs to check the payload of
the traffic, not only will it have a high amount of overhead,
but it will also have difficulty detecting polymorphic worms
when the payload changes. The honeypot approach cannot
directly help detect which local hosts are infected by worms,
as a honeypot can only tell for sure that itself is being at-
tacked. Additionally, honeypots suffer from the fact that they
can only detect a worm if it scans addresses that are not pop-
ulated by a regular host. That is, a honeypot will not ever
detect a worm that only scans addresses with valid hosts.

As our research is on evaluating the speed and accuracy of
the enhanced SWORD in detecting worm-infected hosts, we
note that there are several other recent host infection detection
systems geared towards worm detection.

• EarlyBird [8] is a signature generation system which
has been shown to be effective in discovering zero-
day worms. However, the system suffers from having
to make a trade-off of false positives for speed. Fur-
thermore, the system is not able to detect polymorphic
worms.

• Moonwalk [24] is a system which determines the host
which originated a worm attack. It is more of a forensic
system, more useful after an infection has been discov-
ered than in detecting an attack. Furthermore, it requires
complete connection information—not just a trace at a
network’s gateway—limiting its overall utility.

• The early warning system from Cliff Zou et al. [25] is

also able to quickly detect Internet worms. The focus of
their work, however, is to detect the presence of worms
in the Internet at large, not to detect which hosts are in-
fected.

• Snort [26] is probably the most widely used IDS, and it
is entirely signature based. In order for it to be useful
against zero-day worms, another system must be used to
supply Snort with the proper signatures.

3 ENHANCING SWORD
In order to evaluate the performance of detecting the worm

infection at host level we first enhance SWORD so that it
is able to detect whether or not a particular host is infected
with a zero-day worm. In this section, we first describe how
SWORD works, then describe our enhancements.

3.1 SWORD: Self-propagating Worm Obser-
vation and Rapid Detection

The SWORD system detects worms by monitoring connec-
tion activity at a network’s gateway. This scheme is mini-
mally intrusive from a deployment standpoint, requiring far
less administration than solutions that require installations on
each host of the network. The monitor watches all connec-
tions into and out of the network, but does not look at internal
network traffic. Because SWORD does not look at the con-
tents of each packet, the packets can be easily coalesced into
what we callConnectionDescriptorswhich contain the ba-
sic information about the connection, such as the source and
destination address and port numbers, and the TCP flags that
have been seen. Aconnection here refers to an end-to-end
communication using either the TCP or UDP protocol.

SWORD detects wormy connections by applying a pair
of heuristics to each connection that is seen at the monitor.
The two heuristics look for patterns in the connection traf-
fic that are expressions of some of the essential characteris-
tics of worm behavior: similarity between connections with
a causal relationship by theCausal Similarity Heuristic, and
non-power-law destination host distribution by theDestina-
tion Distribution Heuristic. These heuristics are completely
agnostic to the content or payload of the connections, so are
entirely robust to polymorphic worms. A connection is con-
sidered to be “wormy” if both heuristics agree that it is. Note
that due to false positives in the detection process, a connec-
tion identified as “wormy” may or may not in fact be an actual
“worm” connection.

SWORD then further discovers whether a TCP-based (or
UDP-based) worm outbreak is indeed occurring at an admin-
istrative domain by determining whether the total number of
outgoing TCP (or UDP) wormy connections from the domain
during a sliding window is above the alert threshold. If so,
an alert is then raised that a worm is active in the domain.
The threshold is determined by observing normal traffic from
a domain during a sliding window and measuring the total
number of connections that would be considered to be wormy
connections according to the two heuristics.

3.2 Enhancing SWORD to Detect Worm-
Infected Hosts

Whereas SWORD is able to detect whether a domain has a
zero-day worm, we enhance SWORD so that we can also de-



tect whether an individual host is infected. We do so without
requiring intrusive monitoring systems installed on end-hosts.
Instead, we follow the same spirit of the original SWORD
system. If the number of wormy TCP connections from a par-
ticular host during a sliding window is above the host-level
threshold for detecting the infection of TCP-based worms,
then a TCP-based worm has infected the host in question. The
same is true for UDP-based worms;i.e., if during a sliding
window a host sends out more wormy UDP connections than
the host-level threshold for detecting the infection of UDP-
based worms, then the host has been infected by a UDP-based
worm.

The process in obtaining the host-level thresholds is also
similar to the original SWORD for domain-level thresholds.
By observing normal TCP (or UDP) traffic from individ-
ual hosts during a sliding window, one can obtain the total
number of TCP (or UDP) connections that the two heuris-
tics would label as wormy connections according to the two
heuristics, and use this number as the host-level thresholdfor
detecting the infection of a TCP-based (or UDP-based) worm.

Such enhancement is straightforward, but it serves two im-
portant purposes: (1) As in the original SWORD, it continues
to be a gateway-based approach and is transparent to individ-
ual hosts. (2) The performance of host infection detection can
then be evaluated based on an approach that we believe is su-
perior to payload-inspection-based or honeypot-based worm
detection approaches.

4 METHODOLOGY
We adopt a trace-based simulation approach to evaluating

the enhanced SWORD in detecting host infection. In the fol-
lowing, we first describe what metrics we use for evaluation,
and then describe the traffic we choose in the evaluation.

4.1 Metrics
The metrics we use must be able to evaluate the following:
the latency, or the average speed with which that any given
host is detected to be infected with a worm, and theaccuracy
with which any infected host is identified.

The latency is simply the time it takes to detect that an
infected host is infected, which we calculate by subtracting a
host’s time of infection from its time of detection. We report
the value averaged across all of the hosts infected for a given
run of the experiment.

The accuracy is slightly more complex. At a basic level we
need to knowfalse positives (how many non-infected hosts
were flagged as being infected by the system) andfalse neg-
atives (how many infected systems werenot flagged as be-
ing infected). Moreover, we will need to knowadjusted false
negatives to find out how accurate we are in detecting those
hosts that initiate more worm connections than the level de-
fined by the threshold. This measure is specific to our ex-
perimental setup and filters out those false negative occurring
from a host being infected immediately before the termina-
tion of the experiment. We feel that this adjusted measure
more accurately represents the true performance of the en-
hanced SWORD because it does not penalize SWORD for
the limitations of our experimental setup. We will use the
false negative and adjusted false negative statistics to present
accuracy andadjusted accuracy percentages which are, re-
spectively, the percentage of worm infected hosts correctly

Table 1. Auckland-IV Trace Details
Date Active Hosts Out Conns. In Conns.
2001/03/06 2,344 2,459,281 979,366
2001/03/07 2,270 2,352,294 929,511
2001/03/08 2,296 2,263,636 1,074,695
2001/03/09 2,283 2,328,105 864,532

detected and the percentage of worm infected hosts correctly
detected which sent more than the threshold amount of worm
connections (false positives are not addressed as they did not
occur in our results).

4.2 Background Traffic
We use a pre-recorded network trace from a real network as
the background traffic in our experiment. We did not use a
live network feed because we need to run controlled and re-
peatable experiments. Simulated traffic was not an option be-
cause it there simply isn’t any way to simulate traffic with the
realism that we require.

The real trace in our experiments is the Auckland-IV trace
[27]. It is a continuous 45 days GPS-synchronized IP header
trace recorded between February and April 2001 at the Uni-
versity of Auckland and Auckland University of Technology.
Traffic was tapped from an OC3 ATM link that connects the
Universities to the service provider. The inside networks con-
tain two /16 and several /24 prefixes and all IP addresses are
anonymized in the trace. The trace includes all the TCP and
UDP header information necessary for our experiments, but
no payload information. We redistributed the anonymized
IP addresses from the trace into a fictionalized IP range that
properly reflects the topology of the network inside the Auck-
land border router. On any given day there were approxi-
mately 2,250 hosts making roughly 2,300,000 total outbound
connections and another 960,000 incoming connections (see
Figure 1). The hosts which were active varied from day to
day, and roughly 5,000 total internal hosts were active at some
point in the trace.

We do not know, of course, whether there are any worms
active in this trace, or which connections in the trace represent
those initiated by an infected host, so there is no way to test
the effectiveness of the enhanced SWORD against this trace
alone. Instead, we make the assumption that this trace has
no worm traffic in it whatsoever, and then we inject our own
simulated worm traffic, which we discuss in the following
section.

4.3 Worm Traffic
We have created our own worm simulator to model the spread
of all of the different types of worms used in our experiments.
It uses a network topology that matches that of the Auckland
trace—two internal /16 networks separated from the Internet
by a border router, and captures traffic that crosses the border
router to a trace file.

Our worm simulator uses a high-fidelity [28] finite-state
model to simulate the behavior of each vulnerable host in
both the Internet and the internal network. This is feasiblebe-
cause the number of vulnerable hosts is only a small fraction
of the total hosts in the Internet and because we do not model
congestion effects or background traffic within the simula-
tor. Addresses where a host is active in the internal network
are derived from detected host activity in the real trace, and



Table 2. Network Topology Details
Internet Details

Total Addresses ∼4 billion (232)
Hosts ∼300 million (from isc.com)
Service Runners 3 Million
Vulnerable Hosts 300,000

Internal Network Details
Total Addresses ∼128,000(217)
Hosts 5,000 (from trace)
Service Runners 500
Vulnerable Hosts 500

external hosts are probabilistically allocated. Not all hosts
run the service that the worm is attacking, we assign service
runners probabilistically in both the internal and external net-
work. See Table 2 for details.

The worm simulator accurately models the connection-
level interaction between two hosts during an infection at-
tempt down to setting appropriate TCP flags. The payload
and target port number are configurable. We chose to use port
80 as the target port. This is one of the most numerous ports
used in the Auckland trace (roughly 50% of connections go
to port 80) which should make detection as hard as possible.

The simulator uses a pluggable propagation model, allow-
ing us to simulate a number of different propagation schemes.
For our experiments we simulated random, local preference,
and topological scanning modes [1]. We also controlled the
speed of the worm, allowing us to study relatively high speed
(100 connections/second) and low speed (1 connection/sec-
ond) worms.

Random scanning worms choose each new target address
randomly. Local-preference worms choose randomly, but
with a preference towards choosing randomly from the local
subnet. Our local-preference worm chooses an address from
its class B address space with a 50% probability, from its class
A address space with a 25% probability and from the Internet
as a whole with a 25% probability. The topological scanning
worm starts with a list of roughly 500 addresses known to be
running the target service. Once these have been contacted,
it reverts to a pure random scanning worm. The worm simu-
lator supports polymorphic payloads for any of the propaga-
tion models, but we do not run these simulations because the
SWORD heuristics do not examine payload characteristics.

To create a worm trace, we begin with 3,000 hosts infected
in the Internet and a worm connection crossing the border
router which infects one of our internal hosts. This is meantto
replicate a reasonable scenario for a newly introduced worm
at the early stage of its development while also reducing the
time required to run our simulations. We run each simula-
tion until 100,000 worm connections have crossed the gate-
way, or 1 hour has passed in the simulation, whichever comes
first. Every scenario is run 10 times to create 10 unique worm
traces for each speed and propagation combination.

4.4 Merged Traffic
To run experiments against the enhanced SWORD, we create
a merged trace to be the input. The merged trace consists of
a single day’s worth of connections just from the Auckland
trace to warm up the heuristics, followed by connections in-
terlaced from the desired worm trace and the next day’s Auck-

land trace. These connections are interleaved based on the
connection start-time, resulting in a single trace where we
can identify which connections are worm connections and
which hosts are infected at what time, allowing us to accu-
rately measure the performance of our detection system.

5 RESULTS
In this section, we first present our results in selecting

thresholds for detecting host infection, then report the accu-
racy and latency in detecting the host infection.

5.1 Threshold
The sliding window size and thethreshold are two key fac-
tors in the success of the enhanced SWORD system. The
sliding window size determines the length of the period over
which the wormy connections from a given host are counted.
The threshold differentiates the number of wormy connec-
tions from a host’s normal traffic—also calledbackground
noise—and that from a worm-infected host. The heuristics
we utilize are expected to generate low levels of false pos-
itives at the connection level, perhaps labeling certain legit-
imate connections from a host wormy. It is important that
the threshold is set in such a way that these false positives,
i.e. background noise, do not trigger a report that a host is
infected.

The selection of the sliding window size and the threshold
is a compromise between detection sensitivity and latency.
Our goal is to choose the smallest window size that still yields
enough sensitivity to detect even slow-moving worms. Eval-
uation of the background (non-worm) traces reveals that the
connection-level false positives tend to be quite bursty, as can
be easily seen in Figures 1(a) and 1(b) and Tables 3 and 4.

As we increase the size of the sliding window, it increases
the absolute value of the threshold, but reduces the average
number of connections per unit of time needed to exceed the
threshold. A larger window is therefore desirable as it allows
us to detect worms with slower scanning rates. The size of
the window also impacts the speed with which we can detect
worms, however. We must identify enough worm connec-
tions from a given host to exceed our chosen threshold, so
as the threshold grows with the window size, the number of
connections a worm must send to exceed it also grows. A
smaller window is therefore desirable to maintain low detec-
tion latencies.

We chose our TCP and UDP thresholds and window sizes
after examining four days of the Auckland trace. We ran the
enhanced SWORD against the (assumed to be non-worm)
connections from the Auckland trace and measured the av-
erage and maximum wormy connection counts for various
window sizes. We selected a 2-minute window size for TCP
connections with a threshold of 55 wormy connections, and
a 4-minute window for UDP connections with a threshold of
112 wormy connections (Tables 3 and 4). These thresholds
are higher than any measured bursts of false positives in the
background traces, and substantially higher than the average
observed value.

In researching the source of the background noise in the
traces, we discovered that many of UDP false positives were
triggered by DNS activities. This is not surprising, as DNS
lookups may generate many similar connections to many dif-
ferent hosts, matching the criteria of both of our heuristics.
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Figure 1. Background Trace Scores vs Time. Score is number ofwormy connections from a single host during sliding
window ending at this time.

Table 3. Background Trace TCP Score Details

Date Mean Window Score Max Window Score
2001/03/06 2.88±2.29 20
2001/03/07 2.94±2.26 12
2001/03/08 3.27±4.40 54
2001/03/09 2.66±2.02 13

Window: 2 minutes, Threshold Chosen: 55

Table 4. Background Trace UDP Score Details

Date Mean Window Score Max Window Score
2001/03/06 22.23±22.05 109
2001/03/07 24.66±24.78 95
2001/03/08 31.03±27.61 111
2001/03/09 28.23±27.54 99

Window: 4 minutes, Threshold Chosen: 112

This implies that white-listing the DNS connections would
improve our results by lowering our UDP window size and
threshold (see Table 5). However, this would also create a
hole in our coverage that could be exploited by a worm tar-
geting a DNS vulnerability. The decision of whether the im-
proved performance is worth the reduced protection is a mat-
ter of judgment and a case-by-case decision. In the remain-
ing results sections, we will present our resultswithout DNS
white-listing save for a brief discussion in Section 5.4.

5.2 Accuracy
Having established a suitable threshold, we can now examine
the accuracy of the enhanced SWORD at identifying worm

Table 5. Background Trace UDP Score Details w/DNS
white-list

Date Mean Window Score Max Window Score
2001/03/06 4.38±6.61 49
2001/03/07 4.31±6.11 49
2001/03/08 2.44±1.87 16
2001/03/09 3.53±3.51 36

Window: 2 minutes, Threshold Chosen: 50

Table 6. Accuracy: High Speed TCP Worms
Type Accuracy Adjusted Accuracy
Random 100.0±0.0 100.0±0.0
Topological 98.49±2.30 100.0±0.0
Local Preference 88.08±2.26 95.69±1.30

Table 7. Accuracy: High Speed UDP Worms
Type Accuracy Adjusted Accuracy
Random 100.0±0.0 100.0±0.0
Topological 97.22±2.91 98.72±2.65
Local Preference 79.55±2.42 96.92±0.75

infected hosts.
We begin by evaluating the enhanced SWORD’s perfor-

mance against high speed worms. The results for both the
TCP and UDP experiments are presented in Tables 6 and 7
and show the enhanced SWORD’s exceptional performance.

The enhanced SWORD correctly identified 100% of the in-
fected hosts with zero false positives in all of our experiments
for the TCP-based random scanning and topological scanning
worms (Table 6). These worms are more likely to initiate a
worm connection to an address across the gateway than the
local preference worm is, so they are easier for our system to
detect. The local preference worm sends fewer connections
across the gateway, which allows for normal traffic from the
infected host to have a better chance of interfering with our
detection mechanisms. Even so, we correctly identified more
than 95% of the infected hosts in the local preference experi-
ments.

The performance against UDP worms is not quite as good
(Table 7), due to the increased threshold and window size.
Each infected host must produce more identified worm con-
nections to exceed the threshold, and the longer window al-
lows more time for normal traffic to interfere with correct
connection categorization. Even so, we correctly identify
100% of the infected hosts for the random propagation model
and more than 96% of the infected hosts for the topological
and local preference worms.

The enhanced SWORD’s performance against low-speed
worms is similar, but suffers somewhat at detecting TCP lo-
cal preference worms (Tables 8 and 9). One might expect
that detecting the UDP local preference worm would be more
difficult than the TCP-based version due to the higher UDP



Table 8. Accuracy: Low Speed TCP Worms
Type Accuracy Adjusted Accuracy
Random 100.0±0.0 100.0±0.0
Topological 99.17±2.50 100.0±0.0
Local Preference 80.56±1.84 87.54±1.89

Table 9. Accuracy: Low Speed UDP Worms
Type Accuracy Adjusted Accuracy
Random 100.0±0.0 100.0±0.0
Topological 96.81±4.97 100.0±0.0
Local Preference 77.21±2.00 95.01±1.34

threshold, but instead it seems to be the shorter TCP window
that limits detection efficacy.

5.3 Latency
We have seen that the enhanced SWORD can accurately iden-
tify worm infected hosts, but the question remains: can this
be done in a timely fashion? The Sapphire/Slammer worm
was able to infect most of its vulnerable population in under
10 minutes [2], setting a benchmark we must be able to beat
to field an effective worm detector. In fact, our results show
that we are able to detect worm activity substantially faster
than 10 minutes for both high-speed and low-speed worms.

When run with our high-speed worm variants, the en-
hanced SWORD was able to detect infected hosts in under
10 seconds in all cases (see Figure 2(a)). This shows that the
enhanced SWORD is indeed capable of countering a worm
like Sapphire/Slammer. Note also that the connection rate of
this high-speed worm is reasonable in comparison to the Sap-
phire/Slammer. The Sapphire/Slammer worm is bandwidth
limited, and a host on a 100 Mbit/s connection would be capa-
ble of sending approximately 300 connections/second. This
is greater than the 100 connections/second of our experiment
and would therefore be even easier for the enhanced SWORD
to detect.

There is little variation in the high-speed results be-
tween the different worm types because these high speed
worms produce enough wormy connections to overwhelm our
thresholds. In fact, for worms with speeds as high as these,
the fact that we only check the host scores every 10 seconds
is actually the limiting factor in detection speed. The latency
could be improved for these high-speed worms by checking
host scores after ever wormy connection, rather than waiting
for a fixed time.

There is substantially more variation between detection la-
tencies of the various worm propagation models in the low-
speed experiments (Figure 2(b)). The enhanced SWORD is
substantially slower at detecting low speed worms due to the
lower volume of worm connections, but even so it detects all
worm varieties in under five minutes, and all but the Local
Preference UDP worm in under two and a half minutes. These
times are again faster than the benchmark set by the Sap-
phire/Slammer worm, and in any case slow scanning worms
will be much slower at infecting the entire Internet.

The average latency for detecting slow speed worms which
use the local preference scanning method is substantially
higher than that of worms which use other scanning meth-
ods. This is a direct result of the fact that only 50% of the
connections from the local preference worm pass through the
gateway and the monitor. These slow speed worms only make
one connection per second, so every connection that does not
pass through the monitor slows detection by a second.

Table 10. Accuracy: High Speed UDP Worms with DNS
White-list

Type Accuracy Adjusted Accuracy
Random 100.0±0.0 100.0±0.0
Topological 98.50±2.30 100.0±0.0
Local Preference 90.00±2.03 96.72±1.06

Table 11. Accuracy: Low Speed UDP Worms with DNS
White-list

Type Accuracy Adjusted Accuracy
Random 100.0±0.0 100.0±0.0
Topological 99.17±2.50 100.0±0.0
Local Preference 89.90±1.52 96.69±1.16

There is a clear difference in the TCP latencies versus UDP
latencies because of the different windows and thresholds
used, as described in Section 5.1.

5.4 DNS White Listing
The high threshold and long window size used for UDP
worms negatively impacts the enhanced SWORD’s detection
latency. The threshold and window size choices were influ-
enced substantially by false positives stemming from DNS
traffic (as was mentioned in Section 5.1), but if DNS traffic
were exempted from consideration by the enhanced SWORD,
we could reduce both the window size and the threshold
which would allow for superior performance.

Table 10 shows that our detection accuracy actually in-
creases marginally for high-speed worms when we employ
the DNS white-list, with the topological worm detection rate
increasing from 98.72% to 100%. Low-speed worms see a
similar improvement (see Table 11) though in no case is there
a dramatic improvement.

More substantial improvements can be seen in the latency
results, particularly for low-speed worms (see Figure 3(b)).
The average detection latency for random and topological
scanning worms was reduced by half from near 150 seconds
to under 75 seconds. The local preference worm saw an even
more substantial improvement being reduced from over 275
seconds to under 140.

The improvement for high-speed worms (Figure 3(a)) was
not as impressive, with the local preference results the only
ones showing real improvement changing from 7.5 to 6.4 sec-
onds.

Clearly, exempting DNS traffic from our monitor improves
performance. Reducing the detection latency of slowly scan-
ning worms reduces the damage done before they are detected
and could be extremely important in limiting the overall im-
pact of a worm outbreak. On the other hand, failing to moni-
tor DNS traffic would leave the network wide open to a worm
exploiting a DNS vulnerability.

6 DISCUSSION
In addition to the above discussion regarding the results

of our evaluation, there are some other topics which deserve
attention.

6.1 Worm Speed
In our evaluation we considered worms which had both high
speed (100 connections/second) and low speed (1 connec-
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Figure 3. Average Detection Latency for Worms with DNS White-list.

tion/second) propagation speeds. Of course there are other
speeds that worm authors could use, including connection
rates of even less than 1 per second. If a worm is slow
enough that the traffic it generates is interspersed through-
out a large amount of normal traffic, it becomes much more
difficult to detect. It becomes more difficult for the Causal
Similarity Heuristic to find similar connections, and thereare
too few worm connections to measurably affect the destina-
tion address distribution, thwarting the Destination Distribu-
tion Heuristic as well. On the bright side, if a worm propa-
gates so slow as to be undetectable it is also likely too slow to
be a real danger.

6.2 Modern Traffic Traces
For our background traffic, we would have preferred a more
modern trace including modern peer-to-peer (P2P) traffic, but
were unable to find any which met all of our needs. Some
readers may worry that P2P traffic would alter the destination
address distribution of legitimate traffic, causing false posi-
tives or increasing the required detection threshold. However,
we are confident that P2P traffic would not seriously affect
our results. Consider, for example, Gnutella. Leaf Gnutella
nodes usually connect to a small (around 3) number of peers
directly and even the core, or ultrapeer, nodes generally only
connect to around 30 peers. BitTorrent clients similarly re-
ceive only a short list of peers to contact, and DHT (dis-
tributed hash table) nodes generally contact only those few
nodes in their neighbor lists. These numbers are relatively

small and so should not noticeably affect the accuracy of the
Destination Distribution Heuristic.

6.3 Possible Improvements
Since the enhanced SWORD detects worm connections pass-
ing through a gateway, it can not detect worm connections
which are between internal hosts. Therefore, one area of im-
provement could be related to the detection of internal worm
connections. One solution would be to essentially leave the
enhanced SWORD as it is and add on a second system such
as an ARP-based detection method [29]. Another solution
would be to have the system observe all of the internal traf-
fic, in addition to the traffic which crosses the gateway. By
observing the internal traffic of the network, we may be able
to detect a worm infected host faster than if we only observe
traffic going through the gateway. Researching the advan-
tages and trade-offs of each solution is an area of our future
work.

Performance also may be improved by using sliding win-
dows with a finer grain—for instance by having separate win-
dows for each port number. This may decrease the threshold
required to differentiate worm connections from normal con-
nections, which would in turn decrease the time required for
detection.

7 CONCLUSION
Detecting whether or not an individual host is infected by

zero-day worms is critical and must be accurate and fast. Our



research shows how the SWORD system can be enhanced to
successfully meet this goal.

The SWORD system is designed to detect zero-day worms
at an administrative domain. By enhancing SWORD to also
operate at the host level, our research demonstrates that a host
infection detection solution does not have to be rooted at indi-
vidual hosts themselves, but can be cleanly and transparently
deployed at the gateway point of those hosts.

Our contribution in this work mainly lies in the perfor-
mance evaluation of the enhanced SWORD. By creating syn-
ergistic traffic traces through merging real traces with simu-
lated worm traces, we are able to evaluate the efficacy and
efficiency of the enhanced SWORD in detecting whether in-
dividual hosts are infected by zero-day worms. The enhanced
SWORD can not only detect hosts infected by different types
of worms, but can also detect both high-speed and low-speed
worms, all successfully with high accuracy and low latency.
Given that the payload is not relevant in the detection process,
the results also apply to polymorphic worms that dynamically
change or encrypt their payload.
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