In-Network Filtering of Distributed Denial-of-Service Traffic
with Near-Optimal Rule Selection

Devkishen Sisodia

University of Oregon
dsisodia@cs.uoregon.edu

ABSTRACT

A recent trend to mitigate large-scale distributed denial-of-service
(DDoS) attacks is in-network filtering, where victims can deploy
traffic-filtering rules in networks other than their own. However,
given multiple constraints, such as the number of rules a victim
can afford to deploy, the set of rules that DDoS defense entities
allow a victim to deploy, and the amount of collateral damage to
limit, the selection of rules has a large impact on the efficacy of an
in-network filtering solution.

In this paper, we introduce a new, offer-based operational model
for in-network DDoS defense and formulate the NP-hard rule se-
lection problem for this model. We then design an algorithm that
overcomes the fundamental limitations of the classical ACO frame-
work and transform it with several key changes to make it appli-
cable to the domain of in-network DDoS defense. Finally, we use
a real-world-based Internet routing topology and two real-world
DDoS traces, along with one synthetic trace that follows the attack
distribution of the recent Mirai DDoS attack, to evaluate the effi-
cacy and runtime of our algorithm against four other rule selection
algorithms, and show our algorithm is near-optimal.

CCS CONCEPTS

+ Networks — Denial-of-service attacks; « Theory of compu-
tation — Bio-inspired optimization.

KEYWORDS

distributed denial-of-service (DDoS); in-network DDoS filtering;
DDoS-filtering rule selection; rule selection optimization

ACM Reference Format:

Devkishen Sisodia, Jun Li, and Lei Jiao. 2020. In-Network Filtering of Dis-
tributed Denial-of-Service Traffic with Near-Optimal Rule Selection. In
Proceedings of the 15th ACM Asia Conference on Computer and Communica-
tions Security (ASIA CCS °20), October 5-9, 2020, Taipei, Taiwan. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3320269.3384755

1 INTRODUCTION

While the size, frequency, and complexity of distributed denial-of-
service (DDoS) attacks have increased sharply over the years, a
recent trend to mitigate large-scale DDoS attacks is in-network
filtering. Once a DDoS attack has been detected, the victim (or a

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

ASIA CCS °20, October 5-9, 2020, Taipei, Taiwan

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6750-9/20/06....$15.00
https://doi.org/10.1145/3320269.3384755

Jun Li

University of Oregon
lijun@cs.uoregon.edu

Lei Jiao
University of Oregon
jlao@cs.uoregon.edu

dedicated machine acting on behalf of the victim), which we call the
DDoS defense agent (or simply, defense agent), generates DDoS-
filtering rules and places them at DDoS-filtering networks, which
can be scrubbing centers or strategically located transit networks
between the sources and victim that use the rules to filter DDoS
traffic.

We focus on the offer-based operational model for in-network
DDosS filtering. Every in-network filtering solution we surveyed
assumes DDoS-filtering networks are ready to accept and execute
arbitrary DDoS-filtering rules dispatched to them, which is not the
case in the real-world. However, in the offer-based model, each
DDoS-filtering network inspects candidate rules that the defense
agent needs to deploy and makes one or multiple offers, where each
offer is a subset of rules that the filtering network is willing and
able to deploy. The defense agent then inspects all the offers from
all the filtering networks and accepts certain offers, where rules
in every accepted offer will then be placed at the filtering network
that made the offer. With this model, DDoS-filtering networks have
complete autonomy on which, what types of, and how many rules
to be deployed in their networks. This autonomy is particularly
useful in avoiding rule overflow troubles when a filtering network
receives more rules than it can afford to deploy. Furthermore, the
process of DDoS-filtering networks making offers eliminates the
defense agent’s burden of deciding or verifying, for every rule,
which DDoS-filtering networks can deploy the rule.

A problem at the center of the offer-based in-network defense
model is that the defense agent needs to decide which offer(s) to
take. Given every offer is composed of DDoS-filtering rules, we call
this problem the rule selection problem. The optimal solution to
this problem is to maximize the amount of DDoS traffic to be filtered,
with two main constraints: (1) assuming every filtering network
places a price on every offer it makes, the total price of the offers
finally selected must be within the defense agent’s budget; and (2)
assuming every rule has an associated collateral damage, or the
amount of legitimate traffic that may be filtered due to the rule, the
total collateral damage from all the selected rules must be within a
certain limit.

At first glance, this problem is similar to the classic NP-complete
0-1 multidimensional knapsack problem, which is to place items
into a knapsack to maximize the total value of items in the knapsack,
while the total weight of the items does not break the knapsack.
Here, we want to maximize the volume of DDoS traffic that all the
rules in selected offers can filter, while still meeting the aforemen-
tioned constraints.

However, the rule selection problem has one key difference from
the knapsack problem: While the knapsack problem assumes the
items are independent, in the rule selection problem, offers may
overlap (i.e., the same rule may appear in more than one offer),

https://doi.org/10.1145/3320269.3384755
https://doi.org/10.1145/3320269.3384755

thus are not independent from each other. This difference makes
it completely infeasible to directly apply those approximate knap-
sack solutions, including the dynamic programming algorithm that
requires every offer to be exclusive with each other and the ant
colony optimization (ACO) framework that has the same require-
ment [16]. Specifically, with the ACO framework, selecting offers is
equivalent to selecting a path in a complete graph in which every
node is an offer of a set of rules, and to select an optimal set of
offers is to discover the path whose offers have the maximum total
amount of DDoS traffic filtered according to the rules in offers. A
basic principle here is that the traffic filtered by every rule should
be counted only once, even if the rule appears in more than one
offer on the path. However, the classical ACO framework violates
this basic principle as its path discovery does not take into account
the overlapping nature of offers.

In this paper, we inspect possible solutions and design a near-
optimal solution to the rule selection problem. In particular, we
make the following contributions:

e We introduce a new, offer-based operational model for in-
network DDoS defense and formulate the NP-hard rule se-
lection problem for this model. The offer-based model allows
a victim to express candidate rules to all participating DDoS
defense entities and every entity to decide which rules they
deploy.

e We design an algorithm that overcomes the fundamental
limitations of the classical ACO framework, by transforming
it with several key modifications to make it applicable to the
domain of in-network DDoS defense.

e We use a real-world-based Internet routing topology and
two real-world DDoS traces, along with one synthetic trace
that follows the attack distribution of the recent Mirai DDoS
attack [10], to evaluate the efficacy and runtime of our algo-
rithm against four other rule selection algorithms, and show
our algorithm is near-optimal.

2 RELATED WORK

All of the in-network filtering solutions that we surveyed follow
what we call the directive-based model, in which each DDoS-filtering
network, given its filtering capabilities (i.e., number of routers ca-
pable of filtering traffic and amount of memory to deploy rules on
capable routers), are obliged to deploy filtering rules on behalf of
a defense agent [9, 11, 15, 21, 22, 27, 31, 33, 34, 37, 38, 41]. In the
directive-based model, in most cases, the defense agent does not
concern itself with rule selection because, as long as the filtering
capabilities at the DDoS-filtering networks are not exhausted, all
rules generated by the defense agent will be deployed at filtering
networks. As a result, the rule selection problem is not well studied
in these defense solutions.

Also as mentioned in Section 1, the problem of generating and
deploying rules is outside the scope of this paper, and are orthog-
onal to rule selection. Unlike the rule selection problem, the rule
generation and deployment problems are well studied. For example,
El Defrawy et al. [17], Soldo et al. [43], and Kallola et al. [25] present
dynamic programming, prefix tree-based, and hierarchical heavy
hitter (HHH) algorithms, respectively, for solving the rule gener-
ation problem at either single or multiple routers on the Internet.

Along with assuming that DDoS-filtering networks are willing and
able to deploy generated rules, these works also assume that the
defense agent has complete knowledge of the filtering capabilities
at the filtering networks. This is a strong assumption, since most
autonomous systems (ASes), or DDoS-filtering networks, would
treat their filtering capabilities as private and sensitive informa-
tion. Therefore, while the defense agent can leverage such works
to generate rules, it still needs to choose only a subset of rules
offered to be deployed at the filtering networks. Cooke et al. [14]
and Xu et al. [46] study and solve problems related to rule deploy-
ment, such as deployment of DDoS monitoring sensors and rules,
while Armbruster et al. [12] present a solution to the deployment
of traffic filtering rules for DDoS attacks that exploit IP spoofing.
Furthermore, Zhang et al. [49] present an adaptable rule deploy-
ment solution for Software-Defined Networks (SDNs). Due to the
fairly comprehensive research conducted on rule generation and
deployment, we instead focus our attention on rule selection. To
our knowledge, this work is the first to study this problem in depth.

Finally, although the rule selection problem is not a main fo-
cus for existing papers related to in-network DDoS defense, there
are papers in the domain of DDoS defense via cloud scrubbing
services that tackle similar optimization problems. For example,
Jiao et al. [24] determine DDoS traffic diversion and cloud resource
allocation under dynamic DDoS attacks, and You et al. [47] design
an online auction mechanism to incentivize DDoS-protection ser-
vice providers to collaboratively scrub DDoS traffic. The general
approach these papers take in solving their NP-hard optimization
problems is by regularizing the objective function and relaxing the
constraints to form a new problem solvable in polynomial time. In
future work, we plan on investigating the impact of such techniques
on the offer-based rule selection problem.

3 OFFER-BASED OPERATIONAL MODEL

3.1 Overview

The offer-based operational model, like other operational models,
allows the defense agent to express its filtering needs in any way
it sees fit. This means that the defense agent has the freedom to
choose from a plethora of mechanisms for filtering DDoS traffic, in-
cluding, but not limited to, access control lists (ACLs) [4], Remotely
Triggered Black Hole (RTBH) signals [13], BGP FlowSpec rules [1],
or SDN rules [36]. In this paper, we are not tied to a specific mecha-
nism, but without losing generality we choose to focus on filtering
rules based on source IP prefixes (e.g., 162.243.141.0/24). However,
it is important to note that the algorithm presented in this paper
can be generalized to any other type of filtering rule. In the fol-
lowing subsection, we detail the offer-based model for in-network
DDoS defense that allows victims to express their filtering needs
by deploying source IP prefix-based rules on networks other than
their own.

3.2 Operational Model

Fig. 1 shows an overview of the offer-based model. Once a DDoS
attack is detected, the mitigation process begins with the generation
of DDoS traffic filtering rules. In most cases, the victim of an attack
will generate these rules because it has the best vantage point to
observe its specific traffic patterns and the most knowledge on what

Attacked Network

° . . Filtering rules on router X filter traffic from attack sources A,
' e, and filtering rules on router Y filter traffic from attack sources B.
a ¥ D @

o L L

Legitimate Attack Router Router with Network Defense agent
sources sources rules deployed admin (victim)

Legitimate Attack Legitimate and attack Messages between Rules deployed
traffic traffic traffic heading defense agent and based on

to the victim DDoS-filtering networks selected offers

Figure 1: An overview of the offer-based model for in-
network DDoS filtering. The defense agent (victim) begins
by detecting the DDoS attack and generating rules to filter
the attack traffic (circle 1). It then sends those rules to the
DDoS-filtering networks, which create offers based on the
set of rules each are willing to deploy (circles 2). The filtering
networks then send the candidate offers back to the defense
agent, who selects the offers to be deployed (circle 3). After
the filtering networks of the selected offers are notified by
the defense agent, they deploy the rules that make up the se-
lected offers in their networks (circles 4), thus filtering DDoS
traffic on behalf of the victim.

traffic is desired and undesired (we will later discuss, in Section 5.5, a
scenario when this may not be the case). For generality, the defense
agent is the entity that is generating rules. Every rule will indicate
how to filter DDoS traffic directed to the victim of the DDoS attack
(i.e., what attributes or packet fields to use in order to differentiate
attack traffic from legitimate traffic). Note that rules can only affect
the traffic targeted to the victim—the destination IP address of the
traffic being filtered must belong to the victim’s network.

The defense agent then distributes these rules to the DDoS-
filtering networks (or defending networks) that may be willing to
deploy the rules. Each filtering network, given its limited filtering
capabilities, then decides which subsets of rules it can or wants to
deploy at its discretion; here, every filtering network may run a
different decision process and we leave its specifics out of the scope
of this work. A subset of rules is called an offer, and each filtering
network can provide the defense agent with multiple offers.

Specifically, offers are made up of a set of rules, where each rule
filters a set of attack flows and, potentially, a set of flows that may
be legitimate (i.e., flows that are not attack flows). The value or
efficacy of an offer represents the total amount of attack traffic that
its rules can filter. Each offer also has two weights associated with
it: one weight represents the collateral damage of the offer (or the
total amount of legitimate traffic that its rules filter) and the other
weight is the cost of the offer. Note, that it does not make sense
for a single offer to be made up of rules that filter a shared subset
of attack flows (or legitimate flows). In other words, it is illogical
for an offer Q to include two rules r and s, where rule r filters
an IP prefix that is a subset of an IP prefix filtered by rule s. For

0 Rule s 0 /16
I ! ! : i n7
! . | : |
f v ! y d
| | { { Ruer | /18
h i : i)
v : v
' 56.0.64.0 v 56.0.192.0 '
M 56.0.128.0 v

56.0.0.0 56.0.255.255

Figure 2: Rules from a single offer should not filter a shared
subset of traffic. Since rule s dominates rule r, only one of
these rules should be included in the same offer.

example, if s filters 56.0.0.0/16 (or all IP addresses between 56.0.0.0
and 56.0.255.255), and r filters 56.0.192.0/18 (or all IP addresses
between 56.0.192.0 and 56.0.255.255), s dominates r, and therefore
only one of them should belong to the same offer, as can be seen
in Fig. 2 (each block represents a DDoS filtering rule that filters
traffic from a specific IP range — the four /18 rules are dominated
by the two /17 rules, which are in turn dominated by the single /16
rule). However, multiple separate offers can be made up of rules
that filter a shared subset of traffic flows, or even share the same
rules, as explained in Section 4.3.

Furthermore, there is no limit on the number of offers a filtering
network can make. However, to simplify this selection process by
reducing the total number of offers that a defense agent must con-
sider, we restrict the number of offers a defense agent can select per
filtering network to one. This constraint, however, does not nega-
tively affect the overall efficacy of the defense because a filtering
network can make offers in such a way as to represent all possible
combinations of rules that it is willing to deploy. For example, if
a filtering network is willing to deploy rules x, y, and z, but, due
to resource limitations, can only deploy a maximum of two rules,
it could make 6 different offers: {x}, {y}, {z}, {x, y}. {x, z}, and {y, z}.
To reduce the overhead of sending these combinations of offers
to the defense agent, the filtering network can simply notify the
defense agent that it is willing to deploy any offer with maximum
rule size of two that includes rules x, y, and z, along with the price
of each rule (so that the defense agent can calculate the price of each
offer). Note, making an offer would not reveal a filtering network’s
capacity; it will only reveal the number of rules a network is willing
to deploy for a particular attack.

Once the filtering networks make their offers, the defense agent
then selects which offers to buy (among all filtering networks) that
will most effectively mitigate the attack, given a limited budget
and threshold amount of collateral damage that it is willing to
incur. Here, measuring the collateral damage that an offer will
incur can depend on the type of filtering rules and could be further
subjected to what metric of collateral damage that the defense
agent sees fit. For example, if rules are based on source IP prefixes,
the defense agent may choose to calculate the collateral damage
based on the amount of legitimate traffic filtered, the number of
legitimate /32 source IPs filtered (which is what we use in evaluating
our selection algorithm in Section 6), or importance of the filtered

traffic. After the defense agent selects offers, it notifies the filtering
networks that provided those offers to start executing those offers.
The filtering networks will then deploy the rules pertaining to the
selected offers in their networks to mitigate the attack. The cycle
of generating, selecting, and deploying rules will continue until the
attack is mitigated.

3.3 The Rule Space Constraint in In-Network
Filtering and the Need for Rule Selection

Although source IP-based filtering rules allow the defense agent
more fine-grained filtering of DDoS traffic, a significant drawback
to this method of filtering is the limited number of rules that can
be deployed at defending networks. This limitation is caused by
the scarcity of memory space on routers and switches for deploy-
ing filtering rules. Specifically, network routers rely on expensive
ternary content-addressable memory (TCAM) to forward or dis-
card traffic with low latency, and most high-end routers today only
have enough TCAM space to support a few thousand filtering rules
without significantly reducing performance [2, 5, 39].

The problem of limited memory space for filtering rules is com-
pounded by the sheer scale of botnets today. The Mirai botnet was
found to have control over 50 million unique IP addresses spread
all across the world [10]. A victim who is under attack from such a
large portion of the Internet simply cannot deploy a filtering rule
for each /32 IP address. In fact, even deploying /32 filtering rules
(a /32 rule refers to a rule that drops traffic from a specific /32 IP
address, thereby achieving the finest filtering granularity possible)
to filter a portion of Mirai’s IP addresses would cost an astronomical
amount of money, assuming the victim would have to pay for each
rule deployed on each defending network’s routers.

Therefore, the victim would need to aggregate /32 prefix rules
into more coarse-grained prefixes (e.g., /24 or /16), in order to
reduce the number of rules deployed. However, by doing so, the
victim loses the ability to prevent filtering legitimate traffic, or
incurring collateral damage, that may originate from legitimate
source IPs within the more coarse-grained prefixes. In fact, there
are examples of DDoS attacks that try to exploit this problem, one of
which was proposed in recent literature [42]. Furthermore, recent
studies attempt to analyze how in-network DDoS defense solutions
attempt to handle this problem, albeit not from a rule selection
perspective [48].

Another factor to consider in the problem of balancing collateral
damage and monetary cost, is the location at which offers are
made, and ultimately, where rules are deployed. The location of
defending ASes chosen for filtering affects the collateral damage
and monetary cost incurred by a victim. For example, the closer
defending ASes are to the attack sources, the victim has a lower
chance of incurring collateral damage, but will probably incur a
relatively large monetary cost due to more rules being deployed.
On the other hand, the closer defending ASes are to the victim, the
victim has a higher chance of incurring collateral damage, but will
probably incur a relatively small monetary cost. Fig. 3 depicts how
the location of deployed rules can impact the collateral damage
and monetary cost incurred by a victim. If filtering rules were to
be deployed as close to the attack sources as possible, as seen in
Fig. 3a, the victim could deploy /32-granular rules at each source AS,

thereby dropping all attack traffic, without incurring any collateral
damage (only attack flows Ay, Ay, A3, A4, As, and Ag would be
dropped). However, the victim would need to deploy a total of 6
separate rules (corresponding to each attack flow) at ASes 1, 2, 7,
3, 9, and 4. If the rules were to be deployed on ASes somewhere
between the attack sources and victim (e.g., at ASes 11, 12, 13, and
14), as seen in Fig. 3b, the victim could deploy a more coarse-grained
rule at ASes 12 to filter Ay and A3, and another coarse-grained rule
at AS 13 to filter A4 and As. The victim could still deploy two /32-
granular rules at AS 11 and 14 to filter A; and Ag, respectively.
Therefore, the victim would only need to deploy a total of 4 rules,
instead of 6. However, the coarse-grained rules at AS 12 and 13 may
also filter legitimate flows L; and Ly, causing collateral damage.
Finally, if filtering rules were deployed at the victim’s AS, as seen
in Fig. 3c, then the victim, at the very least, could deploy 1 very
coarse-grained rule to filter all of the attack traffic. However, this
coarse-grained rule could also filter L3 (along with L; and Ly),
causing even more collateral damage than the previous scenario
(of Fig. 3b). Note also that under link-flooding attacks, where a link
several hops upstream to the victim is DDoSed, deploying filtering
rules at the victim will be futile, and instead, filtering rules must be
deployed further upstream to alleviate the attacked link.

The conundrum of balancing the cost of filtering legitimate traffic
with the cost of deploying filtering rules leads to an interesting,
and not well-studied optimization problem: maximize the amount
of DDoS traffic filtered, while limiting the amount of collateral
damage incurred and money spent on deploying filtering rules. In
the next section, we formalize this optimization problem, which we
call the rule selection problem.

4 RULE SELECTION PROBLEM DEFINITION

4.1 Overview

After the defense agent generates rules and the DDoS-filtering
networks provide offers, the defense agent must select a set of offers
that most effectively mitigates the DDoS attack. However, there are
a number of factors that the defense agent must consider before
selecting an offer. Specifically, the defense agent must consider the
efficacy of the offer (i.e., the amount of attack traffic or number
of attack sources filtered), the collateral damage incurred by the
offer (i.e., the amount of legitimate traffic or number of legitimate
sources filtered), and the price of the offer.

The defense agent has the freedom to decide which factors to
treat as objectives and which to treat as constraints. In this paper,
we focus on maximizing the defense efficacy, while keeping the
maximum total collateral damage and the maximum amount of
money spent on defense as constraints. Thus, we formulate the
rule selection problem as Equation 1. Table 1 summarizes all of the
notations we use.

Some issues are outside the scope of this paper. In particular, this
paper is not concerned with how rules are generated and simply
assumes the rules generated for traffic filtering are the input to
the rule selection problem. It is not concerned with how rules may
be deployed at filtering networks either, except that it determines
which filtering networks should deploy different rules as the output
of the solution to this problem.

. Defending AS

! A @ -> Attack Source/Flow

@ oerending s

A @ -> Attack Source/Flow

L @—> Legitimate Source/Flow L @—> Legitimate Source/Flow

(a) At the attack sources.

(b) In the middle.

! . Defending AS
! A @ -> Attack Source/Flow

. L@—> Legitimate Source/Flow

(c) At the victim.

Figure 3: Three example scenarios of how the location of selected DDoS-filtering networks can impact the collateral damage

and monetary cost incurred by a victim.

Table 1: Notations.

Notations | Definitions

je] network j in set of all networks J

iel offer i in set of all offers I

L CI set of all offers provided by network j

keK attack flow k in set of all attack flows K

uelU legitimate flow u in set of all legitimate flows U
JkCJ set of networks that flow k passes through

Juc] set of networks that flow u passes through

ay amount of traffic belonging to attack flow k

bijk binary: whether offer i from network j can filter k
ay amount of traffic belonging to legitimate flow u
biju binary: whether offer i from network j can filter u
Xij binary: whether to select offer i from network j
Pj; price of offer i from network j

We defense agent’s collateral damage threshold

| defense agent’s budget

4.2 Formulation

max E a max {x;jb;;
kje]k,ielj{ Y Uk}
keK

s.t. Z ay max {xjjbiju} < W,
uelU JE€Ju>i€l;

Z Z Pijxij < W, (1

jejJi€l;
le'j <1, Vje]
iEIj

xij €{0,1}, VjeJViel

4.2.1 Optimization Objective. First, we formulate the objective
function of the rule selection problem. Let K be the set of all attack
flows, where k represents an attack flow in K, and let a; be the
amount of traffic of attack flow k. Let J; be the set of filtering
networks that attack flow k passes through, where j represents
a filtering network, and let I; be the set of all offers provided by
filtering network j, where i represents a single offer. Also, let b; ;.
denote a binary value that represents whether offer i from filtering
network j filters attack flow k. Last but not least, the binary variable

xij denotes whether to select offer i from filtering network j for
deployment. Note, if there exists an offer i from filtering network j
that can filter attack flow k and it has been selected, then x;;b; 1 = 1,
otherwise 0. Note then, if there exists at least one offer i from all
of the filtering networks in Ji that can filter attack flow k and it
has been selected, then max;jej, ier, {xijb;jx} = 1, otherwise 0. We
take the max of x;;b; . over j € J and i € I; because we should not
credit multiple offers for filtering the same attack flow k. Therefore,
to maximize the total amount of attack traffic filtered, the objective
function is written as max Yx cx ax maxjej, el {*ijbijr }-

4.2.2 Optimization Constraints. Next, we formulate the constraints
of the rule selection problem. The first constraint ensures that
the total amount of collateral damage is within tolerance. Let U
be the set of all legitimate flows, where u represents a legitimate
flow in U, and let a;, be the amount of traffic of legitimate flow u.
Analogously, let b;j,, be a binary value that represents whether offer
i from filtering network j filters legitimate flow u, and let W, be
the threshold for the total amount of collateral damage the defense
agent is able to tolerate. We again do not credit multiple offers
for filtering the same legitimate flow u. Therefore, we have the
collateral damage constraint as Y., cy @u maxjej,,ier; {*ijbiju} <
W¢.. The second constraint ensures that the total cost of the selected
offers respects the total budget. Let P;; represent the price of offer
i from AS j and W}, represent the defense agent’s budget. Then, we
have 3 ey Yier, Pijxij < Wp. Without loss of generality, the third
constraint,);¢ I Xij < 1,Vj € J, limits the number of offers that
can be selected per AS to one. Finally, the fourth constraint ensures
the atomicity of an offer (i.e., the defense agent can either select
or refuse to select an offer, and cannot split an offer), which we
express as x;j € {0,1},Vj € J,Vie L

4.3 Challenges

The rule selection problem looks similar to the NP-complete 0-1
multidimensional knapsack problem [35]. The rule selection prob-
lem is 0-1 because an offer can either be selected or not and cannot
be broken down into smaller offers, and it is multidimensional be-
cause it has multiple constraints. Similarly to the classic knapsack
problem, the objective of the rule selection problem is to select

After offer at AS 1 chosen:

Ay Ly A, As L
Q¥ %9

No offers chosen yet:

Ay Ly Ab Az L
€es ¢

Offer at AS 1 drops X 4
Ay, Ly, and Ay
Efficacy = Ay + Ap
CcD=L4
Offer at AS 3 drops
A1, Ly, Ag, Ag,and Ly

Offer at AS 3 now
drops Ag, and Lp

Efficacy = Ay + Ap + Ag Efficacy = Ag
CD=Ly+L, CD=L,

Figure 4: An example illustrating how offers are value-
dependent items. The term “efficacy” represents the amount
of DDoS traffic filtered, and “CD”, or collateral damage, rep-
resents the amount of legitimate traffic filtered.

items (i.e., offers) so that the total value of the items is maximized
(i-e., the amount of DDoS traffic filtered), while the weight of the
selected items (i.e., the price of all selected offers and the total
amount of collateral damage incurred) are within the constraints.
Note that no fully polynomial-time approximation scheme exists
for 0-1 multidimensional knapsack problem, unless P = NP [29].

However, the rule selection problem is NP-hard and may not be
in NP [40] due to the overlapping nature of offers. Offers from the
same filtering network or different filtering networks can overlap in
terms of the traffic flows that they filter. For example, let us assume
there are two filtering networks, y and z, that are on the path of
flow f. Let us also assume that both filtering networks y and z
provide two separate offers that both contain a rule which filters
f, neither of which have been selected yet by the defense agent.
With overlapping offers, the selection of one item has an impact
on which other items may be selected (e.g., selecting the offer from
y decreases the efficacy — if f is an attack flow — or the collateral
damage - if f is a legitimate flow — of the offer from z). Each time
an item is considered for selection, one would need to check for
overlap among the item under consideration and all of the items
selected so far, in order to calculate the knapsack’s new value (i.e.,
efficacy) and weights (i.e., price and collateral damage) if the item
under consideration is chosen. Due to the existence of overlapping
rules, or, in other words, value-dependent items, the complexity of
the problem increases significantly.

Fig. 4 illustrates an example of value-dependency in two offers.
Offers from AS 1 and 3 both filter attack flows A; and Ay, and
legitimate flows Lj. If the offer from AS 1 is selected, then the offer
at AS 3 no longer filters A1, Az, and L;. Therefore, both its efficacy
(value) and collateral damage (weight) correspondingly decrease.

The value-dependent and correlated offers of the rule selection
problem make it similar to the NP-hard 0-1 multidimensional knap-
sack problem with value-dependent items, and is unlikely to be
solved in pseudo-polynomial time [32, 40]. Polynomial and pseudo-
polynomial time heuristics must restrict the problem to a single
linear constraint which makes them impractical to directly apply to
the rule selection problem [19]. However, there are algorithms for
the general 0-1 knapsack problem that can be used as a basis to cre-
ate a unique, near-optimal solution for the rule selection problem,
one such being the ACO algorithm.

5 SOLUTION
5.1 Analysis of Classical Algorithms

We analyze several classical algorithms for the knapsack problem
and transform them for the rule selection problem. Many classical
algorithms, such as the branch-and-bound and dynamic program-
ming algorithms, cannot be directly applied to the rule selection
problem, and therefore we must modify them to handle the unique
properties of our problem.

5.1.1 Greedy and Naive Algorithms: The greedy and naive algo-
rithms simply order the set of offers by a heuristic (the greedy
algorithm orders the offers by their value or the amount of attack
traffic filtered and the naive orders them by their value-to-weight
ratio or the ratio of amount of attack traffic filtered to collateral
damage incurred). These algorithms run in linear time, and there-
fore have the shortest runtimes among all other algorithms we
analyzed. Unfortunately, the ordering step favors certain offers
which may cause the algorithms’ failure to consider offers, that if
selected, may have lead to a better solution. As a result, the greedy
and naive algorithms perform relatively poorly in most cases.

5.1.2 Branch-and-Bound-Based Algorithm: The optimal branch-
and-bound algorithm can be adapted to the rule selection problem
with only slight modifications. This algorithm essentially enumer-
ates all candidate solutions by building and branching out a binary
tree, while estimating the bounds on the optimal solution at each
iteration. In the case of the rule selection problem, each node in
the tree represents a combination of selected offers, and each node
contains a value (the amount of attack traffic filtered), two weights
(collateral damage and price), and an upper bound (the maximum
amount of value that can be achieved at the current node if it were
to be completely branched out). This algorithm always returns the
optimal solution. However, its time complexity is exponential in the
number of offers. Therefore, running the branch-and-bound-based
algorithm for optimal rule selection is not feasible in a real-world
scenario for DDoS defense.

5.1.3 Dynamic Programming-Based Algorithm: The classical dy-
namic programming algorithm can optimally solve the 0-1 knapsack
problem, however it cannot solve the rule selection problem because
of its multiple constraints and the overlapping nature of offers. In
order to apply the classical dynamic programming algorithm to the
rule selection problem, we must handle the potential for overlap-
ping offers by performing a pre-processing step. In this step, if there
exists two overlapping offers, the algorithm removes the overlap-
ping attack sources from the offer with the lower value-to-weight
ratio, solely for the purpose of this algorithm (it does not actually
modify the offer). This required pre-processing step prevents the
dynamic programming-based algorithm from guaranteeing an op-
timal solution. Similarly to the greedy and naive algorithms, the
pre-processing step potentially eliminates offers from considera-
tion, that if selected, would lead to an optimal solution. However, in
most cases, it achieves significantly better efficacy than the greedy
and naive algorithms and significantly faster runtimes than the
branch-and-bound algorithm, due to its pseudo-polynomial time
complexity in the number of offers.

Due to the limitations of the greedy, naive, branch-and-bound-
based, and dynamic programming-based algorithms, we look into
the classical ACO framework. What follows is a detailed explana-
tion of the classical ACO framework, why it cannot be directly
applied to the rule selection problem, and our new algorithm which
overcomes the classical ACO framework’s fundamental limitations
to be applicable to the rule selection problem.

5.2 Overview of the ACO Framework

To address the rule selection problem, we employ the ACO frame-
work. The ACO framework is inspired by the foraging behavior of
some ant species, which deposit pheromone trails on the ground
in order to mark favorable paths that should be followed by other
members of the colony [16]. The ACO framework leverages this
behavior for solving optimization problems, such as the NP-hard
traveling salesman problem (TSP).

The ACO algorithm is an iterative algorithm. During each itera-
tion, or cycle, a number of ants traverse a graph (e.g., a graph of
cities for TSP). Each ant builds a solution (i.e., a sequence of nodes
that create a path from the first to the last visited node) by walking
from node to node on the graph. An ant chooses the next node in
its walk according to a stochastic mechanism that is biased by the
amount of pheromone between the current node and all possible
next nodes. For example, if an ant is on node i and there is a node j
adjacent to i, then the probability of the ant choosing j as its next
destination is proportional to the amount of pheromone associated
with edge (i, j).

At the end of a cycle, a certain amount of pheromone at each
edge is evaporated, based on the quality of the solutions constructed
by the ants — more pheromone is evaporated between the nodes
that make up low quality solutions (for TSP, a solution represents
a route and its quality is indirectly proportional to the length of
the route). This causes ants in future cycles to be more attracted
to solutions similar to the best ones previously constructed. At the
end of the last cycle, the overall best solution is chosen.

There are many existing papers that tackle the multidimensional
knapsack problem using ACO algorithms [8, 18, 23, 28]. However,
like the classic solutions, the solutions from these papers cannot be
directly applied to the rule selection problem. This is again due to
the correlated nature of offers and their potential for overlapping.
The ACO-based algorithm presented in this paper accounts for this
property. Aside from transforming the rule selection problem into a
graph-based problem, we make two main changes to the traditional
ACO framework: we modify how ants traverse the graph, and how
pheromone is dropped onto the graph. To the best of our knowledge,
this is the first time the classical ACO framework has been adapted
and applied to the domain of in-network DDoS defense.

5.3 ACO-Based Rule Selection Algorithm

5.3.1 Graph Construction for Rule Selection. In order to apply the
ACO framework to tackle the rule selection problem, there are sev-
eral distinctions that need to be made between the rule selection
problem and other classical problems, such as TSP. For the rule
selection problem, the ant colony will traverse a complete graph,
where each node will represent an offer. Unlike in TSP, for the rule
selection problem an edge in the graph has no concrete real-world

No

All ants traversed graph?

Find best solution
(set of offers with highest efficacy)
of current cycle

Pick new ant
and place on random offer

1

Ant selects next offer based
partially on pheromone trail

New offer can be selected?

Drop pheromone on edges
between all offers selected

(start)

Initially drop equal amount
of pheromone on each
edge in offer graph

Populate ant colony
with ants

le Evaporate pheromone for each solution
based on its quality as compared
to best solution of current cycle

Return best solution
of all cycles

Figure 5: Flow chart of the rule selection algorithm.

representation. However, the amount of pheromone dropped along
an edge will impact the probability of choosing the offers that share
that edge. Also, this algorithm needs to take into account the po-
tential of overlapping offers. That is, if two offers filter the same
portion of traffic, choosing one offer should affect the probability
of choosing the other offer. Lastly, the way ants lay pheromone
throughout the graph will be unique to the rule selection prob-
lem. The process of laying pheromone in our ant colony system
is explained in more detail later in this section. The rest of this
section will be devoted to detailing the ACO-based algorithm for
rule selection.

5.3.2 Input Parameters. Along with the aforementioned graph of
generated offers, G, the ACO-based rule selection algorithm will
take two main parameters as input: the total number of cycles,
Crmax, and the total number of ants per cycle, Apqx. The total
number of cycles and ants per cycle are proportional to the quality
of the final solution and the runtime. Additionally, the algorithm
requires the tuning parameters, m, n, a, B, p, ¢, Tmax, and tmin,
which will be explained later. These parameters will be based on
the victim’s needs. For example, the victim can decrease Cpyqx and
Amax, to keep the runtime fast while sacrificing efficacy, especially
if it has many offers to select (more offers translates to longer
runtimes). On the other hand, the victim can increase Cy, 4 and
Amax,to increase efficacy while also slightly increasing the runtime,
especially if it only has a handful of offers to select.

5.3.3 Initialization. Now, let’s walk through the entire algorithm
from beginning to end. A summary of the algorithm’s work flow
is depicted in Fig. 5. The algorithm is outlined in Algorithm 1.
Each offer will have a value and two weights associated with it.
The value is the amount of attack traffic the offer can potentially
filter (Equation 2 shows the value of an offer r from an DDoS-
filtering network j). One weight represents the amount of collateral
damage potentially incurred by the offer (Equation 3), and the other
represents the offer’s price (Equation 4).

value(r) = max ar max {x,ib,;

weight.(r) = Z ay max . {xrjbrju} 3)
j

€ re
uelU J&€Ju,

weighty,(r) = Pyj (4)

Algorithm 1: ACO-Based Rule Selection Algorithm

Input: G, Crmax, Amaxs Tmin, Tc and other tuning parameters
Output: sg,;
1 while ¢ < Cj4x do

2 Sloc = 9;

3 Txy = Tmin, YXY € G;

4 while a < A;,qx do

5 Sa =J;

6 choose random offer x;

7 add x to sg;

8 update I3

9 while I,,,; is not empty do

10 choose next offer y € I;,,; based on pxy;
1 add y to sg;

12 update I,,;

13 update 7 by dropping 7. between x and y;
14 end

15 add sq to S7oc;

16 a=a+1;

17 end

18 add sps; € Sjoc t0 Sgl05

19 update pheromone for each edge to 7.27";

20 c=c+1;
21 end

22 return sgo; € Sg10

5.3.4 Traversing the Graph. At the beginning of each cycle c (ini-
tially, ¢ = 1), the algorithm will instantiate an empty list, s7,¢, to
store each solution obtained in that cycle (lines 1 and 2). Also,
each edge in G begins with an equal amount of pheromone (line
3), which will be explained in more detail later. Each ant a will
build up a solution, s,4, or a set of offers, by traveling through the
map and adding each offer it visits to its solution (lines 4 and
5). If any individual offer in the graph surpasses the budget, Wy,
or collateral damage threshold, W,, it is removed from the graph
before the algorithm begins. Note, the algorithm lends itself well to
parallelization because all A;;4x number of ants can traverse the
graph in parallel. An ant will begin by choosing an offer x in the
graph, uniformly and at random (line 6). It will then add the offer
to s, and the algorithm will update I,,,;, or the list of all available
offers (lines 7 and 8). In doing so, the algorithm is not only remov-
ing x from [,,,;, but is also updating the offers that overlap with x
so that attack and legitimate traffic filtered by x does not impact the
overlapping offers’ values and weights, respectively. Additionally,
updating [,,,; removes all offers that if chosen next would surpass
either the budget or collateral damage threshold.

5.3.5 Probability of Choosing the Next Offer. After the first offer is
chosen, the ant will continue traveling through the graph, adding
to sq (lines 9 through 11). So while I,,,; is not empty, the ant will
select a next offer y € I,,,; based on the probability py, given by
Equation 5:

Solution S=a, b, ¢, d

Between successive pairs Between all pairs

Figure 6: An ant choosing nodes g, b, c, and d as its solution
can drop pheromone in two different ways.

B

T2 Xu
Ly 1fy IS lavl

ny = Zzglavl T XUy (5)
0, otherwise

The probability py is the amount of pheromone between x and y, or
Txy, multiplied by the attractiveness of y all divided by the amount
of pheromone between x and every other available offer multiplied
by the attractiveness of every other available offer. The tuning
parameter a helps to control the importance of the pheromone trail
between two offers, while the tuning parameter § helps to control
the importance of the attractiveness of an offer. The attractiveness
of offer y, or uy, is essentially the value-to-weight ratio of offer y,
given by Equation 6:
value(y)
Uy = - - (6)
weightc(y)™ + weighty (y)™*

The parameters m and n are set by the victim, depending on whether
collateral damage or price is of higher (or equal) concern. The
amount of pheromone 7y is initially set to some minimum value
Tmin (line 3). However, 7 is updated after each cycle, as described
later in this section.

5.3.6 Dropping Pheromone. Multiple updates need to be made after
the ant selects the next offer y based on pyy. It adds offer y to s,
and I, is updated (line 12). But most importantly, the ant will
update the graph by dropping a constant amount of pheromone,
7¢, on the edge between x and y (line 13). This process is repeated
until [,,,; is empty, thereby completing the ants journey.

An interesting aspect of the ACO framework is the manner in
which pheromone is laid on the graph. As shown in Fig. 6, there are
two ways pheromone can be laid: between each couple of succes-
sively selected offers in a solution, or between all pairs of different
offers selected in a solution. Given a solution S = a, b, ¢, d, the first
option of laying pheromone emphasizes the order of choosing of-
fers by increasing the desirability of choosing a node b over nodes
c and d, if the ant is currently on node a. On the other hand, the
second option does not emphasize the order of choosing offers, but
rather increases the desirability of choosing any node (b, ¢, and d)
that is a part of the same solution S that node a belongs to. From
our evaluation of the ACO-based algorithm, we obtained slightly
better results when laying pheromone in the second way. This may
be because the desirability of choosing the next offer should not
be based solely on the previous offer chosen, but on all previous
offers chosen. This is unlike the TSP problem where the next city
on the route should be solely based on the previous city chosen.

After an ant completes its journey, its final solution s, is added
to s7o¢, and the next ant begins its journey (lines 14 through 16).

Once all of the ants complete their journeys, the best solution s,
or solution with the highest value, from s, is saved to s4j,, or a
list of best solutions at each cycle (lines 17 and 18). The next step
of the algorithm is the most important.

5.3.7 Evaporating Pheromone. Based on the latest best solution
found, each pheromone trail on the graph is updated (line 19 and
20). Pheromone will first be evaporated from each edge in the graph,
but after evaporation, the ant that produced s, will be able to add
more pheromone to the edges that it traveled to create the solution
so as to negate the effects of evaporation. So given an edge (x, y),
the new amount of pheromone between offer x and offer y, or r,’}!j w

in the graph is equal to (Equation 7):

new old bst|Tmax
Ixy = (1-p)x Toy TPX ATxy . 7)
old

where p, 0 < p < 1, represents the evaporation rate, represents

Tey
the amount of pheromone currently between x and y, and Af,lg;t ,
which represents the addition of pheromone to the edges of the
best solution, is equal to (Equation 8):
value(sps;), if (x,y) €s
Arfzt _ (spst) (y). bst ®)
0, otherwise

Therefore, the pheromone trails of the best solution will remain
the same, while trails from the other solutions will be evaporated.
This biases ants from the next cycles to choose solutions that are
similar to the best solutions found in previous cycles. However, in
order to increase the probability that ants do not get stuck at a local
maxima, we set a maximum and minimum amount of pheromone
for each edge, Tax and 7,in, respectively. This entire process is
repeated until the number of cycles equals Cqx (line 21). After
the last cycle is completed, the algorithm concludes by selecting
and returning the best solution, s,7, among s, which is the final
solution (line 22).

5.3.8 Approaching Optimality. The ACO-based rule selection algo-
rithm has a clear advantage over the greedy, naive, and dynamic
programming-based algorithms. Unlike the greedy, naive, and dy-
namic programming-based algorithms, the ACO-based algorithm
does not need to eliminate offers in order to handle the overlapping
nature of offers. As Cp,qx approaches infinity, s,; approaches the
optimal solution. In other words, with enough cycles, and given the
fact that each edge in G will always have a non-zero probability of
being traversed, the ACO-based algorithm is guaranteed to consider
all possible combinations of offers and thereby eventually find the
optimal solution (albeit not in polynomial time).

5.4 Complexity Analysis

Performing a comprehensive complexity analysis of the rule se-
lection algorithm is a difficult task due to the stochastic nature of
the algorithm. However, the rule selection algorithm presented in
this paper is a specialized version of the MAX-MIN Ant System
(MMAS) for the all-pairs shortest path problem (APSP) [45]. Sud-
holt et al. [45] evaluated the running time bounds of the general
MMAS 4psp algorithm for each iteration to be O(ALL* + %), given
a graph of n vertices, maximum degree A, maximum number of
edges ¢ on any shortest path, £* which is equivalent to max{¢, Inn},

and the pheromone evaporation rate p. Therefore, for the rule se-
lection algorithm, under a large-scale DDoS attack where attack
sources are highly distributed, the running time bounds becomes
O(Crmax * (A% + %)). Note, £* can be replaced by ¢ because un-
der a large-scale DDoS attack, the number of generated rules will
most likely be relatively large, causing the number of offers to be
relatively large (> 100) and thereby increasing the probability that
max{(,Inn} = ¢.In conclusion, the variable with the largest impact
on the rule selection algorithm’s running time is the total number
of offers the defense agent has to select from.

5.5 Trust & Security Considerations

The rule selection algorithm relies on the trust between defense
agents and filtering networks (i.e., that the rules belonging to the
offers selected by the defense agent will be deployed by the filtering
networks). From the in-network defense systems we studied, some
either assume that the system is made up of trusted or semi-trusted
networks [9, 11, 15, 21, 27, 33], or rely on a trusted certificate au-
thority (CA) to establish trust among networks [31, 34, 38, 41]. Also,
recent work conducted by Gong et al. [20] attempt to tackle the
problem of lack of verifiable filtering (i.e., the defense agent has no
straightforward way of verifying if a filtering network has correctly
executed its filtering request) by utilizing hardware-based trusted
execution environments (TEEs) to create verifiable in-network fil-
ters. Such work can be leveraged to ensure trust between defense
agents and filtering networks. Because our main focus is not on the
deployment or implementation of a DDoS defense system, but on a
general rule selection algorithm that can benefit most in-network
approaches, we leave the more granular details on security and trust
to the aforementioned in-network defense systems and solutions.

Let’s consider how an adversary may attempt to thwart an in-
network DDoS defense solution that utilizes the rule selection
algorithm. In the case when a DDoS attack targets transit links
instead of a single victim network, as with the Crossfire [26] and
Coremelt [44] attacks, rule generation and selection must be done
in a collaborative manner as to minimize collateral damage. For sim-
plicity, let us assume that a DDoS attack is targeting one bottleneck
link. The network that is directly upstream to the bottleneck link
(the network unaffected by the bottleneck) will be responsible for
generating and selecting rules because, at its vantage point, it can
observe all of the DDoS traffic that needs to be filtered. However, by
not knowing what traffic is legitimate (traffic that is desired by net-
works downstream to the bottleneck link), it may cause collateral
damage to traffic that is destined to other downstream networks,
which is obviously unacceptable. Therefore, the defense agent (or
network generating the rules), must collaborate with the down-
stream networks, who are the true victims of the attack, to help
differentiate attack and legitimate traffic, to generate and select
appropriate rules. Unfortunately, persistent link-flooding attacks
may be made up of attack traffic that is indistinguishable from
legitimate traffic, making it impossible to avoid collateral damage.
Lee et al. [30] present a collaborate defense mechanism for miti-
gating persistent link-flooding attacks, which sends rerouting and
rate-control requests to upstream ASes. This in-network solution
can utilize the offer-based operational model to help incentivize
and guarantee successful collaboration between ASes.

An adversary may also change its behavior to render the rules
selected by the rule selection algorithm useless. For example, an
adversary could launch an attack that comprises of a series of
short-lived bursts, that may only last for a few seconds, and utilize
distinct bots for each burst, thereby making the source IP-based
rules deployed for previous bursts irrelevant and ineffective in
mitigating the current or subsequent bursts. The same applies for
attacks that leverage IP spoofing. In such a cases, the defense agent
can generate rules that filter on the basis of other TCP/IP fields
(e.g., protocol, payload, time-to-live (TTL), Type of Service (ToS),
etc.) or a combination of fields. It is important to reiterate that the
rule selection algorithm is not dependent on the type of rule that
needs to be selected.

6 EVALUATION
6.1 Evaluation Methodology

The main goal of our evaluation is to show the efficacy of our ACO-
based rule selection algorithm at filtering attack traffic as compared
to other rule selection strategies, including the optimal solution. We
also study the runtimes of the strategies to determine how quickly
each would respond to a DDoS attack. To make our evaluation as
realistic as possible, we test the algorithms on two real-world attack
traces and one synthetic trace mimicking a real DDoS attack.

Note that the tuning parameters of any ACO-based algorithm af-
fects its performance. There is a plethora of research on approaches
to choosing the best values for the tuning parameters. However,
since this is not a focus for our work, we leverage existing re-
search on ACO applied to the multidimensional knapsack problem
to choose the values of our parameters [16]. It is very likely that
the values we chose for our parameters are not optimal and can be
improved. This is an aspect of our work that we will look into in
the future.

6.2 Experimental Setup

We built a simulation framework consisting of: 1) the ACO-based
algorithm along with the greedy, naive, dynamic programming-
based, and branch-and-bound-based rule selection algorithms for
comparison, 2) an AS-level Internet topology derived from real-
world data, and 3) three attack traces (two of which are real-world
traces, while one is a synthetic trace based on a real-world attack).
We ran the simulation framework (coded in Java) on a personal
computer and high-performance server.

We construct an AS-level Internet topology by using the com-
plete routing table dump obtained from all RouteViews [7] collectors
on July 16, 2019. Specifically, for each collector, RouteViews pro-
vides routing tables containing AS-level paths from the collector’s
peers towards all reachable IP prefixes. The AS-level paths from all
collectors altogether form our AS-level topology. We treat collec-
tors as the DDoS victims and certain reachable prefixes as attack
sources. In order to replay attack traces on this AS-level topology,
we assume that the AS-level paths are symmetric; in other words,
we assume that the path of any DDoS traffic from a prefix (i.e.,
DDoS sources) to a collector (i.e., victim) is exactly the reverse of
the path from the collector to the prefix. Note this assumption does
not always hold in the real world.

We use three different attack traces. The first is the CAIDA
2007 DDoS attack trace [6], which includes ~4,700 attack sources
and ~1,400 source ASes. The second is Merit’s RADb DDoS attack
trace [3], which includes ~2,300 attack sources and ~1,300 source
ASes. We also create a synthetic trace that follows the attack distri-
bution of the September 2016 DDoS attack launched by the Mirai
botnet on Krebs on Security, as detailed by Antonakakis et al. [10].
For each of the three traces, we run the simulation 100 times for
each collector as the victim, and average all of the runs together.
Before the start of a new run, we randomly choose 100 ASes as
filtering ASes (or DDoS-filtering networks). In future work, we plan
on analyzing how choosing filtering networks based on their tier
affects the evaluation results.

6.3 Efficacy

We evaluate the performance of the five selection algorithms in
terms of efficacy, or the percentage of total DDoS traffic filtered,
with respect to the victim’s budget which is represented by the
maximum number of offers that can be selected. Note that in most
cases, the victim’s collateral damage threshold will be met before
the maximum number of offers can be selected.

Fig. 7 shows the efficacy achieved by each of the five defense
strategies during replays of the CAIDA 2007 (Fig. 7a), RADD 2016
(Fig. 7b), and Mirai 2016 (Fig. 7c) traffic traces, respectively. The
first and most obvious trend observed from these graphs is that
as the maximum number of rules increases, the efficacy increases.
However, this trend seems to be logarithmic and tends to increase
only very slightly after about a maximum of 90 offers. Second, the
lines are not smooth, which is due to the randomness in selecting
the defending ASes after each run of the simulation. Lastly, and
most importantly, we can see that our ACO-based algorithm per-
forms only slightly worse than the optimal solution (on average,
the ACO-based algorithm ~10% less effective than the optimal), and
consistently outperforms the dynamic programming, naive, and
greedy algorithms.

Both the greedy and naive algorithms perform underwhelmingly
in all three attacks because of how unevenly the attack sources are
distributed and how the two algorithms prioritize the offers. If the
victim prioritizes offers based on the amount of attack traffic that
can be filtered (i.e., the greedy algorithm), then offers that filter the
most attack traffic will be selected, ignoring the collateral damage
and monetary cost incurred by those offers. Only a few number of
offers may be deployed before the collateral damage threshold is
surpassed and the victim’s budget is met. Similarly, if the victim
prioritizes offers based on their value-to-weight ratio (i.e., the naive
algorithm), the same problem may occur. Let’s take a look at a
simple example. For simplicity, let’s combine collateral damage
and price as one weight so we are dealing with a one-dimensional
problem. Let’s say our victim’s weight threshold is W = x and the
rule selection algorithm has two offers to deploy, where offer a has
a weight of w, = x and a value of v, = x — 1, and offer b has a
weight of w;, = 1 and a value of v;, = 1. In this simple example, the
rule selection algorithm will only select offer b (it will select offer b
first because it is of higher priority and not be able to select offer
a due to the weight threshold). If x > 2, then the optimal solution
would be to choose offer a. This situation occurs more frequently

100 100
[
80 A 80 80)
s o . S s
< 60 v M D g 0 < 60
= [NV A > >
3) p\v—\‘x)”\“ \ W) 3}
g . ‘«‘ g g
g 40 o E 40 y E 40
optimal / LAY optimal optimal
ACO —A— [ACO —A— ACO —A—
20 dynamic —3— 20 /X dynamic —£3— 20 dynamic —35—
naive / ,\/ naive naive
0@ greed Y. greedy & reed;
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Maximum # of Offers

(a) CAIDA 2007

Maximum # of Offers

(b) RADD 2016

Maximum # of Offers

(c) Mirai 2016

Figure 7: Efficacy of selection algorithms under different traffic traces.

Table 2: Runtimes for the rule selection algorithms.

6-Core Intel i7 Processor
Algorithms | CAIDA 2007 | RADb 2016 | Mirai 2016
optimal ~9 hrs ~9 hrs ~9 hrs
ACO 1133 s 10.72 s 12.20 s
dynamic 5.79's 5.75 s 432s
naive 0.37 s 0.71s 0.60 s
greedy 0.42s 0.55s 043 s
24-Core Intel Xeon Processor
ACO | 0.83 s | 074s [091s

when the distribution of traffic is uneven, which is the case in most
DDoS attacks.

While the dynamic programming algorithm achieves signifi-
cantly better results than the greedy and naive algorithms, it per-
forms worse than the ACO-based algorithm. This is due to the fact
that the dynamic programming algorithm cannot handle overlap-
ping offers as effectively as the ACO-based algorithm. In order for
the dynamic programming algorithm to run in pseudo-polynomial
time, it must deal with overlapping offers in the pre-processing
step. This step potentially prevents the dynamic programming al-
gorithm from obtaining an optimal solution. However, in the case
of the Mirai 2016 attack (Fig. 7c), the dynamic programming al-
gorithm achieves efficacy close to (and at one point, better than)
the ACO-based algorithm, essentially as the maximum number
of offers increase. This is most likely because the distribution of
attack sources in the Mirai 2016 attack leads to a small number
of overlapping candidate offers to select from, and as a result, the
pre-processing step does not significantly degrade the quality of
the solution.

In conclusion, the ACO-based algorithm achieves the best results
among the sub-optimal algorithms, and is relatively close to the
optimal solution, regardless of the attack. On average, there is ~10%
difference between the efficacy of the ACO-based algorithm and the
optimal solution. At its best, the ACO-based algorithm can improve
efficacy by more than 20% and 30% over the dynamic programming
and greedy/naive algorithms, respectively.

6.4 Runtime

The runtimes for all rule selection algorithms compared in this
paper, as shown in Table 2, are dependent on the number of offers
to select from. To put this in perspective, in order to find the opti-
mal solution for a maximum of 100 offers on a personal computer

(6-core Intel i7 processor), the optimal branch-and-bound-based
algorithm takes around 9 hours to find the optimal solution, while
the ACO-based algorithm takes around 11 seconds to find a near
optimal solution, making it almost 3,000 times as fast as the optimal
algorithm. The dynamic programming algorithm takes about half
the time of the ACO-based algorithm. The greedy and naive algo-
rithms take less than one second to finish executing. Note that we
have not looked into further optimizing the ACO-based algorithm
and it may be very possible to reduce the runtimes seen in the
table. In fact, by utilizing a total of 24 cores on a server with dual
Intel Xeon E5-2690 processors, we were able to reduce the ACO-
based algorithm’s runtime to 0.83 s, 0.74 s, and 0.91 s for the CAIDA
2007, RADbD 2016, and Mirai 2016 traces, respectively. The reduction
in runtime is due to the fact that the ACO-based algorithm can
leverage parallelization, as explained in Section 5.3.4. Nonetheless,
the runtime table shows that the ACO-algorithm, while only being
slightly less effective, is significantly faster than the optimal branch-
and-bound-based algorithm, and while being relatively slower, is
significantly more effective than the dynamic programming, naive,
and greedy algorithms.

7 CONCLUSION

Due to the ever-growing size and frequency of DDoS attacks, effec-
tive in-network DDoS defense is increasingly necessary. However,
the fundamental dilemma for most in-network DDoS defense so-
lutions is generating, selecting, and placing rules in a network so
that an attack can be effectively mitigated. In this paper, we tackle
the problem of rule selection for in-network DDoS defense.

We make several contributions in this paper. We formalize the
NP-hard rule selection problem for offer-based in-network filtering,
and transform the ACO framework to create an algorithm that
attempts to find a near-optimal solution to the problem. From our
understanding, this is the first work to apply the ACO framework
to optimize the selection of filtering rules for the purposes of DDoS
defense. We evaluate the ACO-based algorithm on a large scale by
comparing it to different rule selection algorithms, using real-world
and synthetic DDoS traces over an Internet topology derived from
real-world data. Our results show that the ACO-based algorithm
outperforms the other rule selection algorithms under real-world
attacks and performs only slightly worse than the optimal solution
even at a large scale.

ACKNOWLEDGMENTS

This project is in part the result of funding provided by the Sci-
ence and Technology Directorate of the United States Department
of Homeland Security under contract number D15PC00204. The
views and conclusions contained herein are those of the authors
and should not be interpreted necessarily representing the official
policies or endorsements, either expressed or implied, of the De-
partment of Homeland Security or the US Government. We further
thank Ann Cox and anonymous reviewers of this paper for their
comments.

REFERENCES

[1] 2005. Implementing BGP Flowspec. https://www.cisco.com/c/en/us/td/docs/

[11

[12

[13

[14

[15

[16

[17

(18

[19

[20

[21

[22

]

]

]

]

]

]

routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing
cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html.

2014. CAT 6500 and 7600 Series Routers and Switches TCAM Allocation Adjust-
ment Procedures. http://www.cisco.com/c/en/us/support/docs/switches/catalyst-
6500-series-switches/117712-problemsolution-cat6500-00.html.

2016. A DDoS Event Against the RADD Service. https://www.impactcybertrust.
org/dataset_view?idDataset=576.

2018. Configure Commonly Used IP ACLs. https://www.cisco.com/c/en/us/
support/docs/ip/access-lists/26448- ACLsamples.html.

2019. Cisco Systems and Arbor: Effective DDoS Mitigation in Distributed Peering
Environments. https://www.cisco.com/c/m/en_us/network-intelligence/service-
provider/digital-transformation/distributed-peering-architecture. html.

2019. The CAIDA UCSD DDoS Attack 2007 Dataset. https://www.caida.org/data/
passive/ddos-20070804_dataset.xml.

2019. University of Oregon Route Views Project. http://archive.routeviews.org.
Inés Alaya, Christine Solnon, and Khaled Ghédira. 2004. Ant algorithm for the
multi-dimensional knapsack problem. In International Conference on Bioinspired
Optimization Methods and their Applications (BIOMA).

David G Andersen. 2003. Mayday: Distributed Filtering for Internet Services. In
USENIX Symposium on Internet Technologies and Systems (USITS).

Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the Mirai Botnet. In USENIX Security Sympo-
sium.

Katerina J Argyraki and David R Cheriton. 2005. Active Internet Traffic Filtering:
Real-Time Response to Denial-of-Service Attacks. In USENIX Annual Technical
Conference (ATC).

Benjamin Armbruster, J Cole Smith, and Kihong Park. 2007. A Packet Filter
Placement Problem with Application to Defense Against Spoofed Denial of
Service Attacks. In European Journal of Operational Research (EJOR).

Tim Battles, Danny McPherson, and Chris Morrow. 2004. Customer-Triggered
Real-Time Blackholes. In North American Network Operators’ Group (NANOG).
Evan Cooke, Michael Bailey, Z Morley Mao, David Watson, Farnam Jahanian,
and Danny McPherson. 2004. Toward Understanding Distributed Blackhole
Placement. In ACM Workshop on Rapid Malcode (WORM).

Christoph Dietzel, Georgios Smaragdakis, Matthias Wichtlhuber, and Anja Feld-
mann. 2018. Stellar: Network Attack Mitigation Using Advanced Blackholing.
In ACM International Conference on emerging Networking EXperiments and Tech-
nologies (CONEXT).

Marco Dorigo and Christian Blum. 2005. Ant Colony Optimization Theory: A
Survey. In Theoretical Computer Science.

Karim El Defrawy, Athina Markopoulou, and Katerina Argyraki. 2007. Optimal
Allocation of Filters Against DDoS Attacks. In Information Theory and Applica-
tions Workshop (ITA).

Stefka Fidanova. 2007. Ant Colony Optimization and Multiple Knapsack Prob-
lem. In Handbook of Research on Nature-Inspired Computing for Economics and
Management.

Franklin Djeumou Fomeni and Adam N Letchford. 2013. A Dynamic Program-
ming Heuristic for the Quadratic Knapsack Problem. In INFORMS Journal on
Computing (JOC).

Deli Gong, Muoi Tran, Shweta Shinde, Hao Jin, Vyas Sekar, Prateek Saxena, and
Min Suk Kang. 2019. Practical Verifiable In-network Filtering for DDoS Defense.
In IEEE International Conference on Distributed Computing Systems (ICDCS).
Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P Donovan, Bran-
don Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, and
Ethan Katz-Bassett. 2014. SDX: A Software Defined Internet Exchange. In ACM
SIGCOMM Computer Communication Review (CCR).

Felipe Huici and Mark Handley. 2007. An Edge-to-Edge Filtering Architecture
Against DoS. In ACM SIGCOMM Computer Communication Review (CCR).

[23

[24

[29

[30

[31

@
&,

(33

[34

[35

(37]

[38

[39

[40

[41

[42

[43

(44

[45

[46]

[47

(48

[49

Shahrear Igbal, Md Faizul Bari, and M Sohel Rahman. 2010. Solving the Multi-
Dimensional Multi-Choice Knapsack Problem with the Help of Ants. In Interna-
tional Conference on Swarm Intelligence (ICSI).

Lei Jiao, Ruiting Zhou, Xiaojun Lin, and Xu Chen. 2019. Online Scheduling of
Traffic Diversion and Cloud Scrubbing with Uncertainty in Current Inputs. In
ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc).

Aapo Kalliola, Kiryong Lee, Heejo Lee, and Tuomas Aura. 2015. Flooding DDoS
Mitigation and Traffic Management with Software Defined Networking. In IEEE
International Conference on Cloud Networking (CloudNet).

Min Suk Kang, Soo Bum Lee, and Virgil D Gligor. 2013. The Crossfire Attack. In
IEEE Symposium on Security and Privacy (S&P).

Angelos D Keromytis, Vishal Misra, and Dan Rubenstein. 2004. SOS: An Ar-
chitecture for Mitigating DDoS Attacks. In IEEE Journal on Selected Areas in
Communications (J-SAC).

Min Kong, Peng Tian, and Yucheng Kao. 2008. A New Ant Colony Optimiza-
tion Algorithm for the Multidimensional Knapsack Problem. In Computers &
Operations Research.

Bernhard Korte and Rainer Schrader. [n.d.]. On the Existence of Fast Approxima-
tion Schemes. In Nonlinear Programming.

Soo Bum Lee, Min Suk Kang, and Virgil D Gligor. 2013. CoDef: Collaborative De-
fense Against Large-scale Link-flooding Attacks. In ACM International Conference
on emerging Networking EXperiments and Technologies (CONEXT).

Jun Li, Skyler Berg, Mingwei Zhang, Peter Reiher, and Tao Wei. 2014. Draw-
bridge: Software-Defined DDoS-Resistant Traffic Engineering. In ACM SIGCOMM
Computer Communication Review (CCR).

VC Li and Guy L Curry. 2005. Solving Multidimensional Knapsack Problems
with Generalized Upper Bound Constraints using Critical Event Tabu Search. In
Computers & Operations Research.

Xin Liu, Xiaowei Yang, and Yanbin Lu. 2008. To Filter or to Authorize: Network-
Layer DoS Defense Against Multimillion-Node Botnets. In ACM SIGCOMM Com-
puter Communication Review (CCR).

Zhuotao Liu, Hao Jin, Yih-Chun Hu, and Michael Bailey. 2016. MiddlePolice:
Toward enforcing destination-defined policies in the middle of the Internet. In
ACM Special Interest Group on Security, Audit and Control (SIGSAC).

Michael] Magazine and Maw-Sheng Chern. 1984. A Note on Approximation
Schemes for Multidimensional Knapsack Problems. In Mathematics of Operations
Research.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. In ACM SIGCOMM Computer Com-
munication Review (CCR).

A. Mortensen, T. Reddy, F. Andreasen, N. Teague, and R. Compton. 2019.
Distributed-Denial-of-Service Open Threat Signaling (DOTS) Architecture. In-
ternet Engineering Task Force (2019).

George Oikonomou, Jelena Mirkovic, Peter Reiher, and Max Robinson. 2006.
A Framework for a Collaborative DDoS Defense. In Annual Computer Security
Applications Conference (ACSAC).

Kostas Pagiamtzis and Ali Sheikholeslami. 2006. Content-Addressable Memory
(CAM) Circuits and Architectures: A Tutorial and Survey. In IEEE Journal of
Solid-State Circuits.

David Pisinger. 2005. Where are the Hard Knapsack Problems?. In Computers &
Operations Research.

Sivaramakrishnan Ramanathan, Jelena Mirkovic, Minlan Yu, and Ying Zhang.
2018. SENSS Against Volumetric DDoS Attacks. In Annual Computer Security
Applications Conference (ACSAC).

Lumin Shi, Devkishen Sisodia, Mingwei Zhang, Jun Li, Alberto Dainotti, and Peter
Reiher. 2019. The Catch-22 Attack. In Annual Computer Security Applications
Conference (ACSAC).

Fabio Soldo, Katerina Argyraki, and Athina Markopoulou. 2012. Optimal Source-
based Filtering of Malicious Traffic. In IEEE/ACM Transactions on Networking
(TON).

Ahren Studer and Adrian Perrig. 2009. The Coremelt Attack. In European Sym-
posium on Research in Computer Security (ESORICS).

Dirk Sudholt and Christian Thyssen. 2012. Running Time Analysis of Ant Colony
Optimization for Shortest Path Problems. In Journal of Discrete Algorithms.
Yang Xu and Yong Liu. 2016. DDoS Attack Detection under SDN Context. In
IEEE International Conference on Computer Communications (INFOCOM).
Wencong You, Lei Jiao, Jun Li, and Ruiting Zhou. 2020. Scheduling DDoS Cloud
Scrubbing in ISP Networks via Randomized Online Auctions. In IEEE International
Conference on Computer Communications (INFOCOM).

Mingwei Zhang, Lumin Shi, Devkishen Sisodia, Jun Li, and Peter Reiher. 2019.
On Multi-Point, In-Network Filtering of Distributed Denial-of-Service Traffic. In
IFIP/IEEE Symposium on Integrated Network and Service Management (IM).
Shuyuan Zhang, Franjo Ivancic, Cristian Lumezanu, Yifei Yuan, Aarti Gupta, and
Sharad Malik. 2014. An Adaptable Rule Placement for Software-Defined Networks.
In IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k_r5-2/routing/configuration/guide/b_routing_cg52xasr9k/b_routing_cg52xasr9k_chapter_011.html
http://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/117712-problemsolution-cat6500-00.html
http://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/117712-problemsolution-cat6500-00.html
https://www.impactcybertrust.org/dataset_view?idDataset=576
https://www.impactcybertrust.org/dataset_view?idDataset=576
https://www.cisco.com/c/en/us/support/docs/ip/access-lists/26448-ACLsamples.html
https://www.cisco.com/c/en/us/support/docs/ip/access-lists/26448-ACLsamples.html
https://www.cisco.com/c/m/en_us/network-intelligence/service-provider/digital-transformation/distributed-peering-architecture.html
https://www.cisco.com/c/m/en_us/network-intelligence/service-provider/digital-transformation/distributed-peering-architecture.html
https://www.caida.org/data/passive/ddos-20070804_dataset.xml
https://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://archive.routeviews.org

	Abstract
	1 Introduction
	2 Related Work
	3 Offer-Based Operational Model
	3.1 Overview
	3.2 Operational Model
	3.3 The Rule Space Constraint in In-Network Filtering and the Need for Rule Selection

	4 Rule Selection Problem Definition
	4.1 Overview
	4.2 Formulation
	4.3 Challenges

	5 Solution
	5.1 Analysis of Classical Algorithms
	5.2 Overview of the ACO Framework
	5.3 ACO-Based Rule Selection Algorithm
	5.4 Complexity Analysis
	5.5 Trust & Security Considerations

	6 Evaluation
	6.1 Evaluation Methodology
	6.2 Experimental Setup
	6.3 Efficacy
	6.4 Runtime

	7 Conclusion
	Acknowledgments
	References

