
MASH: The Multicasting Archie Server Hierarchy

Adam Rosenstein

adam@cs.ucla.edu

Jun Li

lijun@cs.ucla.edu

Si Yuan Tong

tong@cs.ucla.edu

Abstract

The archie[1] system is a replicated, centralized di-
rectory server for all Anonymous FTP sites in the In-
ternet. This centralized approach has not scaled well.
The march[2] system provides an alternate solution,
using IP Multicast to distribute directory queries di-
rectly to FTP hosts. march su�ers from highly re-
dundant broadcast messages during expanding-disc
search. We propose a solution to the problem of mul-
ticast ooding during expanding-disc searches by uti-
lizing an automatically-con�gured hierarchy of query
servers. This system, dubbed MASH, con�nes the mul-
ticast ooding primarily to those nodes at the frontier
of each new search radius. We provide a mechanism
and protocol for building a self-organizing, two-level
hierarchy of MASH servers. We also provide an exper-
imental implementation built on march[5].

1 Introduction

Anonymous FTP is a service allowing any user con-
nected to the Internet to retrieve �les stored on pub-
licly accessible �le servers. FTP is command-line and
connection oriented, thus requiring users to log into
an individual FTP server in order to determine the
�le contents of that server. While this interface is ad-
equate for users who know which servers contain the
sought-after information, it fails to address the prob-
lem of locating a particular �le amongst the more
than 2,500 anonymous FTP servers currently listed
in the Anonymous FTP FAQ[3].
This paper presents a new approach allowing a

user to search the directory information of all the
anonymous FTP servers without requiring a server
to centrally collect the information before-hand. We
present an architecture called MASH (Multicast
Archie Server Hierarchy) which runs on servers at
each of the anonymous FTP sites. The MASH design
incorporates a dynamic self-organizing group forma-
tion mechanism which forms a hierarchy, grouping
MASH servers topographically. The rest of the pa-
per is organized as follows: in Section 2 we describe
the current solutions and state some drawbacks as-
sociated with them. In Section 3 we describe the
MASH approach and compare it to the related work.

Section 4 describes the dynamic self-organizing group
formation algorithm. In Section 5, we discuss our im-
plementation of MASH. Finally, we conclude with a
short, reective summary.

2 Related Work

2.1 archie

In 1992, archie[1] was created to provide an easy way
to �nd where �les are stored on the Internet. archie
is a service which collects directory information from
a large set of FTP servers and makes this informa-
tion available to archie clients, via a query/response
mechanism. Because each of the 2,500+ FTP sites
produces complete directory listings ranging from 2
kilobytes to 25 megabytes in size[3], archie servers
are heavyweight database servers. The problems with
archie's approach are:

� The directory information is disbursed but
archie is centralized. Thus, it is costly for a cen-
tral archie server to frequently probe so many
FTP sites, or to do so frequently enough to en-
sure consistently up-to-date information. Conse-
quentially, the information in archie servers is
frequently out-of-date, and incomplete.

� Because information must be centrally collected,
there can only be a few archie servers for a fea-
sible implementation (public archie servers cur-
rently number 38, worldwide[3]). Therefore, the
query/response system has a bottleneck at the
server.

2.2 Multicasting

IP Multicast, �rst proposed by Deering, et al. [4]
is a mechanism by which packets may be e�ciently
routed from one source to many destinations. Other
than the e�ciency with which queries may be dis-
tributed to many destinations simultaneously, there
are two other advantages a�orded by multicast for
this application:

1. A client may query the set of servers without
knowing their explicit locations (this capability



is available irrespective of the IP Multicast rout-
ing protocol);

2. A client may use TTL-based scope control in or-
der to contact the topographically closest servers
�rst.

2.2.1 A Multicasting Archie Service | march

Given the capabilities of multicasting, it is possible to
design a system that e�ciently transports directory
queries to a set of distributed directory servers. These
servers would ideally be located at the actual sources
of the directory information (e.g. one directory server
at each anonymous FTP site). There is, at least,
one such implementation, called march[2]. march is
a multicasting distributed directory database system
which relies on a single multicast address for all direc-
tory servers. It uses TTL scope-limiting to constrain
the impact of individual queries. By iteratively ex-
panding the TTL, a march client �nds the closest
(topographically speaking) FTP site containing the
requested information. This type of search is often re-
ferred to as an \expanding-ring" search. Expanding-
ring searches are inherently robust, as any servers
that fail to receive a query during one iteration have
another opportunity to receive the query during the
next iteration.
However, there are drawbacks to the march ap-

proach. In each iteration of expanding-ring search,
queries must be routed to all march servers that were
reached on previous iterations. Such ooding (even
inside a limited TTL radius) of a pervasive multicast
group can result in unnecessary tra�c. Owing to this
re-querying of the inner (previously queried) search
rings, such searches may be more aptly referred to as
\expanding-disc" searches. Although the inner disc
does not service repeated queries in the march archi-
tecture, the routers do not understand this and must
still route all repeated queries to the same servers
at potentially great cost with no additional bene�t.
Should march become a popular service, this poor
scaling factor could contribute to Internet congestion.

3 A Hierarchal Approach

In order to address the problems posed by expanding-
disc searches, we propose a hierarchical approach.
Our solution is to construct a two-level hierarchy
of march servers. This service is characterized by
one well-known, pervasive multicast group (Gglobal),
and a number of topographically localized subgroups.
The well known group is much like march's group,
but its number of members is comparatively small,
and is self-adjusting as the number of servers in op-
eration scales up. The subgroups each have their

own multicast address. The servers dynamically or-
ganize themselves into these groups. Each group in-
cludes one (only) member of the pervasive group.
This \parent member" receives queries from clients
on the global multicast address, Gglobal, and dis-
patches these queries to its subordinate servers via
its unique local group multicast address.

3.1 An \Expanding-Wheel" Search

In expanding-disc searches, the client completely con-
trols the impact of its searches. Since only a TTL
limit is used, maximum radius is the only dimension
which may limit the scope of a search. In a hier-
archy, each hierarchical layer can share the burden
of restricting search scope. What results is a search
pattern whose impact, with respect to the multicast
tra�c it generates, is greatest at its frontier, and re-
stricted to minimal \spokes" en-route to the frontier.
Thus we call our search an \expanding-wheel" search.

C

C MASH Client with inner and outter searching rings.

Mash subgroop with root server (filled) and subordinate servers (hollow)

X Y

Z

Figure 1: Expanding-Wheel Topology

Figure 1 shows an example of this approach. First,
the client C sets its TTL limit to some small initial
value (the dashed inner circle) and transmits its query
to the global multicast address. Only the root level
servers (dark �lled-in circles) listen to this address.
In Figure 1,C's �rst transmission will reach servers

Y and Z. These servers will either respond themselves
(if their local databases match the query) or they will



retransmit C's query by multicasting it to their re-
spective groups' multicast addresses. If any server
hearing this query can respond, it does so directly
to C. If C hears no responses for some time, it will
increase its TTL and retransmit its query again on
the global multicast address. In our example, the
rebroadcast query will reach root servers X, Y, and
Z (the dotted, outer circle). Y and Z will ignore
the retransmitted query (by checking a record of re-
cent queries) but X will respond in the same manner
Y and Z did the �rst time. The advantage of this
method over expanding-disc search is that, on TTL-
expansion, the multicast infrastructure will have to
carry the un-needed retransmission only to Y and Z.
In expanding-disc, however, the retransmission would
go to all of Y's and Z's members (all previously
reached destinations). Under signi�cant scaling con-
ditions (scaling up the size of the search, not the num-
ber or size of the groups) expanding-wheel can lessen
the multicast tra�c load tremendously. This reduc-
tion is due to the fact that the majority of servers
are children who do not even subscribe to Gglobal ,
and thus are never involved in the multicast distribu-
tion tree for the repeated queries. See Section 3.2 for
more details.

3.2 Comparison of Expanding-Wheel

and Expanding-Disc Approaches

For a given set of servers, the expanding-wheel archi-
tecture will generate longer path lengths for a query
to reach each server in that set than the expanding-
disc architecture. In addition, the expanding-
wheel architecture generates overhead associated
with maintenance of the hierarchy and uses more
multicast groups than expanding-disc. Expanding-
wheel's main improvement over expanding-disc is its
reduction of multicast tra�c when a failed search
elicits an expanded, reiterated query. Therefore,
for expanding-wheel to be an improvement over
expanding-disc, the amount of tra�c generated on
the second, third, and further \wheel diameters"
must be reduced to o�set the cost of increased path
lengths, protocol overhead, and its greater number of
multicast groups.

For a two-level hierarchy, the amount of this reduc-
tion is proportional to the number of members in each
group. For example, in a hierarchy with 10 servers
per group, an expanding-wheel query will reach only
1

10
of the servers reached in the previous iteration,

plus those servers being reached for the �rst time
in the current iteration. This is a signi�cant sav-
ings over the expanding-disc search for those cases
where the search fails to elicit any responses for sev-
eral iterations. In addition, the savings a�orded by

expanding-wheel allows more liberal use of repeated
search iterations, such as in searches that attempt to
gather a large set of responses, as opposed to halting
with the �rst reply.

4 Self-organizing Groups

In order to implement an expanding-wheel search, a
hierarchy of servers must be established. The higher-
level servers are \parents" of the lower-level servers,
the \children". A two-level hierarchy su�ces to
demonstrate the feasibility of expanding-wheel search
groups.

4.1 Group Formation

In order to form groups automatically, servers must
communicate with one another. The most obvious
channel of communication is the multicast groups
that will already exist for the forwarding of queries
from clients to high-level servers, and from parents
to children. In the following discussion, it is assumed
that the highest level multicast address, Gglobal, is
information known to all servers upon startup. In
addition, the following nomenclature for servers will
be used:

Parent A server that has elected to become a parent.
It has no servers above it in the hierarchy, but
may have a group of child nodes associated with
it.

Child A server that has accepted a parent and will
therefore not accept children (ours is a two-level
hierarchy). A child will have only one parent.

Newborn A server that has recently been started
(or restarted). It has neither accepted a parent,
nor any children.

4.1.1 Newborns

Newborns begin their lives by sending out a multicast
request to join nearby groups. This adoption request
is sent to all parents via Gglobal. The newborn uses
a traditional expanding-disc search methodology in
order to �nd the parents closest to it that are willing
to accept it. After each adoption request is multicast,
the newborn waits for a short period of time to give
parents time to respond.
During this waiting period the newborn records

any invitation messages which existing parents send
to it. When the period is over, the newborn checks
its invitations. If it received any, it selects the best
parent and joins its group. This is accomplished by
sending a member acknowledgment message. This



message is also used during group maintenance and
is discussed in Section 4.2.2.
Many metrics could be used to judge potential par-

ents. Intuitively, we use parent loading (ratio of a
parent's active children to its potential number of
children) as a measure of parent worth. Parent dis-
tance is also a vital measure, but, owing to the nature
of expanding-disc searching, the closest parents will
not need to compete with those farther away.
The mechanism parents use to determine whether

to issue an invitation message in response to a new-
born's adopt message is a more complicated matter,
and is deferred until Section 5.1. However, it is im-
portant to mention here that the parent needs one
vital piece of data in order to judge newborn worth:
the newborn's distance to itself. Since the newborn
uses expanding-disc searches, it knows that the maxi-
mum possible distance to a parent responding in each
search iteration is equal to the TTL used in that it-
eration. Therefore, the newborn's current adoption
search radius is placed as data in the adoption pack-
ets so parents may know the maximum distance to
the child requesting adoption.

4.1.2 Child/Parent Decision

For each search disc that returned no invitations, the
newborn may expand its TTL limit and reissue it's
query. This ensures robustness in the adoption pro-
tocol. If any messages are missed (going in either
direction) the next query cycle will rectify matters.
In light of this, parents must react to each adoption
message they see, even if it is a duplicate message.
Indeed, if a duplicate message is detected, the parent
must eliminate any state associated with responding
to the previous message, and repeat the steps it took
the �rst time (issue invite message, record child in-
formation, etc.).
Parents that accept a newborn will send an invite

message. This message must contain enough infor-
mation for the newborn to communicate with the
parent, and for the newborn to make informed de-
cisions about which parent to choose. The former re-
quirement can be �lled by supplying the parent's local
multicast address in the invite message. The latter,
as discussed previously, could be accommodated by
including a measure of parent loading in the invite
message. Upon electing to join a parent's group, the
newborn ceases its search, and begins responding to
queries and control tra�c heard on the parent's local
multicast address (Gi, for the i'th group) only.
If a newborn continues to expand its search disc

without receiving invitations it must stop at some
point. One simple choice of stopping criterion is a
predetermined radius limit, Rmax. Once the search
radius has progressed past this limit without yield-

ing any invite messages, the newborn must elect to
become a parent. This is accomplished by ceasing
the adoption search, acquiring an unused multicast
address to use as the local group address (Gi), and
beginning to respond to newborn adoption requests
and client queries heard on Gglobal .

4.2 Group Maintenance

Once established, parent-child relationships are kept
current with a parent-initiated query cycle. This
member-query cycle occurs at infrequent, predictable
intervals.

4.2.1 Member queries

Parents issue a query to all of their children at regular
intervals. Parents already possess a simple means of
communication with their children, their local group
multicast address, Gi. According to Section 4.1.1,
parents use newborn distance to elect those adop-
tion requests to respond to. This implies that par-
ents must keep track of the distance of their active
children as well (for comparison purposes). Also, be-
cause the member query cycle serves to maintain the
group integrity, it should be robust. All of these ob-
servations indicate that expanding-disc searching is
suitable for member queries.
When a child responds to a member query, the up-

per bound on the distance between the parent and
child is equal to the radius used to send the mem-
ber query. If the parent includes this distance in the
member query message, each child will also know this
bound, and may incorporate that information into its
response.
Expanding-disc searching also exhibits the desired

robustness. The member-query cycle consists of par-
ents multicasting a member-query packet to all group
members on Gi. The member-query packets must
contain the hop count used so that children may indi-
cate this value when responding. A query identi�er is
also associated with each batch of queries (one query
ID for all iterations of the expanding-disc query).
A suitable stopping condition for the expanding-disc
query is when all children have responded or when the
farthest previously known child distance is reached.
It should be noted here that the failure of a child to
respond to a query may be detected by the parent,
but we have not said what action is taken in this case.
As will be explained in Section 4.2.2, the correct ac-
tion is none-at-all.

4.2.2 Member acknowledgments

Upon receiving a member query, a child server will
unicast a corresponding member acknowledgment to



its parent. This acknowledgment will contain the hop
count of the query and the query ID of the query,
taken from the query itself. Children will not respond
more than once to a given query cycle, indicated by
the query ID.
Because of the robustness of expanding-disc search-

ing, children may use the absence of parent queries
to indicate parent death, or loss of communication
with the parent. No farther action need be taken on
the part of the child to determine parent status. In
practice, a child need only wait the member query
interval plus several times the estimation of the one-
way trip time from the parent to the child (allowing
for missed queries to be recouped on subsequent disc-
expansions). If a child hears no query in that time,
it orphans itself; i.e. it restarts itself as a newborn.
It will then rapidly �nd the closest live parent, or
become a parent itself. To avoid all of a dead par-
ent's children from synchronizing (possibly missing
each other as potential parents), a random delay can
be introduced between the decision to orphan oneself,
and actually carrying out the act.
If a parent does not receive a member acknowl-

edgment from a child, it need not delete that child's
state. As explained in Section 5.1, the parents use a
greedy algorithm, and never relinquish a child (even a
dead one) unless a topographically closer replacement
is at hand. Thus, a child may send its acknowledg-
ment late and be reinstated, provided the parent has
not had a pressing reason to delete it. However, if a
parent does delete the state associated with a child,
and then later receives an acknowledgment from that
child, the parent must explicitly orphan the child by
means of a unicast orphan message. A child that
receives an orphan message from its current parent
orphans itself, as described above.

4.3 Observations

The self-organizing mechanism is controlled by the
global parameter Cmax. This parameter controls the
maximum number of children a parent will accept,
and it is discussed in more detail in Section 5.1.1.
Adjustments to this parameter greatly e�ects the
performance of the query/response system. When
all servers use a well-known, static Cmax the au-
tomatic group formation protocol can become sat-
urated, causing new servers to become lonely (having
neither a parent nor children). This section addresses
these problems and suggest some potential solutions.

4.3.1 Some Thoughts on Group Size

For a querying client outside the topographic radius
of a group, the average path length for a query to
reach all members of that group is roughly equal to

the path length in expanding-disc plus the radius of
the group. Therefore, the smaller the group radius,
the smaller the path length necessary to reach all
nodes. Also, because the purpose of expanding-disc
searches is to �nd information nearest the querier,
smaller group radii o�er a �ner \resolution" of search-
ing to the clients.
However, as group size is reduced the performance

of the system approaches that of expanding-disc. In
particular, if the group radius is reduced to 0 (all
groups having one high-level member listening to
Gglobal and no children) the system behaves exactly
as expanding-disc, with some additional control over-
head.
For larger group sizes, the savings in tra�c on re-

peated iterations of the expanding-wheel search is
greater. This can be seen by noting that expanding-
wheel searches always need to go through the high-
level servers (even if those servers ignore the repeated
queries). Larger group radii will produce a smaller ra-
tio of high-level servers to low-level servers for a �xed
number of overall servers. Thus fewer nodes will ini-
tially receive queries sent on the high-level multicast
group address.

4.3.2 Load Balancing

In a large, distributed, self-organized system, the
problem of maintaining an optimal state can be di�-
cult. One such optimization concern in MASH is the
task of evenly distributing the child nodes amongst
the available parents. Because no node can easily
acquire a global picture, parents must rely on local
information to determine if they are in or out-of-
balance with their neighbors. The simplest criterion
for a parent to use is its own number of children.

4.3.2.1 Lonely Parents

If a newborn appears inside of a densely populated
area, it is possible that it may not be adopted by
any parent because all parents have Cmax children.
If this new child then becomes a parent, it may
always have very few children. If a child is born
nearby, this parent will adopt it even if the other
nearby parents are closer (due to their \full" status).
This will allow overlapping groups, which would ulti-
mately cause more multicasting tra�c and less reso-
lution for clients wishing to control the radius of their
expanding-wheel.
Another possible cause of this e�ect is large-scale

link failure. If many links fail, the children attached
to these links will not be able to reach their par-
ents and will orphan themselves. Upon restarting
they will hear no responses to their adoption requests
(links are still down) and will become parents. Now,
when the links are once again fully functional, there



will be a population consisting of mostly parents.
These two very di�erent causes each produce the

same locally observable result: \lonely parents."
Lonely parents are parents whose number of chil-
dren is small. Determination of what value consti-
tutes \small" need not be a complicated computa-
tion. What is important is that the population of
parents (as a whole) react in a manner that:

1. Distributes the available children fairly amongst
the parents

2. Recovers from an environment that is saturated
with parents

One possible solution to this problem is for such
\lonely parents" to send a lonely parent message to
other nearby parents indicating their lack of children.
This could be done periodically (on the order of sev-
eral member query cycles). For example, whenever
a parent has fewer than 1

2
Cmax children. The radius

of such a packet should be kept just large enough to
reach only those parents that are very nearby (cer-
tainly bounded by Rmax).

4.3.2.2 Responding to Lonely Parents

Non-lonely parents who hear a lonely parent packet
could respond in several ways. In order to ensure fair
distribution of children, parents could orphan some
(or possibly all) of their children, allowing fair com-
petition for them via the \nearest parent �rst" nature
of the adoption packets. This practice would allow
localized, on-demand, load balancing to occur.
Alternatively, neighbors of lonely parents could re-

spond by inviting lonely parents to join their groups
as children. This would address parent-saturated en-
vironments by demoting unsuccessful parents back to
child status. In a parent-saturated environment this
is the right thing to do, even if the lonely parent has
some children that would be orphaned by this proce-
dure.
The correct response upon receipt of a lonely par-

ent packet depends on the environment in which the
event occurs. In a parent-saturated environment, of-
fer an invite packet to the lonely parent. In a over-
burdened parent environment, orphan some children.
Rather than attempt to determine the status of the
environment, each parent should base its response on
its locally observable situation; i.e. whether or not it
is lonely too. A summary of responses to receiving a
lonely parent packet is given in Table 1.
In either environment, parent-

saturated or newborn-poor, the lonely parent P0 will
be able to become \unlonely" and balance the child
load. In a mixed environment (some parents with
near Cmax children while many others remain nearly
childless) P0 will be in a position to decide to restart

or gather the newborns other parents have released
for it based on a comparison between how attractive
(distant) the newly available children are versus how
attractive (distant) the willing parents are. Table 1
shows that when node P (which hears the lonely par-
ent message from P0) is also lonely, it pursues some
action to re-balance its load, as well as aid P0.

4.3.2.3 Other Load Balancing Procedures

In order to prevent a poorly situated parent from al-
ternating between lonely parent and newborn, lonely
parents should only send lonely parent messages in-
frequently. In the interim, parents withCmax (or near
Cmax) children can occasionally orphan their worst
(farthest) child as preventive maintenance. More ap-
propriately, all parents can exercise a random orphan-
ing regime in the interest of global load balancing. As
a parent's number of children increases so does the
likelihood and/or frequency with which it orphans
its children. This likelihood could be controlled via a
probability function such as:

f

(C � (Cmax + 1))2
(1)

where f is the frequency (in member query cycles)
with which a child is orphaned and C is the current
number of children. Refer to Figure 2.

4.4 Issues of Node Performance

Hop count is certainly not the only measure of a
node's value in the server population. Other con-
cerns are the bandwidth and latency of its network
interfaces, the size of its database and the speed of its
processor (amongst others). The protocol described
in this paper will prefer a slow child node to a fast one,
if the former is topographically closer. This practice
will not necessarily damage the overall performance.
If a child is connected to a parent by a slow link it
need only reply to member queries within the allotted

Is P
lonely Situation Reaction
Yes P has fewer children

than P0

P orphans itself

Yes P has more children
than P0

P invites P0

No Losing some children
will not make P
lonely

P orphans far-
thest child(ren)

No Losing some children
would make P lonely

P invites P0

Table 1: Response of parent P, after receiving lonely
parent message from P0



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3 4 5 6 7 8 9 10

 P
ro

ba
bi

lit
y 

of
 o

rp
ha

ni
ng

 fa
rt

he
st

 c
hi

ld
 in

 e
ac

h 
m

em
be

r 
qu

er
y 

cy
cl

e 
(f

=
5)

Number of children (Cmax = 10)

Figure 2: Equation 1 with f = 5 and Cmax = 10

time. Because a slow node could be the only node in
the network to carry the sought-after information, its
response to database queries is vital. There will be
no damage if it takes longer to respond than other
nodes because the response is unicast directly to the
client. If a node is too slow to respond to member
queries, then it will be marked inactive and poten-
tially orphaned. If it is consistently slow, it will not
be able to acknowledge an invitation in time, either.
In this case, a slow child may choose to become a
parent. This activity is damaging to the whole sys-
tem and we therefore must prefer that slow nodes be
permanently relegated to child status.

Because of the di�culties involved in determining
link bandwidth and latency, simple measures are the
most e�ective strategy for dealing with slow children.
The simplest approach is to allow manual determina-
tion of nodes which are connected only via slow links.
A MASH server's administrator could prevent a node
from choosing to become a parent, via a con�gura-
tion option, for example. Such nodes would transmit
adoption requests up to Rmax, and, if they receive no
invitation, orphan themselves. This method can also
be used to prevent very slow servers and servers with
very small databases from becoming parents.

A more complicated solution is for parents to
collect statistics concerning their ability to service
database queries. Parents could then exchange this
information and make judgments concerning their
own performance. Servers which experience di�cul-
ties receiving and handling database queries will ob-
serve that their number of serviced queries is signif-
icantly lower than that of the neighboring parents.
Such nodes could orphan their children, and then
themselves. This approach requires the addition of
a statistics module for collecting the relevant infor-
mation, a protocol for the exchange of this informa-

tion with neighboring parents, and a decision making
mechanism to determine each parent's reaction to the
information. The statistics could include not only the
number of queries serviced, but also the number of
queries responded to by the parent. In this way, the
set of parents could evolve from a random set of nodes
into the set of nodes having the largest databases. Be-
cause database queries are routed to parents before
they reach children, having the largest, most promi-
nent FTP sites become MASH parents makes sense.

5 MASH | An Implementation

The MASH prototype[5] was built directly on top of
march, using code from the latter to deal with client
queries, establish multicast and unicast communica-
tions, and �lter duplicated client queries. The client
software itself is almost completely unchanged from
march. A highly modular design ensures that im-
provements to the group maintenance protocol can
be implemented without impacting the database or
query/response system.

5.1 Selecting and Tracking Children

Parents use a greedy algorithm when selecting chil-
dren. They will never abandon a child unless they are
certain that a replacement exists. On the other hand,
parents will readily orphan a child in exchange for
an assured better child. The mechanism that keeps
track of all active, inactive, and unveri�ed children
for a parent is a data structure called the CTABLE.

5.1.1 CTABLE Structure

The maximumnumber of children a parent may have
is given by the predetermined constant Cmax. This is
the number of entries in the CTABLE. The CTABLE
keeps track of active children, inactive (dead) chil-
dren, and unveri�ed (pending) children. Each child
in the CTABLE has �ve �elds associated with it:
identi�er, active bit, distance, timer, and last QID.
The Query ID (QID) is a number uniquely identify-
ing each query cycle that a server initiates. For any
child on the CTABLE, its status can be determined
as follows:

active | if the active bit is set

unveri�ed | if it is not active, and its timer has
not elapsed, and it successfully acknowledged the
most recent query (or was just invited, indicated
by a QID of �1).

dead | if it is not active or unveri�ed.



5.1.2 Updating the CTABLE

The CTABLE is updated on any one of three events:

Member Acknowledgment Arrives. For the ac-
knowledging child's entry, if the QID �eld in the
member acknowledgment message is equal to the
current QID (or it is a special value used to in-
dicate that the child is responding to an invite
message), then set the active bit to 1, set the dis-
tance from member acknowledgment message's
hop count �eld, and set the last QID �eld to
current QID.

Adopt Arrives. Examine the CTABLE, add the
child if there is room (removing the furthest dead
child if necessary). If the table is full, but the
potential child is closer than the farthest live
child, expand the table and issue it an invitation.
Schedule a Table Reduction to occur giving the
potential child enough time to accept or decline
the invitation (silence is an implicit declination).

Table Reduction. Remove the worst child. If there
are dead children, remove the one with the far-
thest distance. If not, remove and send an or-
phan message to the live child with the farthest
distance.

The act of growing the table means that, temporar-
ily, the table size exceeds Cmax. This occurs when
the CTABLE is full, all children are live and there
is an adopt request with a small distance (at least a
one-step improvement over the farthest child in the
table). In this case, the parent extends an invita-
tion to the preferable child, but greedily retains all of
its children because the act of issuing an invitation
does not ensure the child will accept it. The child
is likely to receive many invite messages from all of
the neighboring parents and it will choose the best
one. So, instead of killing a perfectly good child for
the chance of getting a better child, extend the in-
vitation tentatively, and schedule a table reduction
to occur after all children have had a fair chance to
respond to outstanding queries.

5.2 MASH Protocol

MASH servers communicate via �ve message types.
These messages are passed either via the global mul-
ticast group address, the local group address, or uni-
cast via a TCP connection. The message types are:

Adopt | Multicast on the global group by new-
borns and orphaned children in an expanding-
disc fashion. Used to �nd the nearest parent
willing to adopt it.

Invite | Unicast from a parent to a newborn or
orphan in response to hearing its Adopt packet.
Contains information necessary for the newborn
to join the parent's group.

Memb Query | Parent multicasts to its children
using incremental TTLs so that children can
know the high level server is still alive and to
solicit Memb Ack messages.

Memb Ack | Unicast to the parent by children in
response to a Memb Query. This allows the par-
ent to know that the child is still alive, and what
its distance is. This message is also sent by a
newborn in response to an Invite message.

Orphan | Unicast from a parent to one of its chil-
dren to prune o� that child. A child that receives
an Orphan message will become a newborn, act-
ing as though it had just been restarted.

6 Summary

The advantages of an expanding-wheel search ap-
pear to be quite signi�cant for a highly connected
multicast-capable network densely populated with
servers. However, such a network does not yet exist.
Support for multicast in the Internet is still partial.
Also, it is di�cult to deploy a self-adjusting mecha-
nism that is in an experimental state.

6.1 Analysis

The �rst step to be taken towards deployment of a
distributed multicast directory service would be to
ground the soundness of the idea in simulation. Our
e�orts are currently focused in developing a suitable
simulation testbed in order to evaluate the appropri-
ateness of the group formation protocol and to quan-
titatively measure the amount of tra�c reduction
over the archie and march approaches. Although
the simulation engine was not complete in time to
include the results in this paper, the MASH group is
currently involved in modifying the ns-2 simulator[6]
to simulate arbitrary applications running in any net-
work topology.
While the modi�cations are still un�nished, we

have performed hand-simulations in a random
multicast-capable network topology. In an exper-
iment with 104 nodes, a centrally located client,
sought-after information 6 hops distant, 9 groups, av-
erage group size 10, and 1-hop radius increments, the
MASH approach showed a 27.9% reduction in the
number of links traversed compared to the march ap-
proach. When complete, the ns-2 simulation results
will be made available on the web[5].



6.2 Further Observations on the

MASH Paradigm

MASH uses a hierarchical approach with group self-
organizing capability to implement the recovery of
distributed directory information. We recognize that
this paradigm can be extended to recovery of other
similar, distributed information. For example, in-
dexing words from web pages, audio/video program
listings, library metadata, or any other indexable
information stored on many machines. For any of
these applications, the basic idea is the same: let the
machine which stores the information also provide
a searchable index which the clients may query via
multicast allowing the distributed indices to respond
if they may. By doing so, a client can get up-to-
date and complete information without encountering
a bottleneck problem.

To aid in querying distributed information servers,
MASH organizes the information servers into hierar-
chical groups. This approach reduces query tra�c a
great deal (compared to expanding-disc approaches,
such as march). The group organization is dynami-
cally self-adjusting, resulting in the lightest possible
query tra�c.

We recognize that the mechanism of group self-
organization adopted in MASH is also of general in-
terest in the Internet community. The protocol used
in MASH is very simple, yet robust. The control
message are infrequent, except at a server's \birth."
Yet the system responds to changes in the topology
or community of servers automatically. The act of
orphaning a server is viewed as a safe response to
any non-optimal grouping which may (temporarily)
arise. Such a simple, competitive scheme may prove
useful for self-organization in other applications. Be-
cause our implementation is highly modular, the self-
organizing component may be extracted easily, for
use in other systems.

6.3 MASH with a Hierarchy of More

Than Two Levels

What we have proposed above is a two-level only hi-
erarchy. We are currently researching the design of
a MASH with more than two hierarchical levels. In
order to avoid creating hotspots at the highest-level
servers, we are considering bottom-up propagation of
query messages. Such a search would still retrieve
the topographically closest responses with the added
bene�t of exponentially increasing the number of new
servers reached in each iteration.

7 Acknowledgments

We would like to thank Dr. Lixia Zhang of UCLA
for her guidance, many poignant insights and excel-
lent advice. We are also grateful for many valuable
comments and feedback made by the reviewers.

References

[1] A. Emtage and P. Deutsch. \Archie: An elec-
tronic directory service for the Internet." Pro-

ceedings of the Winter 1992 Usenix Conference,
pages 93-110, January, 1992.

[2] Kashima, Hiroaki, et. al. \Searching Internet Re-
sources Using IP Multicast." INET '95, August,
1995.

[3] Rovers, Perry. \Anonymous FTP Frequently
Asked Questions List." Copyright 1993-1995,
Perry Rovers. FTP Host: rtfm.mit.edu, Direc-
tory: /pub/usenet/news.answers/ftp-list/faq.

[4] Deering, S. \Host Extensions for IP Multicast-
ing." Request for Comments 1112, August 1989.

[5] Rosenstein, Li, and Tong. \The Multicasting
Archie Server Hierarchy." Project Home-Page.
URL: http://www.cs.ucla.edu/~adam/mash.html.

[6] \ns-2: The LBNL Network Simulator,"
Lawrence Berkeley National Laboratory, URL:
http://www-nrg.ee.lbl.gov/ns/#version2


